256 research outputs found

    Dataset concerning the analytical approximation of the Ae3 temperature.

    Get PDF
    In this paper we present a new polynomial function for calculating the local phase transformation temperature (Ae3 ) between the austenite+ferrite and the fully austenitic phase fields during heating and cooling of steel:[Formula: see text] The dataset includes the terms of the function and the values for the polynomial coefficients for major alloying elements in steel. A short description of the approximation method used to derive and validate the coefficients has also been included. For discussion and application of this model, please refer to the full length article entitled "The role of aluminium in chemical and phase segregation in a TRIP-assisted dual phase steel" 10.1016/j.actamat.2016.05.046 (Ennis et al., 2016) [1]

    Recrystallisation behaviour of a fully austenitic Nb-stabilised stainless steel

    Get PDF
    We have performed an in-depth characterisation of the microstructure evolution of 20Cr-25Ni Nb-stabilised austenitic stainless steel during 1 h isochronal annealing up to 1100°C using scanning electron microscopy. This steel grade is used as cladding material in Advanced Gas-cooled fission reactors, due to its resistance to thermal creep and oxidation. The initial deformed microstructure undergoes recrystallisation via a strain-induced boundary migration mechanism, attaining a fully recrystallised microstructure at 850°C. A number of twins are observed in the vicinity of deformation bands prior to the start of recrystallisation. New Nb(C, N) particles form gradually in the microstructure, and the particle dispersion presents a maximum volume fraction of 2.7% at 930°C. At higher temperatures, the smaller particles become unstable and gradually dissolve in the matrix. Consequently, the Zener pinning pressure exerted on the grain boundaries is progressively released, triggering the growth of the austenite grains up to an average size of ∼47 μm at 1100°C. The observed temperature window for recrystallisation and grain growth can be predicted by a unified model based primarily on the migration of high- and low-angle grain boundaries. Lay Description: Austenitic stainless steel containing high percentage of chromium and nickel is currently used as fuel cladding material in the British Advanced Gas-cooled Reactors (AGR). This material has been chosen because of its high resistance to thermal creep and corrosion, both enhanced by the presence of a fine dispersion of carbonitrides precipitated during the cladding thermomechanical processing. During the time spent in the reactor core, few fuel cladding elements can become susceptible to local chromium depletion at grain boundaries, which is ascribed to the time evolution of the microstructural damage caused by the neutron bombardment in the reactor core. This depletion might increase the susceptibility of this steel to intergranular corrosion attacks during medium-to-long term storage of spent fuel elements in water ponds. The severity of the local chromium depletion depends not only on the irradiation conditions, but also on the grain boundary geometry. We have investigated the recovery, recrystallisation and grain growth of AGR stainless steel during 1 h annealing at selected temperatures relevant for the thermomechanical processing of the steel claddings, focusing on the formation and evolution of grain boundaries and second phases. These two features play a key role in the progression of the neutron damage and the subsequent development of local chromium depletion during reactor service operations. A deep understanding of the mechanisms and conditions behind their formation during the thermomechanical processing of the cladding material and their interaction with each other constitutes the foundation to evaluate, and potentially mitigate, the effect of irradiation on the cladding material.</p

    On the role of aluminium in segregation and banding in multiphase steel

    Get PDF
    Despite considerable attention in the literature on the origin and effects of chemical segregation in steels and the resultant effect on microstructure, the focus has been mainly on carbon and manganese, with minimum attention paid to other alloying additions, and none on the role of aluminium. Therefore, a systematic study of the effect of aluminium on segregation and banding in multiphase steel is presented here. It is shown that Al segregates preferentially to the solid during solidification, in contrast to the other elements which segregate preferentially to the liquid. In addition to the segregation and the resultant continuous band at the centre-line, it has been demonstrated that interdendritic segregation during casting leads to microstructural banding. Furthermore a new numerical model is presented for predicting the effect of carbon, aluminium, manganese, silicon and chromium on the austenite to ferrite transformation temperature, Ae3

    Position-dependent shear-induced austenite-martensite transformation in double-notched TRIP and dual-phase steel samples

    Get PDF
    While earlier studies on transformation-induced-plasticity (TRIP) steels focused on the determination of the austenite-to-martensite decomposition in uniform deformation or thermal fields, the current research focuses on the determination of the local retained austenite-to-martensite transformation behaviour in an inhomogeneous yet carefully controlled shear-loaded region of double-notched TRIP and dual-phase (DP) steel samples. A detailed powder analysis has been performed to simultaneously monitor the evolution of the phase fraction and the changes in average carbon concentration of metastable austenite together with the local strain components in the constituent phases as a function of the macroscopic stress and location with respect to the shear band. The metastable retained austenite shows a mechanically induced martensitic transformation in the localized shear zone, which is accompanied by an increase in average carbon concentration of the remaining austenite due to a preferred transformation of the austenite grains with the lowest carbon concentration. At the later deformation stages the geometry of the shear test samples results in the development of an additional tensile component. The experimental strain field within the probed sample area is in good agreement with finite element calculations. The strain development observed in the low-alloyed TRIP steel with metastable austenite is compared with that of steels with the same chemical composition containing either no austenite (a DP grade) or stable retained austenite (a TRIP grade produced at a long bainitic holding time). The transformation of metastable austenite under shear is a complex interplay between the local microstructure and the evolving strain fields

    Mechanical properties and fracture behaviour of ODS Steel Friction Stir Welds at variable temperatures

    Get PDF
    We have assessed the microstructure and the temperature-dependent mechanical behaviour of five bead-on-plate friction stir welds of Oxide Dispersion Strengthened (ODS) steel, produced using systematic changes to the tool rotation and traverse speed. Friction stir welding can potentially retain the fine dispersion of nanoparticles, and therefore also the high-temperature strength and radiation damage resistance of these materials. Tensile testing was carried out on the MA956 base material at a range of temperatures, from room temperature up to 750 °C. The mechanical properties of the welds were investigated via tensile testing at room temperature and at 500 °C, together with micro-hardness testing. The welds exhibited similar strength and ductility to the base material at both testing temperatures as welding caused a partial loss of particle strengthening, alongside an increase in grain boundary strengthening due to a greatly refined grain size in the stir zones. The micro-hardness data revealed a trend of increasing hardness with increasing tool traverse speed or decreasing rotation speed. This was attributed to the smaller grain size and lower nanoparticle number density in the welds created with these parameters. At 500 °C, the yield stress and ultimate tensile stress of the base material and the welds decreased, due to a progressive reduction in both the Orowan-type particle strengthening and the grain boundary strengthening.</p

    Magnetocrystalline effects on the subsurface hydrogen diffusion in γ-Fe(001)

    Get PDF
    The effect of magnetism on hydrogen adsorption and subsurface diffusion through face-centred cubic (fcc) γ-Fe(001) was investigated using spin-polarised density functional theory (s-DFT). The non-magnetic (NM), ferromagnetic (FM), and antiferromagnetic single (AFM1) and double layer (AFMD) structures were considered. For each magnetic state, the hydrogen preferentially adsorbs at the fourfold site, with adsorption energies of 4.07, 4.12, 4.03 and 4.05 eV/H atom for the NM, FM, AFM1 and AFMD structures. A total barrier of 1.34, 0.90, 1.32 and 1.25 eV and a bulk-like diffusion barrier of 0.6, 0.2, 0.4 and 0.3 eV were calculated for the NM, FM, AFM1 and AFMD magnetic states. The Fe atoms nearest to the H atom exhibited a reduced magnetic moment, whereas the next-nearest neighbour Fe atoms exhibited a non-negligible local perturbation in the magnetic moment. The presence of magnetically ordered structures has a minimal influence on the minimum energy path for H diffusion through the lattice and on the adsorption of H atoms on the Fe(001) surface, but we computed a significant reduction of the bulk-like diffusion barriers with respect to the non-magnetic state of fcc γ-Fe

    Nature-based solutions for flood mitigation and soil conservation in a steep-slope olive-orchard catchment (Arquillos, Spain)

    Get PDF
    The frequency and magnitude of flash floods in the olive orchards of southern Spain have increased because of climate change and unsustainable olive-growing techniques. Affected surfaces occupy >85% of the rural regions of the Upper Guadalquivir Basin. Dangerous geomorphic processes record the increase of runoff, soil loss and streamflow through time. We report on ripple/dune growth over a plane bed on overland flows, deep incision of ephemeral gullies in olive groves and rock-bed erosion in streams, showing an extraordinary sediment transport capacity of sub-daily pluvial floods. We develop a novel method to design optimal solutions for natural flood management and erosion risk mitigation. We adopt physical-based equations and build a whole-system model that accurately reproduces the named processes. The approach yields the optimal targeted locations of nature-based solutions (NbSs) for active flow-control by choosing the physical-model parameters that minimise the peak discharge and the erosion-prone area, maximising the soil infiltration capacity. The sub-metric spatial resolution used to resolve microtopographic features of terrains/NbS yields a computational mesh with millions of cells, requiring a Graphics Processing Unit (GPU) to run massive numerical simulations. Our study could contribute to developing principles and standards for agricultural-management initiatives using NbSs in Mediterranean olive and vineyard orchards.This work was funded by: “Programa Operativo FEDER 2014-2020” and “Consejería de Economía y Conocimiento de la Junta de Andalucía” grant number 138096; the European Union NextGenerationEU/PRTR and MCIN/AEI/10.13039/501100011033 grant number TED2021-129910B-I00

    Technological advances to rescue temporary and ephemeral wetlands: reducing their vulnerability, making them visible

    Get PDF
    Mediterranean temporary ponds are a priority habitat according to the Natura 2000 network of the European Union, and complete inventories of these ecosystems are therefore needed. Their small size, short hydroperiod, or severe disturbance make these ponds undetectable by most remote sensing systems. Here we show, for the first time, that the distributed hydrologic model IBER+ detects ephemeral and even extinct wetlands by fully exploiting the available digital elevation model and resolving many microtopographic features at drainage basin scales of about 1000 km2. This paper aims to implement a methodology for siting flood-prone areas that can potentially host a temporary wetland, validating the results with historical orthophotos and existing wetlands inventories. Our model succeeds in dryland endorheic catchments of the Upper Guadalquivir Basin: it has detected 89% of the previously catalogued wetlands and found four new unknown wetlands. In addition, we have found that 24% of the detected wetlands have disappeared because of global change. Subsequently, environmental managers could use the proposed methodology to locate wetlands quickly and cheaply. Finding wetlands would help monitor their conservation and restore them if needed.This work was funded by: “Programa Operativo FEDER 2014–2020” and “Consejería de Economía y Conocimiento de la Junta de Andalucía” grant number 138096; the European Union NextGenerationEU/PRTR and MCIN/AEI/10.13039/501100011033 grant number TED2021-129910BI00

    In-situ TEM investigation of nano-scale helium bubble evolution in tantalum-doped tungsten at 800 °C

    Get PDF
    The aim of this work is to probe the helium-induced defect production and accumulation in 40 keV He+ irradiated polycrystalline W and its alternative alloy W-5wt.%Ta using transmission electron microscopy (TEM) combined with in-situ helium irradiation at 800°С. A maximum damage level of 1 dpa with a maximum He-to-dpa ratio of 5.5 at%/dpa has been reached in this work for both materials, which corresponds to an ion fluence of 7.33 × 1016 He+/cm2. The presence of radiation-induced dislocation loops was not observed at this temperature. The low density of the incipient bubbles in W has been already detected at 0.004 dpa, which corresponds to a fluence of 3.3 × 1014He+/cm2. The experiments conducted at 800°C have shown that the addition of 5wt.% of tantalum into tungsten may diminish the binding of He ions with vacancies into complexes, which serve as the core of the bubble, thus hindering helium bubble formation below 0.02 dpa and their further growth and population at higher damage levels. By exceeding the damage dose ≥0.3 dpa, a progressive transition from a spherical to a faceted shape of the bubbles has been observed in W but not in the W-5Ta alloy. At 1 dpa, &gt;80% of the bubbles in W were of the faceted type with the facet planes of {110}.</p

    Impact of Friction Stir Welding on the microstructure of ODS steel

    Get PDF
    We have assessed the impact of the welding parameters on the nano-sized oxide dispersion and the grain size in the matrix of an ODS steel after friction stir welding. Our results, based on combined small angle neutron scattering and electron microscopy, reveal a decrease in the volume fraction of the particles smaller than 80 nm in the welds, mainly due to particle agglomeration. The increase in tool rotation speed or decrease in transverse speed leads to a higher reduction in nano-sized particle fraction, and additionally to the occurrence of particle melting. The dependence of the average grain size in the matrix on the particle volume fraction follows a Zener pinning-type relationship. This result points to the principal role that the particles have in pinning grain boundary movement, and consequently in controlling the grain size during welding.</p
    corecore