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1 Introduction

In the realm of the standard field theories, more general fields than symmetric tensors

are rarely used. It is partly because we are living in four-dimensional spacetime where

any fundamental particle can be described by symmetric tensor(-spinor) fields. Hence,

mixed-symmetry fields — fields whose indices have more general permutation symmetry

than the fully symmetric ones — would be indispensable only in describing certain physics

of higher dimensions, such as the physics of String Theory. Actually, the infinite tower

of massive excitations in String Theory carry mixed-symmetry representations in general

and their presence is crucial for the consistency of various stringy dualities. Moreover,

mixed-symmetry fields might be useful, although not necessary, even in four dimensions,

and their use may open a new avenue to unexplored land of physics.

The two-derivative Lagrangian for a massless mixed-symmetry field in flat spacetime

is first given for the simplest case by Curtright [1] and for generic case by Labastida [2–4]

and then further investigated in [5–25]. Mixed-symmetry fields can be classified according

to the symmetry property of the index permutations, hence can be associated with Young

diagrams. The Lagrangian has in general a number of gauge symmetries, depending on

the shape of the Young diagram associated with the field under consideration. One of the

interesting and non-trivial properties of mixed-symmetry fields is that their flat space La-

grangian does not admit a smooth deformation towards the background with non-vanishing

– 1 –



J
H
E
P
0
6
(
2
0
1
6
)
1
3
5

cosmological constant [5–7]: around (A)dS background, there is no two-derivative mixed-

symmetry Lagrangian respecting all the gauge symmetries available in flat space. Instead,

one can choose to preserve only one gauge symmetry and the choice determines the mass

squared term to a specific value in units of cosmological constant.

In this paper, we shall focus on the mixed-symmetry field associated with the Young

diagrams having two columns. In a sense, the number of columns plays the role of ‘spin’

hence we are considering here only ‘spin two’ cases. Among generic two-column cases, we

will analyze the mixed-symmetry field corresponding to the simple hook Young diagram

[1] in great details since it already contains all the essential features of the more general

two-columns cases. The simple hook field is of particular interest because it appears in the

first order formulation of Gravity through the spin connection. There have been various

attempts to describe Gravity by the connection or related object (see for instance the recent

discussion [26] and references therein). We shall also discuss how these attempts can be

understood from the perspective of the physics of mixed-symmetry field.

The main target of the current paper is the identification and the analysis of the higher-

derivative action of mixed-symmetry field having Weyl transformation — that is, the trace

shift — as its symmetry. In the more familiar case of symmetric spin-two field, the Weyl

action is nothing but the linearization of the four-derivative Weyl gravity. The latter can

be decomposed around (A)dS into the massless and partially-massless modes (see [27] for

the related discussion). In the case of symmetric spin-s field, the Weyl action involves 2s

derivatives which can be split into s different modes each of which is described by a specific

two-derivative action with a certain gauge symmetry [28–30]: they are partially-massless

spin s modes of depth 0 to s− 1. In fact, these are all the known short representations (of

isometry group) containing the helicity s mode as the highest one.

This pattern suggests that the Weyl action of certain type of field — fully symmetric

or mixed symmetry — could describe all the short representations associated with that

field and each of these short representations can be realized as a two-derivative Lagrangian

with a certain gauge symmetry (see [28] for some related discussions). In this paper, we

examine this idea with the mixed-symmetry fields of two-column Young diagrams. The

Weyl action of the field associated with a Young diagram having s columns ought to involve

2s derivatives. Hence, we expect it to describe s different short modes. The pattern of

short representations involved might be non-trivial and the necessary analysis would be

lengthy for generic Young diagrams. We reserve the general analysis for the future work

and focus here only on the two-column cases where, irrespectively of the height of each

column in the Young diagram, the Weyl action has four derivatives.

Let us provide more details on what has been done in this paper. We consider the

fields having the symmetry of two-column Young diagram,

p

q

. (1.1)
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There are two short representations in (A)dS described by two distinct Lagrangians with

different gauge symmetries: the gauge parameters have the index symmetry of Young

diagram, either

p−1
q

or p

q−1

. (1.2)

In the flat limit, the two Lagrangians coincide and enjoy both of the gauge symmetries.

Now considering the Weyl action of this field in flat space, we find that there is a unique

four-derivative action invariant with respect to both gauge symmetries and a trace shift

symmetry with the parameter,

p−1

q−1

. (1.3)

We show that this flat space Weyl action now admits a smooth deformation to the back-

ground with non-vanishing cosmological constant, as opposed to the two-derivative one.

Moreover, this four-derivative action describes two short-representation modes correspond-

ing to the gauge symmetries (1.2). In the case where the heights of two columns coincide,

the Weyl action describes, on top of the usual massless field, new degrees of freedom (DoF)

having a two-derivative gauge symmetry similar to the partially-massless spin two field.

Therefore, our analysis shows that the two-column cases precisely fit in the pattern dis-

cussed before.

Further, we study two-derivative massive deformations of the Weyl action. In (A)dS

there are two distinct mass deformations, which preserve one or the other of the symme-

tries (1.2). We show that the massive action does not admit a smooth (A)dS deformation,

similarly to the conventional two-derivative actions. Two different deformations have dif-

ferent spectra around (A)dS background. We observe that the sign of the coefficients

in front of the free actions depend on the sign of the cosmological constant. In special

dimension d = p+ q + 1, one of the massive deformations is unitary around dS and non-

unitary around AdS, while the other deformation follows the opposite pattern — unitary

around AdS and non-unitary around dS. In other words, the unitarity requirement se-

lects one of the massive deformations, and this choice is different for different signs of

cosmological constant.

The plan of the paper is as follows. We focus first on the simple hook case in section 2.

After a detailed review of the two-derivative systems in section 2.1 and 2.2, we construct

and discuss the four-derivative Weyl action in section 2.3. The result of the simple hook

is generalized in section 3 towards more general two-column cases. We provide separate

discussions on the different height case (section 3.1) and the equal height case (section 3.2).

Finally, we provide various discussions, in particular, related to New Massive Gravity [31–

34], in section 3.3.
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2 Simple hook

Let us first consider the simplest mixed-symmetry field φµν,ρ , corresponding to the simple

hook Young diagram,
µ ρ
ν

. (2.1)

The shape of Young diagram dictates the symmetries of the field under index permutations.

The symmetries are

φµν,ρ = −φνµ,ρ , φµν,ρ + φνρ,µ + φρµ,ν = 0 . (2.2)

Notice that we work in the base where the anti-symmetry of indices in each column is

manifest. One can equally work with the symmetric base, but for the construction of the

Lagrangian we find the antisymmetric base more advantageous.

The Young diagram is fixing not only how fields transform under index permutations

but also under Lorentz transformations. Hence, it defines a representation under Lorentz

group SO(1, d− 1) that the off-shell field carries.

2.1 Einstein action in flat space

In flat spacetime, one can find a proper set of on-shell conditions — or, an action principle

— that makes the field carry the same Young diagram representation but now under the

little group SO(d−1) or SO(d−2), depending on whether the field is massive or massless,1

respectively. When given Young diagram representation of Lorentz group does not exist

for the little group, an interesting mechanism may emerge when the propagating modes

carry certain Young diagram representations of little group which are different from the

Young diagram representation of the Lorentz group that the off-shell field carries. For any

mixed-symmetry Young diagram this happens in space-time dimensions lower than certain

value. We shall return to this point later, but work for a while with an arbitrary d.

In [1], Curtright constructed the free action for the hook field φµν,ρ which describes

massless DoF carrying the hook Young diagram representation of the little group SO(d−2).

Note that such Young diagram exists only when d is greater than four. By introducing the

scalar product,

〈A |B〉 =
1

m!n!

∫
ddx
√
|g|Aµ1···µm,ν1···νn(x)Bµ1···µm,ν1···νn(x) , (2.3)

the action for the hook field can be written as

Sflat
E [φ] = 〈φ | G φ〉 . (2.4)

Here the ‘Einstein tensor’ G φ is defined through the ‘Ricci tensor’ F φ as

(G φ)µν,ρ = (F φ)µν,ρ − ηρ[µ (F φ)ν]λ,
λ . (2.5)

1Only the representations of compact subgroup SO(d−2) of massless little group ISO(d−2) are relevant

for our discussion in this paper.
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In this paper, the round/square brackets denote full symmetrization/anti-symmetrization

with weight one, e.g. A[[µν]] = A[µν] = −A[νµ]. The ‘Ricci tensor’ itself is given by

(F φ)µν,ρ = ∂2 φµν,ρ + 2 ∂[µ ∂
λ φν]λ,ρ − ∂ρ ∂λ φµν,λ − 2 ∂ρ ∂[µ φν]λ ,

λ , (2.6)

which extends the Fierz-Pauli massless spin two equation to the hook field. By making use

of the generalized Kronecker delta,

δρλγδµναβ = 4! δρ[µ δ
λ
ν δ

γ
α δ

δ
β] , (2.7)

the Einstein tensor can be written in a more compact form [1] as

(G φ) ρ
µν, = −1

2
δρλγδµναβ ∂

α ∂λ φ
β

γδ, . (2.8)

The action (2.4) has two gauge symmetries,

δε φµν,ρ = 2 ∂[µ εν]ρ, δθ φµν,ρ = ∂ρ θµν − ∂[µ θν]ρ , (2.9)

generated by symmetric and anti-symmetric gauge parameters:

εµν = ενµ , θµν = −θνµ . (2.10)

The above symmetry can be understood diagrammatically as

δε
φ φ
φ

= ε ε
∂

, δθ
φ φ
φ

= θ ∂
θ

. (2.11)

This gauge symmetry is reducible admitting the gauge-for-gauge symmetry,

εµν(ξ) = ∂(µ ξν) , θµν(ξ) = ∂[µ ξν] , (2.12)

which reads in terms of Young diagram,

ε ε = ξ ∂ , θ
θ

= ξ
∂
. (2.13)

The gauge symmetries generated by εµν(ξ) and θµν(ξ) have the same form,

ξ ∂
∂

, (2.14)

and therefore sum up to zero for an appropriate choice of the relative coefficient.

The structure of gauge symmetry tells us the number of DoF of this system. According

to the covariant counting (see e.g [35]), we get

SE : GL(d) 	 2

(
GL(d) ⊕ GL(d)

)
⊕ 3 GL(d) , (2.15)

where we subtract twice the DoF associated to gauge parameters as usual and put back

three times of the DoF of gauge-for-gauge parameter. The above can be recast into the

counting in the Hamiltonian analysis,

SO(d−1) 	
(

SO(d−1) ⊕ SO(d−1)

)
⊕ SO(d−1) , (2.16)
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where we subtract once the DoF for each of traceless gauge parameters and put back once

that of gauge-for-gauge. This again can be rearranged into

SO(d−1) 	
(

SO(d−2) ⊕ SO(d−2) ⊕ SO(d−2)

)
= SO(d−2) . (2.17)

which is the DoF of massive hook minus those of massless fields , and � . Hence,

this gives the interpretation of obtaining massless hook from the massless limit of massive

hook by eliminating other ‘lower spin’ components the latter involves. Eventually, we end

up with the DoF of the simple hook of the little group SO(d− 2). Hence, the DoF of the

hook field can be conveniently counted, in flat space, through the number of components

of the Young diagram representations of the little group.

2.2 Einstein action in (A)dS

Let us move on to the (A)dS background,2 and consider the analogous Lagrangian to the

flat space one (2.4). One can think of the same expression for the Lagrangian as in (2.4)

where all flat partial derivatives ∂µ are replaced by the (A)dS covariant derivatives ∇µ, but

this definition of Lagrangian has an ambiguity coming from the commutators of ∇µ’s which

give terms proportional to (A)dS curvature. The ambiguous term is hence a non-derivative

mass-like term proportional to the cosmological constant, and it ought to be determined

by the invariance of the action with respect to either of the gauge symmetries,

δΛ
ε φµν,ρ = 2∇[µ εν]ρ, δΛ

θ φµν,ρ = ∇ρ θµν −∇[µ θν]ρ . (2.18)

By examining the gauge invariance with a possible mass-like term, one can realize that

it is impossible to preserve both of the gauge symmetries. Depending on which sym-

metry we want to keep, the mass-like term is determined with a different mass-squared

coefficient [5, 6].

Let us explictly determine the mass-term or equivalently the Einstein tensor Gµν,ρ of

the (A)dS Lagrangian defined in the same manner as in (2.4). To proceed, let us first fix

our conventions:

[∇µ,∇ν ]V ρ
λ = Rµν,λ

σ V ρ
σ −Rµν,σρ V σ

λ , Rµν,λ
ρ =

2 Λ

(d− 1)(d− 2)

(
gΛ
µλ δ

ρ
ν − gΛ

νλ δ
ρ
µ

)
,

(2.19)

where Λ is the cosmological constant and gΛ is the (A)dS metric.

By requiring the Lagrangian to be invariant under the transformation δΛ
ε , we determine

the Einstein tensor as

(GΛ φ)µν,
ρ = −1

2
δρλγδµναβ ∇

α∇λ φ β
γδ, , (2.20)

which has exactly the same form as the flat space one (2.8) except for the replacement of

∂µ by ∇µ. Note that, as opposed to flat space case, the order of derivatives is important

in the expression (2.20). This system admits a gauge-for-gauge symmetry

εµν =

(
∇(µ∇ν) +

2Λ

(d− 1)(d− 2)
gΛ
µν

)
ζ , (2.21)

which corresponds to the partially-massless spin-two transformation.

2Explicit analysis making use of Stueckelberg fields can be found in [36].
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On the other hand, for the invariance under the transformation δΛ
θ , the Einstein op-

erator should acquire a mass-like term,

GΛ = GΛ − m2
Λ I, (2.22)

where the mass-squared parameter is fixed by

m2
Λ = − 4(d− 3)

(d− 1)(d− 2)
Λ , (2.23)

and the mass-term operator by

(I φ)µν,
ρ =

1

2
δρβγµνα φβγ,

α = φ ρ
µν, − 2 δ ρ[ν φµ]α,

α . (2.24)

Both of the actions GΛ and GΛ vanish identically for d ≤ 3.

Notice that the mass-squared parameter is positive in AdS and negative in dS. In both

cases, the equation with higher mass-squared term is unitary — GΛ for AdS and GΛ for dS

— whereas the other is non-unitary. See [36] for more details.

To recapitulate, the simple hook field in (A)dS space cannot have a two-derivative

action respecting both of the gauge symmetries (2.18), but either the action SΛ
E with only

the symmetric parameter gauge symmetry or the action SΛ

E
with only the anti-symmetric

parameter gauge symmetry:

SΛ
E [φ] = 〈φ | GΛ φ〉 , SΛ

E
[φ] = 〈φ | GΛ φ〉 . (2.25)

Let us examine the DoF of the above systems. We first consider the action SΛ
E . The DoF

of the system can be counted in terms of the GL(d) Lorentz covariant tensors as

SΛ
E : GL(d) 	 2 GL(d) ⊕ 3 •

	 GL(d) ⊕ GL(d) , (2.26)

which has a non-trivial pattern due to the mixture of first- and second-class constraints as

well as gauge-for-gauge. Instead, in the Hamiltonian analysis, we find a simpler pattern,

SO(d−1) 	 SO(d−1) ⊕ • , (2.27)

where we simply remove once the DoF of the traceless gauge parameter and put back that

of gauge-for-gauge. We can further decompose these DoF as propagation on light-cone,

ending up with

SΛ
E : SO(d−2) ⊕ SO(d−2) . (2.28)

Similarly, the number of DoF of the action SΛ

E
can be counted in terms of GL(d) covariant

tensors as

SΛ

E
: GL(d) 	 2 GL(d)

	 GL(d) ⊕ GL(d) . (2.29)
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The Hamiltonian analysis gives the same result, in terms of SO(d− 1) branching:

SO(d−1) 	 SO(d−1) . (2.30)

In terms of light-cone DoF, the equation (2.22) propagates

SΛ

E
: SO(d−2) ⊕ SO(d−2) . (2.31)

Hence, compared to the flat space case, the hook action SΛ
E describes extra DoF corre-

sponding to the light-cone propagation of a massless two-form field , while SΛ

E
describes

extra DoF of massless spin-two field . The general pattern of the decomposition of

modes in flat limit for an arbitrary mixed-symmetry field has been conjectured in [7] and

proved in [37–40]. Let us note that in four dimensions, the hook mode identically vanishes

hence the action SΛ

E
describes only the massless spin two mode. We will comment on this

action in the section 3.1, where a generalization to any dimensions with an off-shell field

of type [d− 2, 1] will be discussed in detail and the relation with the recent work [26] will

be clarified.

2.3 Weyl action

Even though there is no two-derivative action preserving both of the gauge symmetries

of (2.18) in (A)dS, there may exist a higher-derivative action which is invariant with respect

to both of the symmetries.

It turns out that the four-derivative action invariant under both symmetries has a

simple form,

SΛ
W[φ] = −〈φ | GΛ I−1 GΛ φ〉 , (2.32)

where the overall sign is chosen for the positive definite Euclidean action. This action

makes use of both Einstein tensors as well as the inverse mass-term operator I−1 given by

(I−1 φ)µν,
ρ = φµν,

ρ − 2

d− 2
δ ρ[ν φµ]α,

α . (2.33)

All the operators GΛ , GΛ and I are self-adjoint with respect to the scalar product (2.3):

〈f | O g〉 = 〈O f | g〉 , O = GΛ , GΛ, I . (2.34)

Since the Einstein operators GΛ and GΛ differ by a mass-like term, it is easy to show that

SΛ
W[φ] = −〈φ |

(
GΛ I−1 GΛ −m2

Λ GΛ
)
φ〉

= −〈φ |
(
GΛ I−1 GΛ +m2

Λ GΛ
)
φ〉 . (2.35)

In the first line, the action is manifestly invariant under the gauge symmetry δΛ
ε with the

symmetric parameter, whereas the second line is manifestly invariant under the δΛ
θ one

with anti-symmetric parameter.

In the flat limit, the four-derivative action (2.32) reduces to

Sflat
W [φ] = −〈φ | G I−1 G φ〉 , (2.36)

– 8 –
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which is actually the unique action invariant under both gauge symmetries as well as the

Weyl transformation,

δα φµν,ρ = ηρ[µ αν] . (2.37)

This is the analogue of the Weyl gravity action, which is uniquely fixed by diffeomorphism

and Weyl symmetries. Hence, one can regard Sflat
W as the Weyl action for the simple hook

field. In four dimensions, this action has the conformal invariance, and its form has been

determined in [41] together with other two-column mixed symmetry fields.

Coming back to the AdS action SΛ
W of (2.32), one may wonder whether it also admits

a Weyl symmetry:

δΛ
α φµν,ρ = gΛ

ρ[µ αν] . (2.38)

One can check the invariance of (2.32) under (2.38) by a brute force computation, but

there is in fact a simpler way to see it. Since any linear combination of gauge symmetries

should be a gauge symmetry, taking the following gauge parameters,

εµν(α) = ∇(µ αν) , θµν(α) = −1

3
∇[µ αν] , (2.39)

we immediately get the Weyl transformation,

(δε(α) + δθ(α))φµν,ρ =
Λ

(d− 1)(d− 2)
gΛ

ρ[µ αν] . (2.40)

This is due to the cancellation of derivative terms. Hence, in a sense, the Weyl symmetry

arises as the (A)dS remnant of the gauge-for-gauge symmetry in flat space (2.12). We

conclude that any theory of hook field in (A)dS, which is invariant with respect to both

gauge symmetries is also Weyl invariant.

This conclusion can be generalized to any mixed symmetry fields in (A)dS. Therefore,

any theory, that is invariant with respect to two distinct gauge transformations of mixed-

symmetry field, has to enjoy certain Weyl symmetry.

This argument is true even for symmetric fields. Let us take the example of spin-

two field φµν : if there exists a theory of φµν invariant with respect to both massless and

partially-massless gauge symmetries,

δφµν = ∇(µεν) +∇µ∇νσ +
2Λ

(d− 1)(d− 2)
gΛ
µν σ , (2.41)

then such a theory will also admit a Weyl symmetry. For the demonstration, it is enough

to set the gauge parameter εµ = −∇µσ to get δφµν = 2Λ
(d−1)(d−2) g

Λ
µν σ. The action having

both of massless and partially-massless gauge symmetries can be constructed analogously

to (2.32), using the massless Einstein operator GΛ
m and the partially-massless one GΛ

pm, as

SΛ
W[φ] = −〈φ | GΛ

m I−1
FP GΛ

pm φ〉 , (2.42)

where GΛ
pm differs GΛ

m by a particular mass term given through a Fierz-Pauli operator

IFP. This four-derivative action (2.42) is nothing but Conformal Gravity linearized around

(A)dS background. As the reader might notice, this is the inverse logic of the discussion

in [27]. In general, one can use this argument to support the conjecture of [28] about the

spectrum of higher-derivative Weyl-like actions for symmetric higher spin fields.
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2.3.1 Curvature formulation

In order to grasp some geometrical intuitions, let us revisit our construction in terms of

(generalized) curvatures. First of all, notice that an analogue of the Riemann curvature

can be constructed for the hook field. It is a tensor having the symmetry of the GL(d)

Young diagram given in flat space by

(Rφ)µ1µ2µ3,
ν1ν2 = 6 ∂[ν1 ∂[µ1

φµ2µ3],
ν2] , (2.43)

and is invariant with respect to both gauge symmetries (2.9). Around (A)dS background,

it is impossible to construct a curvature invariant under both gauge transformations (2.18).

Instead, we can consider the curvature,

(RΛ φ)µ1µ2µ3,
ν1ν2 = 6∇[ν1 ∇[µ1

φµ2µ3],
ν2] , (2.44)

which is invariant under the gauge transformation δΛ
ε with symmetric parameter. In order

to get a curvature that is invariant with respect to the gauge symmetry δΛ
θ with anti-

symmetric parameter, one should deform the above curvature into

(RΛ φ)µ1µ2µ3,
ν1ν2 = (RΛ φ)µ1µ2µ3,

ν1ν2 +
24 Λ

(d− 1)(d− 2)
δ

[ν1

[µ1
φµ2µ3],

ν2] . (2.45)

These two curvatures can be directly related to the Einstein actions (2.25): the Einstein

tensors (2.20) and (2.22) are given through the curvatures (2.44) and (2.45) respectively as

(GΛ φ)µν,
ρ = − 1

12
δργδσµναβ (RΛ φ)γδσ,

αβ , (GΛ φ)µν,
ρ = − 1

12
δργδσµναβ (RΛ φ)γδσ,

αβ , (2.46)

in the same manner as Einstein tensor is given through the Riemann curvature: remind,

that Einstein tensor can be written as Gνµ = Rνµ − 1
2 δ

ν
µR = −1

4 δ
ναβ
µλρ R

λρ
αβ, , where Rαβ,λρ

is Riemann curvature, Rµν and R are Ricci curvature and its trace respectively. Hence, it

is clear how each curvature is related to the two-derivative Einstein action for the simple

hook field.

Let us now move on to the four-derivative action SΛ
W, which admits Weyl symmetry.

In the case of gravity, the Weyl gravity action is simply given by the square of Weyl tensor.

Hence, the action SΛ
W may also admit such a description. We can first define the Weyl

tensor from the curvature as the traceless part of the latter. This can be conveniently done

by introducing the traceless projector T whose explicit form is not necessary for now. In

terms of T , the Weyl tensor can be determined as

W = T RΛ = T RΛ . (2.47)

Remark that the definition of the Weyl tensor does not distinguish between curvatures RΛ

and RΛ because the difference between two curvatures is precisely a trace term which is

projected out under the action of T . Therefore, the Weyl tensor is invariant under both

gauge symmetries. As the invariance with respect to both gauge symmetries implies the

invariance under Weyl symmetry transformation, the tensor (W φ)µνρ,λκ can be rightfully
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referred to as Weyl tensor. Again, mimicking the Weyl gravity case, we can consider a four-

derivative action, that is the square of the Weyl tensor. Since the four-derivative action

invariant under both gauge symmetries is unique, they should be simply related with a

proportionality constant as

SΛ
W[φ] = −d− 3

d− 4
〈W φ |W φ〉 . (2.48)

The uniqueness of the four derivative action with both symmetries in (A)dS can be checked

directly, but can be also understood by the following simple argument: as we have shown

above, any action for hook field with at most four derivatives and invariant with respect

to both gauge symmetries in (A)dS enjoys Weyl symmetry, and therefore coincides with

the action (2.36) in the flat limit. It follows then, that if there are distinct actions with

those symmetries, their difference is encoded in two-derivative terms proportional to (A)dS

curvature. Therefore there is a linear combination of them that is a two-derivative action

invariant under both symmetries. Since there is no such two-derivative action, it follows

that the four-derivative action (2.32) is unique.

In order to show that the formula (2.48) coincides with (2.32), one needs to perform

several integrations by part ignoring the boundary terms. In the case of Weyl gravity, this

amounts to

Wµν,ρλWµν,ρλ = LGB +
4(d− 3)

d− 2

(
Rµν Rµν −

d

4(d− 1)
R2

)
, (2.49)

where the Gauss-Bonet (GB) term given by

LGB =
1

4
δµ1
ν1

µ2
ν2

µ3
ν3

µ4
ν4
Rµ1µ2,

ν1ν2 Rν3ν4,
µ3µ4 . (2.50)

vanishes identically in d ≤ 3 and is a topological invariant in d = 4. In higher dimensions,

its linearization always reduces to a boundary term. Here again, the ‘Weyl squared’ action

for the simple hook field can be related to the form (2.32) by adding a GB-like term for

the simple hook field. In flat space, such term is given by

Lflat
GB(φ) =

1

2! 3!
δµ1
ν1

µ2
ν2

µ3
ν3

µ4
ν4

µ5
ν5

(Rφ)µ1µ2µ3,
ν1ν2 (Rφ)ν3ν4ν5,

µ4µ5 . (2.51)

This term now vanishes identically in d ≤ 4 and becomes a boundary term in d ≥ 5. There

is a unique (A)dS generalization of (2.51) that is invariant with respect to both gauge

symmetries and reduces to a boundary term in d ≥ 5. It is given by

LΛ
GB(φ) =

1

2! 3!
δµ1
ν1

µ2
ν2

µ3
ν3

µ4
ν4

µ5
ν5

(RΛ φ)µ1µ2µ3,
ν1ν2 (RΛ φ)ν3ν4ν5,

µ4µ5 . (2.52)

The Weyl squared action (2.48) differs from the action (2.32) by the boundary term (2.52):

〈W φ |W φ〉 =
1

12

∫
ddx
√
|gΛ| LΛ

GB(φ) +
d− 4

d− 3
〈φ | GΛ I−1 GΛ φ〉 . (2.53)

Let us notice that both the Weyl tensor and the GB-like term (2.51) vanish identically for

d ≤ 4, while the action (2.32) does not vanish in d = 4. The equation (2.53) still holds,

since the coefficient in front of the last term vanishes for d = 4. In fact, in four dimensions,

the action (2.32) describes special spectra, which is different from the off-shell field. We

will come back to this later.
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2.3.2 Factorization and degrees of freedom

The Lagrangian (2.32) can be written in the ordinary-derivative form by introducing an

auxiliary field fµν,ρ as

SΛ
W[φ] ' m2

Λ

(
〈φ | GΛ φ〉+ 2 〈φ | GΛ f〉+m2

Λ 〈f | I f〉
)
. (2.54)

We can solve the equation for f and go back to the Lagrangian (2.32). The La-

grangian (2.54) can be diagonalized into

SΛ
W[φ] ' m2

Λ (SΛ
E [h]− SΛ

E
[f ]) . (2.55)

using the field redefinition,

φµν,ρ = hµν,ρ − fµν,ρ . (2.56)

This rewriting procedure is singular in the flat limit (note that the action (2.54) is not

well defined in the flat space limit m2
Λ → 0), while for the action (2.32) the flat space

limit is well defined and the number of DoFs of the theory is the same in (A)dS and flat

spaces. The action (2.55) contains both short representations of the hook in (A)dSd. In

the flat-space limit, it propagates two relatively ghost hook-helicity modes (which are

propagating only for d ≥ 5), supplemented with a spin-two helicity mode and a two-

form helicity mode . Even in (A)dS background, the reasoning in terms of the SO(d− 2)

helicity modes can serve as a useful guideline, despite the fact that they are not irreducible

anymore when Λ 6= 0.

Let us now analyze the DoFs of the theory SΛ
W in terms of the helicity modes. The

result of the analysis can be schematically formulated as

m2
Λ

(
h + Λ h

)
−m2

Λ

(
f − Λ f

)
. (2.57)

The h-field comes with a supplementary propagating two-form mode h , which is unitary

in dS space and non-unitary in AdS [36]. Since the action for that mode comes with the

factor m2
Λ in front, which is positive in AdS and negative in dS, corresponding two-form

h is non-unitary in both cases, while the leading hook h itself is unitary in AdS and

non-unitary in dS. In the same way, the spin-two mode f of the f -field has the same

sign of kinetic term as the leading hook f in AdS and opposite sign in dS, therefore is

non-unitary in both cases, taking into account the factor −m2
Λ in front of the action for f .

We conclude, that among the four propagating helicity modes, only one of the hook modes

has positive sign of kinetic term, therefore the theory is non-unitary for any d ≥ 5, when

hook modes propagate.

In four dimensions, the helicity group is SO(2), which does not have any hook represen-

tation, therefore the hook helicity modes do not propagate, hence we are left with a pseudo

scalar h ∼ •h and a spin-two f modes both non-unitary. We can render these two

modes into unitary one by simply introducing a negative sign factor in the original action.

In this way, we can describe a unitary system of spin-two and scalar in four dimensions

using the four-derivative Weyl action SΛ
W. This theory is unitary in four dimensions and
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has the same spectrum for any value of Λ (including zero), and coincides with the massless

limit of 4d New Massive Gravity [32] in flat space. This action can be equally obtained by

a particular dimensional reduction of massless spin-two field from 5d down to 4d [33].

2.3.3 Massive deformation

Let us consider mass deformations of the Weyl action with Einstein terms. Again we have

two options: the first one is to introduce SΛ
E term so that the total action preserves the

gauge symmetry:

Smassive[φ,m2] = SΛ
W[φ] +m2 SΛ

E [φ] , (2.58)

and the other possibility is keeping the symmetry by considering,

Smassive[φ,m2] = SΛ
W[φ] +m2 SΛ

E
[φ] . (2.59)

In each cases, we can introduce an auxiliary field f and do a proper redefinition of the

type ‘φ = h − f ’ as in the Weyl action case so that the four-derivative actions turn into

two-derivative ones,

Smassive[φ,m2] '
(
m2

Λ +m2
) (
〈h | GΛ h〉 − 〈f |

(
GΛ −m2 I

)
f〉
)
, (2.60)

Smassive[φ,m2] '
(
m2

Λ −m2
) (
〈h |
(
GΛ −m2 I

)
h〉 − 〈f | GΛ f〉

)
. (2.61)

One can see that depending on which symmetry we decide to preserve, the other field —

whose gauge symmetry is spoiled by the Einstein term — acquires a mass. Let us also note

that the action Smassive

/ becomes singular when ∓m2 approaches m2
Λ. This corresponds to

the coincidence limit of two spectra described by h and f .

Now let us focus on the four dimensional case. In the previous section, we have already

remarked that the Weyl action SΛ
W describes a massless spin-two and a pseudo scalar in

four dimensions. With the deformation of the Einstein term, the action Smassive describes

Smassive ∼
(
m2

Λ +m2
) (

Λ •h − SO(3)

f

)
, (2.62)

whereas the Smassive gives

Smassive ∼
(
m2

Λ −m2
) (

SO(3)

h + Λ SO(2)

f

)
, (2.63)

where we have dualized all the modes except for the last one SO(2)

f and used the fact

that the hook helicity mode identically vanishes in four dimensions. Let us remark that

in Smassive the two modes — scalar •h and massive spin two SO(3)

f — have the same

sign of the kinetic term only for Λ < 0, namely in AdS space. On the contrary, the two

modes of Smassive — massive and massless spin two fields SO(3)

h and SO(2)

f — have the

same sign in dS space (Λ > 0). Hence, again by introducing an overall minus sign in these

actions, we obtain two models of four-derivative theories with unitary propagation. It will

be interesting to explore possible links of these four-derivative formulations with existing

models. For instance, the field content of Smassive coincides with that of bigravity [42]

proposed by Hasan and Rosen.
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3 Generalizations

All the discussions about the simple hook field can be straightforwardly generalized to more

general fields having the symmetry of two-column Young diagrams. The number of columns

is playing the role of ‘spin’ and the two-column fields show many common features with

spin-two field. In particular, their Weyl actions contain four derivatives. This considerably

reduces the technical complexities and allows us to perform the analysis explicitly.

The only qualitative difference of two-columns fields with respect to the hook one

rises in the case where the two columns have the same height, which we refer to as ‘long

window’ diagram. Hence, we shall first consider the non-window case in below and then

do a separate analysis for the long window case in the succeeding section.

3.1 Two columns

In this section, we will generalize the results of section 2 for a tensor field φ
ν1···νq

µ1···µp,
having the symmetry of two column Young diagram:

φ
ν1···νq

µ1···µp, ∼ p

q

, (3.1)

where we assume p is strictly larger than q.

3.1.1 Einstein action

The action for this field is schematically given making use of the diagram,

SE[φ] ∼

p

q

q

p

∂

∂

, (3.2)

which is made of two fields and two derivatives contracted with the generalized Kronecker

delta δ
ν1···νp+q+1
µ1···µp+q+1 . This form of the action for generic two column fields was introduced

in [43], generalizing the analogous formula for simple hook [1] and the window diagram [44].

It is equivalent to Labastida action [3] up to total derivatives. The corresponding Einstein

tensor is hence given by

(G φ)µ1···µp,
ν1···νq = −(−1)(p+1)(q+1)

p! q!
δ
ν1···νp+q+1
µ1···µp+q+1 ∂

µp+1 ∂νq+1 φνq+2···νp+q+1,
µp+2···µp+q+1 , (3.3)
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which is invariant with respect to two gauge symmetries:

δε φµ1···µp ,
ν1···νq = ∂[µ1

εµ2···µp] ,
ν1···νq , (3.4)

δθ φµ1···µp ,
ν1···νq = ∂[ν1 θµ1···µp ,

ν2···νq ] + (−1)p+1 p

p− q + 1
∂[µ1

θµ2···µp]
[ν1 , ν2···νq ], (3.5)

with gauge parameters of the following Young symmetry type:

εµ1···µp−1 ,
ν1···νq ∼ p−1

q

, θµ1···µp ,
ν1···νq−1 ∼ p

q−1

. (3.6)

The Lagrangian (3.2), or equivalently the Einstein tensor (3.3) can be also given through

the gauge invariant curvature tensor (Rφ)µ1···µp+1 ,
ν1···νq+1 , which again has a symmetry of

two-column Young diagram but with additional boxes in each column (corresponding to

derivatives):

(Rφ)µ1···µp+1 ,
ν1···νq+1 ∼

p

q

∂

∂

. (3.7)

Its explicit expression reads

(Rφ)µ1···µp+1,
ν1···νq+1 = (p+ 1)(q + 1) ∂[µ1

∂[ν1 φµ2···µp+1],
ν2···νq+1] , (3.8)

and it is invariant with respect to both gauge symmetries (3.5).

Around (A)dS background, the curvature cannot be gauge invariant with respect to

both of the symmetries, and one has to choose a zero-derivative deformation to preserve

one of the symmetries:

δΛ
ε φµ1···µp ,

ν1···νq = ∇[µ1
εµ2···µp] ,

ν1···νq , (3.9)

δΛ
θ φµ1···µp ,

ν1···νq = ∇[ν1 θµ1···µp ,
ν2···νq ] + (−1)p+1 p

p− q + 1
∇[µ1

θµ2···µp]
[ν1 , ν2···νq ], (3.10)

The curvature invariant under the δΛ
ε symmetry takes the form,

(RΛ
[p−1,q] φ)µ1···µp+1,

ν1···νq+1 = (p+ 1)(q + 1)∇[ν1 ∇[µ1
φµ2···µp+1],

ν2···νq+1] , (3.11)

which is again a simple extension of the flat space curvature (3.8). Considering now the

curvature invariant under the δΛ
θ transformation, we find

(RΛ
[p,q−1] φ)µ1···µp+1,

ν1···νq+1

= (RΛ
[p−1,q] φ)µ1···µp+1,

ν1···νq+1 − 2(p− q + 1) Λ

(d− 1)(d− 2)
δ

[ν1

[µ1
φµ2···µp+1],

ν2···νq+1]

= (p+ 1)(q + 1)∇[µ1
∇[ν1 φµ2···µp+1],

ν2···νq+1] − 2 Λ

(d− 1)(d− 2)
δ

[ν1

[µ1
φµ2···µp+1],

ν2···νq+1] .

(3.12)
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We can see that these two curvatures differ by a zero-derivative term. One can then

construct Einstein tensors out of these curvatures as

(GΛ
[p−1,q] φ)µ1···µp,

ν1···νq

= − (−1)(p+1)(q+1)

(p+ 1)!(q + 1)!
δ
ν1···νp+q+1
µ1···µp+q+1 (RΛ

[p−1,q] φ)νq+1···νp+q+1,
µp+1···µp+q+1 ,

(3.13)

(GΛ
[p,q−1] φ)µ1···µp,

ν1···νq

= − (−1)(p+1)(q+1)

(p+ 1)!(q + 1)!
δ
ν1···νp+q+1
µ1···µp+q+1 (RΛ

[p,q−1] φ)νq+1···νp+q+1,
µp+1···µp+q+1 .

(3.14)

The Einstein tensors immediately define the Einstein actions

SΛ
E [p−1,q] = 〈φ | GΛ

[p−1,q] φ〉 , SΛ
E [p,q−1] = 〈φ | GΛ

[p,q−1] φ〉 (3.15)

for the two-column field (3.1). The action SΛ
E [p−1,q] is (not) unitary around (A)dS and the

opposite for SΛ
E [p,q−1]. When p+ q = d− 1, the [p, q] mode of the Einstein actions SΛ

E [p−1,q]

or SΛ
E [p,q−1] vanishes identically leaving only the [p, q − 1] or [p − 1, q] mode, respectively.

The kinetic terms of these modes come with the factor Λ or −Λ. With an appropriate

choice of an overall factor of the Einstein action, these modes may become unitary.

Long hook [d − 2, 1]. An interesting example of the case p + q = d − 1 is the long

hook where p = d − 2 and q = 1. The action sign(Λ)SΛ
E [d−3,1] has a propagating degree of

freedom of a scalar, whereas the other action − sign(Λ)SΛ
E [d−2,0] has a propagating mode

dual to massless graviton.

The long hook field [d−2, 1] is used in New Massive Gravity in arbitrary dimensions [33,

34], and also in the recent work [26]. Two different ways the long hook field appears in [26]

and [33] have analogous features which deserve a few remarks. On the one hand in [26],

the authors obtained a two-derivative action from the linearized Einstein-Cartan gravity

in AdS by integrating out the vielbein instead of the spin connection. This determines

the linearized vielbein in terms of spin connection as haµ = haµ(ω), which has the form of

Schouten tensor written in terms of spin connection. On the other hand in [33], the simple

hook field φµν,ρ appears as a result of solving the constraint,

∂µ ∂ν hµν −�hµµ = 0 , (3.16)

arising in the course of a special dimensional reduction of the massless spin two system. The

solution to (3.16) is given [45] in terms of a hook field ϕµν,ρ: hµν = hµν(ϕ). Interestingly,

the form haµ(ω) can be brought to the form of hµν(ϕ) using gauge transformations and

with ∂µ replaced by the AdS covariant derivative. Moreover, it has been shown [33] that

the action resulting after solving the constraint (3.16) has additional symmetry δσ φµν,ρ =

ηρ[µ ∂ν]σ under which hµν(ϕ) transforms like the Weyl transformation of Schouten tensor,

δσ hµν(ϕ) = ∇µ∂νσ. This interplay between two constructions in [26] and [33] can be

understood from the fact that the constraint (3.16) is the identity that Schouten tensor
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satisfies. Let us notice also that the action of [26] after dualization actually coincides with

SΛ
E [d−2,0], the second action of (3.15) for p = d − 2 , q = 1. Another interesting feature

of the construction [33] is that the final action is given by massive Fierz-Pauli action

in terms of hµν(ϕ). After dualization, in terms of the dual long hook field, φµ1···µd−2,ν ,

the two-derivative part proportional to h
[µ
µ (ϕ)h

ν]
ν (ϕ) coincides with the Einstein action

SE[φ], while the four-derivative one, proportional to 〈h(ϕ) | G h(ϕ)〉, coincides with the

Weyl action SW[φ].

3.1.2 Weyl action

Let us now move to the Weyl action. For that, we consider the Weyl tensor for two column

field (3.1) by making use of the trace projector T as

W = T RΛ
[p−1,q] = T RΛ

[p,q−1] . (3.17)

The form of the trace projector acting on a [p+ 1, q + 1] tensor can be conveniently given

by the following expression:

T =
(−1)(p+1)(q+1)

(p+ 1)!(q + 1)!

(
δp+q+2 −

d− p− q − 1

d− p− q
δp+q+1(δp+q)

−1δp+q+1

)
, (3.18)

where the operator δn acts on the field fµ1···µp ,
ν1···νq of type [p, q] in the following way

(δnf)ρ1···ρn−q ,
λ1···λn−p = δ

λ1···λn−pµ1···µp
ρ1···ρn−qν1···νq fµ1···µp ,

ν1···νq , (3.19)

contracting all of its indices to the generalized Kronecker-delta. Inverse operator (δp+q)
−1

is defined as:

(δp+q (δp+q)
−1 f)µ1···µp ,

ν1···νq = fµ1···µp ,
ν1···νq = ((δp+q)

−1 δp+q f)µ1···µp ,
ν1···νq . (3.20)

The tracelessness of the expression (3.18) can be proven using the identity,

δµ1
ν1
δν1...νn
µ1...µn = (d− n+ 1) δν2...νn

µ2...µn . (3.21)

It is again clear that Weyl tensor (3.17) is invariant under both gauge symmetries (3.10)

hence also under Weyl transformation:

δα φµ1···µp,
ν1···νq = δ

[ν1

[µ1
αµ2···µp],

ν2···νq ] . (3.22)

Analogously to the hook case, the Weyl action is given by the square of Weyl tensors,

SΛ
W[φ] = − d− p− q

d− p− q − 1
〈W φ |W φ〉 , (3.23)

where the coefficient is fixed such that the Weyl action takes another representation,

SΛ
W[φ] = −〈φ | GΛ

[p−1,q] I−1 GΛ
[p,q−1] φ〉 , (3.24)

up to a GB-like total derivative term,

LΛ
GB(φ) = (−1)(p+1)(q+1) 〈RΛ

[p−1,q] φ | δp+q+2RΛ
[p,q−1] φ 〉 . (3.25)
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In (3.24) the mass operator I is defined as

I =
(−1)p q

p! q!
δp+q . (3.26)

Hence, one can see that the entire construction of the hook example can be generalized to

the two column case in a straightforward manner.

The DoF can be conveniently analyzed by using the same factorization technique as

the simple hook case. Skipping the straightforward derivation part, let us directly present

the end result,

m2
Λ


SO(d−2)

h

+ Λ

SO(d−2)

h

−m2
Λ


SO(d−2)

f

− Λ

SO(d−2)

f

 , (3.27)

which is the natural generalization of the result (2.57). All these DoF vanish in dimensions

d ≤ p + q. When d = p + q + 1, the helicity mode [p, q] vanishes, but there remains

propagating DoFs given by

−
q−1 SO(d−2)

h

−
q q SO(d−2)

f

, (3.28)

where we have dualized both modes. Note that these modes have the same kinetic term

sign, hence can describe unitary propagation by introducing a negative factor in the original

action. Notice that when q = 1 we get in this way the DoF of a scalar and a helicity two

mode. The corresponding [p, q] = [d− 2, 1] Weyl action coincides in fact with the massless

limit of New Massive Gravity action in any d [33], discussed in previous subsection.

3.2 Long window

In the special case where the height of two columns are equal, that is q = p:

φ
ν1···νp

µ1···µp , ∼ p p , (3.29)

the analysis is no more analogous to the hook field case, but actually more similar to the

spin-two case. Let us see explicitly how this works. First of all, the field φµ1···µp,
ν1···νp

admits only the gauge symmetry generated by the parameter of [p, p− 1] Young diagram,

because there is no Young diagram [p−1, p]. Therefore, even in flat space, the long window

has only one gauge symmetry.

In (A)dS background, we can first consider the curvature RΛ
[p,p−1] (3.12) or equivalently

the Einstein tensor GΛ
[p,p−1] having the [p, p − 1] gauge symmetry. In this case, there is
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nothing different from the generic two column case and we can obtain the corresponding

tensor and action.

Considering now the curvature RΛ
[p−1,p] (3.11) or the Einstein tensor GΛ

[p−1,p], we first

note that they cannot have the [p − 1, p] gauge symmetry as it simply does not exist.

Instead, one may wonder whether this action still plays a special role. It tuns out that

with the sacrifice of the [p−1, p] gauge symmetry, the action SΛ
E [p−1,p] acquires a new gauge

symmetry,

δΛ
ε φµ1···µp ,

ν1···νp =

(
∇[µ1

∇[ν1 − 2 Λ

(d− 1)(d− 2)
δ

[ν1

[µ1

)
εµ1···µp−1 ,

ν1···νp−1 , (3.30)

with the gauge parameter,

ε
ν1···νp−1

µ1···µp−1 , ∼ p−1 p−1
. (3.31)

This is clearly the analogue of the partially-massless gauge symmetry of symmetric second

rank field. Indeed, when p = 1 the corresponding action coincides with that of partially-

massless spin two. Now considering the [p − 1, p − 1] gauge symmetry (3.30), we can

construct a one-derivative gauge invariant, or curvature, as

(C φ)µ1···µp+1 ,
ν1···νp = (p+ 1)∇[µ1

φµ2···µp+1],
ν1···νp , (3.32)

and the action SΛ
E [p−1,p] can be also expressed as the square of this curvature and its traces.

We can proceed to construct a four-derivative action SΛ
W having both of [p, p− 1] and

[p− 1, p− 1] gauge symmetries:

δΛ φµ1···µp ,
ν1···νp =

(
∇[µ1

∇[ν1 − 2 Λ

(d− 1)(d− 2)
δ

[ν1

[µ1

)
εµ1···µp−1 ,

ν1···νp−1

+∇[ν1 θµ1···µp ,
ν2···νp] + (−1)p+1 p∇[µ1

θµ2···µp]
[ν1 , ν2···νp]. (3.33)

Such an action will be automatically invariant under the Weyl transformation (3.22) be-

cause it can be realized as a particular configuration of (3.33). The action SΛ
W can be

constructed exactly in the same way as in the generic [p, q] case, either using Weyl tensor

as in (3.23) or using Einstein tensors as in (3.24).

The DoF of the Weyl action can be analysed in terms of SO(d− 2) representations in

a similar manner as before. The result reads

m2
Λ

 SO(d−2)

h

+ Λ

SO(d−2)

h

−m2
Λ

SO(d−2)

f

, (3.34)
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Notice that the h- and f -fields are the long-window analogs of partially-massless spin two

and massless spin two. When 2p = d− 1, we end up with only one mode,

p−1
SO(d−2)

h

(3.35)

which we have dualized. Notice that when p = 1, this action describes a scalar mode in

three-dimension. This is nothing but the propagating content of the 3d parity-invariant

linear Weyl gravity — or massless limit of New Massive Gravity [31] — and the scalar mode

corresponds to the parity-invariant partially-massless spin two. It would be also interesting

to remark that in 5d, we get in this way a helicity two mode from the action of the [2, 2]

window field, which might provide an alternative theory of Gravity.

3.3 Massive deformation and new massive gravity

The massive deformation of the Weyl action for the generic two-column fields follows the

same pattern as the simple hook case:

Smassive
[p,q−1] [φ,m2] = SΛ

W[φ] +m2 SΛ
E [p,q−1][φ]

'
(
m2

Λ +m2
) (
〈h | GΛ

[p−1,q] h〉 − 〈f |
(
GΛ

[p,q−1] −m2 I
)
f〉
)
, (3.36)

Smassive
[p−1,q] [φ,m2] = SΛ

W[φ] +m2 SΛ
E [p−1,q][φ]

'
(
m2

Λ −m2
) (
〈h |
(
GΛ

[p−1,q] −m2 I
)
h〉 − 〈f | GΛ

[p,q−1] f〉
)
, (3.37)

which describe one massive [p, q] mode and one massless [p, q]⊕ [p, q−1] or [p, q]⊕ [p−1, q]

mode, where the latter massless mode becomes partially-massless for q = p case.

Let us consider the dimensions d = p + q + 1, where the leading [p, q]-helicity modes

disappear leaving only lower helicity modes. In this case, there is a preferred choice of

massive deformation between Smassive
[p,q−1] and Smassive

[p−1,q] depending on the sign of the cosmological

constant as in the simple hook case. In dS background, only the massive action Smassive
[p,q−1]

can describe massive and massless modes with the same sign of kinetic terms because

Smassive
[p,q−1] ∼ (m2

Λ −m2)


q q SO(d−1)

h

+ Λ
q q SO(d−2)

f

 . (3.38)

Instead in AdS background, the other action Smassive
[p−1,q] is preferred since

Smassive
[p−1,q] ∼ (m2

Λ +m2)

Λ

q−1 SO(d−2)

h

−
q q SO(d−1)

f

 . (3.39)
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Notice that in the above formulas two different Young diagrams — one carrying SO(d− 2)

representation and the other carrying SO(d− 1) representation — are used.

Now taking the long-window case (2p = d−1), we have two analogue massive theories,

Smassive
[p,p−1] ∼ p p

SO(d−1)

h

, Smassive
[p−1,p] ∼

Λ
p−1

SO(d−2)

h

− p p

SO(d−1)

f

 . (3.40)

Hence, the massive action Smassive
[p−1,p] having the ‘partially-massless’ gauge symmetry have one

additional [p − 1, p − 1] helicity mode compared to the action Smassive
[p,p−1] corresponding to

‘massless’ gauge symmetry. The action Smassive
[p,p−1] has only single massive irreducible [p, p]

mode, hence unitary in both of AdS2p+1 and dS2p+1 background. On the contrary, the

other action Smassive
[p−1,p] propagates two modes with the same kinetic term sign only in AdS

background. Focusing on the p = 1 case, the action Smassive
[1,0] describes a massive spin

two in three dimensions and actually coincides with the linearization of the New Massive

Gravity [31]. We can actually see here, that in AdS3 there is an alternative “New Massive

Gravity”, that makes use of the partially-massless symmetry instead of the diffeomorphism

one, and contains additional scalar in the spectrum.

As already discussed in previous sections, the term “New Massive Gravity” in higher

dimensions refers to the models with fields of type [p, 1] (see [33, 34] for related discussion)

in dimensions d = p+ 2. Let us note, that the flat limit of (A)dSp+2 New Massive Gravity

in dimensions higher than three is not smooth. In flat limit we have only a massive spin

two mode, while in AdS we have unitary model with (massive spin two + massless scalar),

and in dS the unitary model contains (massive spin two + massless spin two). Only in

three dimensions, one can have New Massive Gravity with the same spectrum around flat

and constantly curved backgrounds, at least at the linearized level.
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