This paper develops a new multivariate control charting method for vector
autocorrelated and serially correlated processes. The main idea is to propose a
Bayesian multivariate local level model, which is a generalization of the
Shewhart-Deming model for autocorrelated processes, in order to provide the
predictive error distribution of the process and then to apply a univariate
modified EWMA control chart to the logarithm of the Bayes' factors of the
predictive error density versus the target error density. The resulting chart
is proposed as capable to deal with both the non-normality and the
autocorrelation structure of the log Bayes' factors. The new control charting
scheme is general in application and it has the advantage to control
simultaneously not only the process mean vector and the dispersion covariance
matrix, but also the entire target distribution of the process. Two examples of
London metal exchange data and of production time series data illustrate the
capabilities of the new control chart.Comment: 19 pages, 6 figure