16 research outputs found

    Multivariate control charts based on Bayesian state space models

    Full text link
    This paper develops a new multivariate control charting method for vector autocorrelated and serially correlated processes. The main idea is to propose a Bayesian multivariate local level model, which is a generalization of the Shewhart-Deming model for autocorrelated processes, in order to provide the predictive error distribution of the process and then to apply a univariate modified EWMA control chart to the logarithm of the Bayes' factors of the predictive error density versus the target error density. The resulting chart is proposed as capable to deal with both the non-normality and the autocorrelation structure of the log Bayes' factors. The new control charting scheme is general in application and it has the advantage to control simultaneously not only the process mean vector and the dispersion covariance matrix, but also the entire target distribution of the process. Two examples of London metal exchange data and of production time series data illustrate the capabilities of the new control chart.Comment: 19 pages, 6 figure

    Multivariate Quality Control Chart for Autocorrelated Processes

    No full text
    Traditional multivariate statistical process control (SPC) techniques are based on the assumption that the successive observation vectors are independent. In recent years, due to automation of measurement and data collection systems, a process can be sampled at higher rates, which ultimately leads to autocorrelation. Consequently, when the autocorrelation is present in the data, it can have a serious impact on the performance of classical control charts. This paper considers the problem of monitoring the mean vector of a process in which observations can be modelled as a first-order vector autoregressive VAR (1) process. We propose a control chart called Z-chart which is based on the single step finite intersection test (Timm, 1996). An important feature of the proposed method is that it not only detects an out of control status but also helps in identifying variable(s) responsible for the out of control situation. The proposed method is illustrated with the help of suitable illustrations.Multivariate statistical process control, autocorrelation,
    corecore