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ABSTRACT 

Climate change threatens biodiversity; in particular, species with narrow 

distributions and specific habitat requirements.  The Great Basin provides an excellent 

model system to evaluate the effects of climate change on species with isolated 

distributions and specific habitat requirements.  I have evaluated the McDonald and 

Brown (1992) model that examined the effects of climate change on montane mammals 

of the Great Basin based on its underlying assumptions and model predictions.  I have 

modeled the distributions of twelve montane mammal species found in the Great Basin 

and identified potential local extinctions by using maximum entropy modeling (Maxent) 

for two emission scenarios of changing climate for the year 2050: a minimum (b2a) and a 

maximum (a2a).  Overall, a majority of Great Basin mammal species examined are 

predicted to experience reductions in distribution ranging from approximately 2-64% for 

a minimum emission scenario (b2a) and 39-79% for a maximum emission scenario (a2a).  

In particular, there was agreement between my model predictions and the MacDonald 

and Brown (1992) model predictions for four local extinctions for a minimum emission 

scenario (b2a), and five local extinctions for a maximum emission scenario (a2a).  

Instances in which model predictions relative to species distributions and abundances are 

consistent might provide a basis on which conservationists can develop generalities about 

biotic responses to changing environmental conditions.  By understanding what 

environmental factors influence species occurrence, we can infer how climate change is 

likely to affect biodiversity and their spatial distributions, possibly allowing us to better 

manage and conserve populations.  
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INTRODUCTION 

Human population growth directly increases the pressure that humans exert on the 

Earth’s natural resources.  As the human population continues to grow, it is expected that 

humans will have a growing impact on the Earth’s physical processes and the biological 

life that it sustains.  In particular, the fragmentation of natural landscapes produces 

isolated patches of habitat surrounded and dominated by humans (Earn et al. 2000).  

Habitat fragmentation poses one of the greatest threats to the maintenance of biodiversity 

and ecosystem function (McKee et al. 2003).  The altered habitat separating the patches 

of habitat, also referred to as matrix, might act as a filter or barrier to dispersal for some 

species.  As a result, those species with specific habitat requirements and low dispersal 

abilities are isolated on patches of habitat commonly referred to as “habitat islands”. 

Humans have not only altered terrestrial, aquatic and marine ecosystems, but have 

also had a significant impact on the composition of the Earth’s atmosphere largely as a 

result of burning of fossil fuels, which in turn has had a significant impact on the Earth’s 

climate (Vitousek et al. 1997).  Climate directly and indirectly influences the distribution 

of vegetation and the associated fauna.  Organisms respond to long-term changes in 

temperature and precipitation by moving to suitable habitats, and populations evolve in 

response to new conditions, or they become extinct (Holt 1990).  As a result of historical 

changes in climate, species moved independently of one another into suitable habitats 

depending on their dispersal abilities.  As a result, species assemblages were continually 

being formed and reassembled (Lovejoy & Hannah 2005).  Human-induced changes in 

climate, in addition to the effects of habitat destruction and fragmentation, threaten 

biodiversity (McCarty 2001; Hannah et al. 2002).  The altered and human-dominated 
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landscape is a formidable challenge to the dispersal of species in response to climate 

change.  Climate change is ranked second to habitat degradation among the current major 

threats to biodiversity in terrestrial ecosystems (Sala et al. 2000). 

Changes in climate are occurring very rapidly (Houghton et al. 2001; IPCC 2001); 

therefore, species that are not able to move into suitable habitats might not be able to 

adapt quickly enough to changing conditions.  If species are unable to adapt to the 

changing environmental conditions, they will go extinct.  Human-induced climate change 

is likely to cause changes in species distributions, community structure, and ecosystem 

functions (Chapin et al. 2000; Williams & Jackson 2007; Williams et al. 2007). 

Montane “islands” of the Great Basin 

The Great Basin is an arid region in the western United States, consisting of 

isolated mountain ranges surrounded by desert valleys (Fig. 1A).  The desert valleys of 

the Great Basin are located between 1220 and 1830 m in elevation and the dominant 

vegetation consists of sagebrush (Artemisia spp.) or saltbrush (Atriplex spp.); mountain 

habitat consists of subalpine conifers and alpine tundra (Brown 1978; Grayson & 

Livingston 1993).  Montane “islands” are defined as areas having peaks above 2990 

meters that are separated by valleys below 2280 meters (McDonald & Brown 1992).  

Nineteen mountain ranges in the Great Basin have been delineated based on these criteria 

(McDonald & Brown 1992) (Fig. 1B).  Mammalian distributions in the Great Basin have 

been studied extensively in the past (Brown 1971; Grayson 1987).  Community structure 

in insular habitats is thought to be driven by two biogeographic processes, immigration 

and extinction (MacArthur & Wilson 1963, 1967).  Brown (1971, 1978) evaluated the 

processes that have shaped the community structure of montane mammals in the Great 
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Basin and determined that the only process that is operating in this system is extinction.  

The desert valleys below 2280 meters are considered barriers to dispersal, isolating the 

cool, mesic-adapted montane mammals on the mountain peaks (Brown 1971, 1978; 

McDonald & Brown 1992). 

Climate change threatens the persistence of species found on isolated mountain 

ranges because of their insular nature.  Distributions of species along elevational 

gradients are likely to shift up the slopes of the mountain in response to a warming 

climate (Peters & Lovejoy 1992).  The Great Basin provides an excellent system to study 

the effects of climate change where immigration is limited. As species move up 

elevational gradients in response to climate change, these species are likely to experience 

reductions in the area of suitable habitat that might result in reductions in population size 

and possibly extinctions. Isolated faunas such as the montane mammals of the Great 

Basin, have served as model systems for studying non-equilibrial island biogeography 

and have influenced greatly our understanding of extinction in ecological time and the 

effects of climate change (Brown 1971, 1978; Thompson & Mead 1982; Grayson 1987; 

McDonald & Brown 1992; Grayson & Livingston 1993; Grayson 2000; Grayson & 

Madsen 2000). 

Species that are highly sensitive to changes in temperature and precipitation are 

likely to have reduced dispersal abilities and narrow distributions.  The American pika 

(Ochotona princeps) is an example of a species that is highly sensitive to changes in 

environmental conditions such as temperature and precipitation (Smith 1974; Smith & 

Weston 1990).  Evaluation of the effects of climate change on the persistence of habitat-

specific species, such as the American pika, is potentially important for conservation and 
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management.  Global changes in climate will result in regional changes in temperature 

and precipitation regimes which are likely to have a significant impact on the 

distributions of species with specific environmental and habitat requirements. 

Most biogeographers agree that the natural distributions of species are primarily 

influenced by climate (Pearson & Dawson 2003).  Expansions and contractions in the 

distributions of species have been documented in the fossil record (Grayson 1987; Davis 

& Shaw 2001); furthermore, there is extensive literature that attributes changes in the 

distribution and physiology of numerous taxonomic groups to recent anthropogenic 

changes in climate (Hughes 2000; Parmesan 2006). 

The processes that threaten biodiversity are occurring at regional and global 

scales; therefore, in order to address these issues (habitat fragmentation and climate 

change), it is important to increase the scale of ecological studies beyond the local scale 

(Brown 1995).  There is a wealth of information in the literature and museums that can be 

used to test conceptual and model-based hypotheses about large-scale patterns and 

processes (Barkley 1993).  Data such as localities from museum records can be used in 

species distribution modeling programs to predict the environmental factors that are 

significant in determining the presence and absence of a species and to predict the effect 

of climate change on species distributions (Barkley 1993; Brown 1995; Graham et al. 

2004; Elith et al. 2006; Pearce & Boyce 2006; Rotenberry et al. 2006; Rodrίguez et al. 

2007; Waltari & Guralnick 2008; but see Newbold 2010). 

McDonald and Brown (1992) used a community level approach to model the 

effects of global warming on fourteen montane mammals of the Great Basin (Table 1).  

Table 2 lists the occurrence (1) or absence (0) of each species on nineteen isolated 
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mountain ranges in the Great Basin.  The McDonald and Brown (1992) model was based 

on three assumptions: 1) an increase in regional temperature of 3ºC by 2050, while 

assuming unchanged precipitation, 2) a 500 m upward shift in elevation of life zones for 

each mountain range, resulting in a decrease in total area, and 3) mammalian fauna 

exhibits the nested subset pattern.  The species-area relationship (Arrhenius 1921; 

MacArthur & Wilson 1967) was used to estimate the number of species found on each 

mountain range based on reductions in the area of montane habitat resulting from climate 

changes.  By comparing the number of species on each mountain with the number of 

species predicted to remain after climate change, McDonald and Brown (1992) predicted 

the number of local extinctions resulting from global warming.  Local extinctions are 

defined as instances when a species no longer occurs within a defined region but persists 

in other regions (MacArthur & Wilson 1967).  To determine which of the species would 

persist McDonald and Brown (1992) used the nested subset pattern (Patterson & Atmar 

1986).  The nested subset pattern occurs when the most species rich site contains all of 

the species and the less species rich sites contain a proper subset of the species found at 

more species rich sites (Patterson & Atmar 1986).  McDonald and Brown (1992) applied 

the nested subset pattern to identify the species most likely to go extinct from each 

mountain range (Table 3).  McDonald and Brown (1992) predicted that there would be a 

35-96% decline in coniferous habitat throughout the Great Basin and a 9-62% decline in 

the mammalian fauna occurring on each of the mountain ranges in the Great Basin. 

There are several potential errors associated with McDonald and Brown’s (1992) 

approach. They used community level concepts such as the species-area relationship 

(Arrhenius 1921; MacArthur & Wilson 1967) and the nested subset pattern (Patterson & 
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Atmar 1986; Patterson 1987) to make population level predictions.  Model details and the 

application of these approaches to conservation biology have been controversial (Grayson 

1987, 1993; Grayson & Livingston 1993; Lawler 1998; Grayson & Madsen 2000).  

Skaggs and Boecklen (1996) concluded the McDonald and Brown (1992) model is not 

reliable for modeling extinctions caused by global warming because of its untenable 

assumptions and inadequate data base.  Other criticisms stem from recently discovered 

species in habitats where they previously were thought to be absent, as well as evidence 

for species dispersal across desert valleys (Boecklen & Gotelli 1984; Grayson & 

Livingston 1993; Skaggs & Boecklen 1996; Lawler 1998; Grayson & Madsen 2000).  In 

addition, Fischer and Lindenmayer (2005) have also questioned the application of the 

nested subset pattern in conservation.  Their findings suggest that the occurrence of 

sensitive species could be affected by other ecological factors indirectly affected by 

habitat fragmentation.  

Criticism of the McDonald and Brown (1992) model warrants the re-evaluation of 

the effects of climate change on the distributions and predicted extinctions of montane 

mammals in the Great Basin. I used species distribution modeling techniques and 

predicted climate data from general circulation models (GCM) to make predictions about 

the effects of climate change on species distributions.  The objectives of my study were to 

1) use a climate change model to predict the distribution of montane vegetation for two 

emission scenarios, 2) determine which current climatic and vegetation factors influence 

the distribution of Great Basin montane mammal species, 3) model the distributions of 

montane mammals for two emission scenarios, 4) compare the predicted species 

distributions from Maxent to the predictions of McDonald and Brown (1992), 5) test the 
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predictions made by McDonald and Brown (1992), and 6) use the results of the climate 

change distribution models to develop conservation and management recommendations. 
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METHODS 

Climate Data 

Climate data were obtained as interpolated monthly climate surface layers with a 

1 km x 1 km spatial resolution from WorldClim Version 1.4 (IPCC 2001; Hijmans et al. 

2005).  Historical climate data were derived using interpolations from observed 

conditions for the years 1950-2000 (Hijamns et al. 2005; IPCC 2001).  Future climate 

data were statistically downscaled and calibrated from the Canadian Centre for Climate 

Modelling and Analysis (CCCma) Coupled Global Climate Model (CGCM3) using the 

IPCC Special Report on Emission Scenarios (SRES) (Flato & Boer 2001; IPCC 2001).  I 

used two CCMA emission scenarios for the year 2050: a minimum (b2a, CCCma,) and a 

maximum (a2a, CCCma).  Minimum (b2a, CCCma) emission scenario predictions are 

based on slower population growth (10.4 billion by 2100) and a developing economy 

with more emphasis on environmental protection, resulting in lower emissions and less 

warming.  The maximum emission scenario (a2a, CCCma) is the “business as usual” 

scenario in which human populations will continue to increase (15 billion by 2100) with 

relatively slow economic and technological developments resulting in higher emissions 

and greater warming (Flato & Boer 2001; IPCC 2001; CCCma 2007).   

Climatic variables used in my analyses included mean monthly minimum and 

maximum temperatures as well as mean total monthly precipitation.  The average annual 

changes in temperature and precipitation were calculated relative to historical conditions.  

Minimum mean annual temperatures in the Great Basin are expected to increase by 2.2 

ºC for the minimum emission scenario (b2a, CCCma) and 2.7 ºC for the maximum 

emission scenario (a2a, CCCma).  Maximum mean annual temperatures in the Great 
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Basin are expected to increase by 2.1 ºC for a minimum emission scenario (b2a, CCCma) 

and 2.6 ºC for a maximum emission scenario (a2a, CCCma).  Mean annual precipitation 

is expected to increase by 4.7 mm for a minimum emission scenario and 5.0 mm for a 

maximum emission scenario.  

Vegetation Data  

 To generate better predictions of current and future species distributions, I also 

included vegetation data as an additional independent variable for modeling species 

distributions.  Vegetation data for the western portion for the United States were obtained 

as land cover (dominant vegetation type) maps with a 30 meter grid resolution; the maps 

were derived from the GAP Analysis Project (GAP; see http://gapanalysis.nbii.gov).  

Regional GAP projects are based on distributions of vegetation mapped from the 2001 

National Land Cover Dataset (NLCD) satellite imagery data.  Land cover classes from 

several regional GAP programs, including the Northwest region GAP, Southwest region 

GAP and California region GAP, were compared and reclassified so that similar 

vegetation types were coded the same by using a Geographic Information System (GIS) 

(ArcGIS 9.2, Environmental Systems Research Institute, Redlands, California).  This 

resulted in a consolidated land cover map that covers the majority of the western portion 

of the United States.  The extent incorporated the entire state of Nevada as well as much 

of the neighboring states.  This map included the vegetation within the study area as well 

as the surrounding areas.  Montane vegetation was defined as land cover classes 

occurring at elevations above 2280 meters (Brown 1971; McDonald & Brown 1992).  

Using this definition with an elevation map of the extent (http://seamless.usgs.gov/) and 

the land cover map, eleven land cover classes in the Great Basin were identified as 
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montane vegetation (Table 4).  All of the remaining land cover classes (< 2280 meters) 

were reclassified as “other”.  Vegetation classes indicated on the maps were sampled by 

randomly selecting 10,000 coordinates in decimal degrees within the extent of the study.  

The randomly selected points were then grouped based on the associated vegetation class 

at that point. Each montane vegetation class had 58-2802 random points associated with 

it.  These groups were a representative sample of the distribution for each vegetation 

class and were used for modeling the historical distribution of montane vegetation 

throughout the Great Basin (Lawler et al. 2006). 

Species Data 

Specimen data for the fourteen mammal species were obtained from the Mammal 

Networked Information System (MaNIS; see http://manisnet.org/) and the Global 

Biodiversity Information Facility (GBIF; see http://www.gbif.org/).  I obtained 

occurrence records for all fourteen species; in total 1813 museum records were 

downloaded.  Locality descriptors were ranked based on the type of locality data 

associated with the species occurrences.  Records with locality data in the form of 

geographic coordinates were ranked the highest, followed by legal descriptions, and 

finally descriptive locality.  Records without locality data were removed from the sample 

and were not included in the data set.  Locality points with only legal descriptions and 

descriptive locality data were georeferenced by using TRS Windows interface V1.1 

(http://members.cox.net/azregion/trs/trs.htm) and BioGeomancer 

(http://biogeomancer.org/).  To identify potential errors associated with georeferencing 

descriptive locality data, each point was verified to the correct mountain range and/or 

county and state by projecting the coordinates over a state and county map by using GIS.  
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I first verified the state where each specimen was collected; 11 points that did not match 

the locality descriptor were georeferenced by using TRS or BioGeomancer and eighteen 

specimens were eliminated from the sample due to incomplete data.  1795 coordinates 

were verified to the county where each specimen was captured, 190 points that did not 

match the locality descriptor were georeferenced by using TRS or BioGeomancer and 85 

coordinates were removed from the sample due to incomplete data.  After verifying each 

coordinate associated with a specimen record to the state and county where it was 

collected, I had 1710 specimen records with locality points in the form of coordinates for 

all species.  Two species, the white-tailed jackrabbit (Lepus townsendii; n = 12) and the 

ermine (Mustela ermine; n = 4), had very few records with locality data, and were 

excluded (Table 1). 

Approach 

Climate change is likely to alter species distributions; therefore, my approach 

focuses on modeling the current distribution of the species and then projecting how 

climate change will alter that distribution.  Models are abstract representations of an 

object, system, or process.  There are a variety of methods for modeling species 

geographic distributions, each unique relative to model assumptions and techniques (Elith 

et al. 2006).  Maximum entropy (Maxent) modeling is a technique that uses presence only 

locality data to estimate the potential distribution of a species based on environmental 

and habitat variables (Phillips et al. 2004, 2006).  Models such as these build a function 

that estimates the probability of occurrence of a species within a grid cell based on a set 

of environmental conditions.  Prior to developing the model, the points representing  

known occurrences are divided randomly into two groups; the training sample used to 
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build the model equation and the test sample used to test the predictive power of the 

model equation.  This technique is also referred to as cross-validation.  Maximum 

entropy modeling has been implemented in several programs; I used Maxent (Version 

3.3.1., http://www.cs.princeton.edu/~schapire/maxent/) because it has good predictive 

capabilities.  Maxent has default settings and new extensions that optimize the predictive 

power of the model; this allows for the use of diverse datasets and does not require that 

the user have extensive statistical knowledge (Phillips & Dudík 2008).  Models derived 

from Maxent are robust and it is also user friendly and equipped with several attractive 

properties including an efficient running time.  The occurrence records must accurately 

represent the environmental space that is occupied by the species.  The model assumes 

that the species distribution is at equilibrium.  Therefore, the model does not take into 

account the dispersal abilities of the species.  This technique is effective at determining 

habitat use and species distributions (Baldwin 2009).  Maxent has been ranked among the 

highest performing programs relative to predictive power when compared to other 

species distribution modeling techniques (Elith et al. 2006; Pilar et al. 2006; Phillips & 

Dudík 2008). 

Figures 2A and 2B illustrate a simplified view of how locality data and 

environmental data were utilized in this study.  The technique uses historical 

environmental conditions and point locality data in the form of geographic coordinates to 

build a model equation that explains the distribution of the species (probability of 

occurrence).  The technique uses the test sample to cross-validate the model equation that 

was developed with the training points and a binomial test to determine if a model 

generates predictions that are better than expected by chance.  The proportion of points 
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representing the population that were used to train and test the model were selected a 

priori.  85% of the locality points were used to train and build the model equation, while 

the remaining 15% were used to test model predictions.  Errors of omission were 

measured by counting how many instances the model predicted that the species would be 

absent from areas where the species was known to occur.  The model equation that was 

built for historical environmental conditions was then used with a set of predicted future 

environmental conditions to make predictions about changes in the distributions of the 

vegetation class or species.  In modeling the distributions of montane vegetation classes, 

36 independent environmental variables were selected including average monthly 

minimum temperature, average monthly maximum temperature, and average monthly 

precipitation. For modeling species distributions, 37 independent variables were 

included: average monthly minimum temperature, average monthly maximum 

temperature, average monthly precipitation, and the predicted distribution of montane 

vegetation.  The model results are represented as a map indicating the probability of 

occurrence ranging from 0 to 1 (example in Fig. 3). 

All vegetation data were processed in order to match the projection, grain size (1 

x 1 km resolution) and extent of all layers.  The historical distributions of eleven land 

cover classes were modeled by using historical environmental variables.  Duplicate 

coordinates for a vegetation class were not included in the analysis.  The distribution of 

each montane vegetation class was predicted using the model equation that was 

developed by Maxent and the environmental variables for a minimum (b2a, CCCma,) and 

maximum (a2a, CCCma) emission scenario.  In total, three probability maps were 

generated by Maxent for each vegetation class; one predicted distribution for historical 
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conditions, one for a minimum emission scenario (b2a, CCCma), and one for a maximum 

emission scenario (a2a, CCCma).  The probability maps that Maxent generates represent 

the probability of occurrence ranging from 0 to1 that a vegetation class is likely to occur 

within a grid cell given a set of specified environmental conditions.   

I selected a threshold value of 10%, in which 10% of the coordinates from the 

training sample would be excluded from the predicted distribution. In order to determine 

the 10% threshold value, the probabilities associated with the locality points used to build 

the model needed to be determined using GIS techniques.  Once the probabilities were 

extracted they were ranked and the lowest 10% were eliminated.  Based on the remaining 

points (90%), a new lower probability threshold was determined; this value is referred to 

as the “cumulative 10% threshold value”.  Any probabilities above this threshold value 

were included in the distribution and reclassified as 1 (presence), while anything below 

the threshold value was not included in the distribution and was reclassified as 0 

(absence). The probability maps for each vegetation class were then re-classified based 

on the cumulative 10% threshold value to generate the potential distribution of the 

vegetation class for historical conditions as well as for a minimum (b2a, CCCma) and a 

maximum (a2a, CCCma) emission scenario.  

 I calculated the effects of climate change on the distribution of montane 

vegetation throughout the Great Basin by comparing the historical distribution of each 

vegetation class to the predicted distribution for an emission scenario of changing 

climate.  The distributions of all montane vegetation classes were overlaid and combined 

to produce a single vegetation map or mosaic illustrating the distribution of montane 
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vegetation classes for historical conditions and a minimum (b2a, CCCma) and a 

maximum (a2a, CCCma) emission scenario (Fig. 4A, 4B, and 4C). 

The historical distributions of twelve montane mammals were modeled by using 

occurrence records for each species and historical environmental data.  In addition to 

environmental variables (temperature and precipitation), I also included the above 

derived vegetation layer for the eleven classes of montane vegetation.  Duplicate 

coordinates of each species were not included in the analysis.  85% of the coordinates 

representing the species distribution were used to build the model equation, while the 

remaining 15% of the locality points were used to test the model equation relative to 

errors of omission.  The distribution of montane mammals was predicted for each species 

by using the model equation that was developed by Maxent and the environmental 

variables for a minimum (b2a, CCCma) and maximum (a2a, CCCma) emission scenario.  

In total, three probability maps were generated by Maxent for each species; one predicted 

distribution for historical conditions, one for a minimum emission scenario (b2a, 

CCCma), and one for a maximum emission scenario (a2a, CCCma).  The probability 

maps for each species were then re-classed based on the cumulative 10% threshold value 

for each species to determine the potential distribution of each species.   

I calculated the effect of climate change on the distributions of each species 

throughout the Great Basin by comparing the historical distribution of each species to the 

predicted distribution for a scenario of changing climate.  Species occurrence on a 

mountain range was determined by overlapping the predicted distribution of the species 

with a map of nineteen mountain ranges in the Great Basin.  If the predicted distribution 

of each species overlapped with the location of the mountain range the species was 
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predicted to occupy the mountain range.  If the predicted distribution of the species did 

not overlap with the mountain range, the species was predicted to not occur at that site. 
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RESULTS 

Predicted Distribution of Montane Vegetation  

All of the models for the vegetation classes performed significantly better than 

expected by chance (Table 4).  Vegetation classes are predicted to experience a 29-100 % 

reduction in distribution for a minimum emission scenario (b2a, CCCma) and a 37-100% 

reduction in distribution for a maximum emission scenario (a2a, CCCma).  Rocky 

Mountain lodgepole pine forest is predicted to become extinct within the study area for 

both emission scenarios.  In contrast, the Rocky Mountain montane dry-mesic mixed 

conifer forest and woodland vegetation class was predicted to expand its distribution by 

approximately 771% for a minimum and 612% for a maximum emission scenario.  The 

inter-mountain west aspen-mixed conifer forest & woodland vegetation class showed a 

103% increase in distribution for the minimum emission scenario and a 43% decrease in 

distribution for the maximum emission scenario.  Combined, all montane vegetation in 

the Great Basin is estimated to contract by 65% for a minimum emission scenario and a 

70% for a maximum emission scenario (Table 4).  The distribution of all eleven montane 

vegetation classes throughout the Great Basin for historical conditions and a minimum 

emission scenario (b2a, CCCma) and a maximum emission scenario (a2a, CCCma) 

illustrate a mosaic of habitat types (Fig. 4). 

Predicted Distribution of Montane Mammal Species  

A majority of the models for the mammals performed significantly better than 

expected by chance (Table 5).  The Western jumping mouse (Zapus princeps) (AUC = 

0.742, P = 0.078) and the mountain cottontail (Sylvilagus nuttallii) (AUC = 0.963, P = 

0.076) did marginally better than expected by chance of predicting the historical 
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distribution.  Three species did not perform better than expected by chance including the 

yellow-bellied marmot (Marmota flaviventris) (AUC = 0.550, P = 0.493), bushy-tailed 

Woodrat (Neotoma cinerea) (AUC = 0.697, P = 0.189), and water shrew (Sorex palustris) 

(AUC = 0.630, P = 0.461). These species were not included in further analyses.  There 

was considerable variation between species relative to the variables that contributed the 

most in determining the probability of occurrence (Table 6).  Caution should be used 

while interpreting the variable contributions when the predictor variables are correlated.  

All three independent variables; including temperature, precipitation, and vegetation, 

were likely correlated; therefore, it is difficult to determine the actual contribution of each 

variable to the distribution of a species.   

I predicted that as environmental conditions become warmer, the distributions of 

montane vegetation and montane mammals would shift up elevational gradients.  These 

shifts in distribution up the slopes of the mountains are likely to result in reductions in 

available suitable habitat for montane mammals.  Reductions in suitable habitat are 

predicted to cause reductions in population sizes of montane species that might lead to 

extinctions (Brown 1995).   

Overall, the mammal species examined are expected to experience reductions in 

distribution within the Great Basin ranging from approximately 2-64% for a minimum 

emission scenario and 39-79% for a maximum emission scenario (Table 5).  The vagrant 

shrew (Sorex vagrans) is predicted to experience a 2% reduction in distribution for a 

minimum emission scenario and a 5% expansion in distribution for a maximum emission 

scenario.  The cliff chipmunk (Tamias dorsalis) is predicted to experience a 58% 
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expansion in distribution for a minimum emission scenario and a 59% reduction in 

distribution for a maximum emission scenario.  The mountain cottontail is predicted to 

experience a 131% and a 109% expansion in distribution for a minimum and a maximum 

emission scenario respectively.  Three maps illustrating the distributions of each species 

for historical conditions, a minimum (b2a, CCCma) emission scenario, and a maximum 

(a2a, CCCma) emission scenario (Fig. 5-13). 

Based on the predicted distribution of each species, the mountain ranges with 

environmental conditions suitable for each species to occur were identified.  Table 7 

illustrates a species by mountain range matrix indicating the predicted presences (1) and 

absences (0) of species on each mountain range based on their historical distributions.  

The matrix produced for historical distributions of species throughout mountain ranges in 

the Great Basin was then compared to the species by mountain matrix for historical 

distributions of species adapted from McDonald and Brown (1992).  Comparisons made 

between different model predictions for historical conditions (Table 8 and 9) relative to 

unexpected occurrences (predicted as present in this study but absent in McDonald and 

Brown (1992) matrix) and errors of omission (absent in predicted historical distribution 

by Maxent but present in McDonald and Brown (1992) matrix).  The presence and 

absence of a species on each mountain range was predicted for both a minimum (Table 

10) and maximum (Table 11) emission scenario.  The occurrences of species on each 

mountain range for a minimum (b2a, CCCma) and a maximum (a2a, CCCma) emission 

scenario were compared to the occurrence of species predicted for historical conditions in 

order to determine whether a species was predicted to persist or not for each emission 

scenario.  Instances in which a species were not predicted to persist were considered to 
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represent local extinctions.  Brown (1971, 1978) examined the biogeographical processes 

that have shaped community structure on the isolated mountain ranges in the Great Basin, 

and determined that the only process operating in the Great Basin was extinction.  

Therefore, the Great Basin mammal community is considered to be a non-equilibrial 

system due to the inability of the montane mammals to cross the desert valleys.    

Therefore, based on the assumption that the system is nonequilibrial, instances when a 

species was not predicted to occur on a mountain range for historical conditions should 

not be on the mountain range in the future.  As a result, the presence (1) of each species 

on nineteen mountain ranges in the Great Basin during historical conditions was 

compared to the presence (1) or absence (0) of a species on a mountain range in order to 

determine if the species was predicted to persist in the future for both a minimum (b2a, 

CCCma) (Table 12) and maximum (a2a, CCCma) (Table 13) emission scenario.  Eleven 

local extinctions were predicted for a minimum emission scenario (b2a, CCCma).  

Belding’s ground squirrel (Urocitellus beldingi) is not predicted to persist in the Desatoya 

Mountains, Roberts Creek, Toiyabe Range, and Toquima Range.  The mountain 

cottontail was not predicted to persist in the Panamint Range, Sheep Range, and Spring 

Mountains.  The Western jumping mouse was not predicted to persist in the Oquirrh 

Mountains, Sheep Range, Spring Mountains, and Stansbury Mountains.  Twenty one 

local extinctions are predicted for a maximum emission scenario (a2a, CCCma). The 

American pika was not predicted to persist in Sheep Range.  Belding’s ground squirrel 

was not predicted to persist in the Desatoya Mountains, Robert’s Creek, Toiyabe Range, 

and Toquima Range.  The golden-mantled ground squirrel (Callospermophilus lateralis) 

was not predicted to persist in Sheep Range.  The mountain cottontail was not predicted 



21 

 

 

to persist in the Panamint Range, Sheep Range, and Spring Mountains.  The cliff 

chipmunk was not predicted to persist in the Panamint Range, Pilot Range, Roberts 

Creek, Ruby Mountains, Sheep Range, Spring Mountains, Spruce Mountains, and 

Stansbury Mountains.  The Uinta chipmunk (Tamias umbrinus) was not predicted to 

persist on the Panamint Range, Roberts Creek, and Sheep Range.  The Western jumping 

mouse was not predicted to persist in Sheep Range.  It is predicted that there will be an 8-

30% decline and an 8-70% decline in species richness for a minimum emission scenario 

(b2a, CCCma) and a maximum emission scenario (a2a, CCCma) respectively.  Overall, 

none of the species are predicted to go extinct throughout the entire Great Basin. 
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DISCUSSION 

I predicted that there will be considerable changes in the distributions of montane 

vegetation classes throughout the mountain ranges of the Great Basin.  Most vegetation 

classes showed a 29-100 % reduction in distribution for a minimum (b2a, CCCma) 

emission scenario and a 37-100% reduction in distribution for a maximum (a2a, CCCma) 

emission scenario throughout the Great Basin region.  As environmental conditions 

become much hotter, it is expected that some vegetation classes will shift up elevational 

gradients, resulting in reductions in distributions.  Reductions in montane habitat as a 

result of changes in climate are comparable to reductions in areas of oceanic islands that 

would result from rises in sea levels.  Vegetation classes like the Rocky Mountain 

lodgepole pine forest restricted to northern latitudes or mountain peaks are predicted to 

be eliminated from the region due to the absence of suitable environmental conditions.  

Instances where vegetation classes are predicted to experience expansions in distributions 

such as the Rocky Mountain montane dry-mesic mixed conifer forest and woodland 

vegetation class could be due to shifts in distribution up the slopes of the mountain 

without reductions in distribution at lower elevations, indicating that these types of 

vegetations are more adapted to tolerate warmer environmental conditions.  Shifts in the 

distribution of dominant vegetation types along elevational gradients of mountain ranges 

in southern California have been attributed to regional changes in climate (Kelly & 

Goulden 2008).  I predicted that there will be considerable reductions in cool, mesic 

montane habitat throughout the Great Basin region for both emission scenarios as a result 

of warmer environmental conditions. 
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 I predicted that there will be considerable changes in the distributions of montane 

mammals throughout the mountain ranges of the Great Basin.  Montane species in the 

Great Basin are threatened by changes in habitat due to rapid changes in environmental 

conditions.  The fourteen montane species that have been selected for my analysis are 

considered to be isolated on montane islands in the Great Basin because of their inability 

to cross desert valleys (Brown 1971, 1978; but see Grayson and Livingston 1993; 

Grayson et al. 1996; Lawler 1998).  Climate change is predicted to cause shifts in the 

distributions of vegetation up the slopes of the mountains that will result in reductions in 

the availability of suitable montane habitat.  In addition to the reduction in suitable 

montane habitat, montane mammals are also predicted to experience shifts in 

distributions along elevational gradients.  These reductions in area are likely to cause 

reductions in population size which could lead to greater probabilities of extinction.  

Overall, most species were predicted to experience declines in distribution as a result of 

changes in climate.   

The models for the yellow-bellied marmot, the bushy-tailed woodrat and the 

water shrew could potentially be improved if the number of points used to represent the 

populations was larger.  The locality points of these species could potentially be 

associated with a particular vegetation class that represents a major component of the 

equation, when in reality it is limiting the model’s ability to accurately assess the 

contribution of the other environmental variables.   

The model equations for the mountain cottontail and the Western jumping mouse 

performed marginally better than expected by chance.  The distribution of the mountain 

cottontail was predicted to expand by 131% and 109% for both for both a minimum and 
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maximum emission scenarios respectively.  Grayson and Livingston (1993) have 

documented the occurrence of the mountain cottontail in areas where the species had not 

been documented in the past, suggesting inadequate sampling or that the species might be 

capable of dispersal across the desert valleys.  The distribution of the Western jumping 

mouse is predicted to decrease by 51% and 49% for both minimum and maximum 

emission scenarios respectively.  Model limitations associated with these species might 

be the small number of sample points used to represent the population; greater power and 

better predictions might be obtained by increasing sample size. 

 The model equations for the remaining seven species performed significantly 

better than expected by chance.  Nine of the twelve species were predicted to experience 

reductions in distributions as a result of climate change.  The exceptions were vagrant 

shrew, which was predicted to experience a 2% reduction in distribution for a minimum 

emission scenario and a 5% expansion in distribution for a maximum emission scenario, 

and the cliff chipmunk, which was predicted to experience a 58% expansion in 

distribution for a minimum emission scenario and a 59% reduction in distribution for a 

maximum emission scenario. The distributions of the vagrant shrew and cliff chipmunk 

are predicted to fluctuate for different emission scenarios, suggesting that environmental 

conditions are favorable for one scenario that allows for the expansion of their 

distribution, and alternatively for a different emission scenario, the conditions become 

unsuitable for the species and as a result the species distribution is reduced. 

 Of the six species that did show the predicted pattern, the American pika is 

particularly vulnerable to changes in climate due to lethal sensitivity to temperature 

increases (Smith & Weston 1990).  The model’s predictions suggest that the American 
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pika will experience considerable reductions in distribution; including 61% for a 

minimum emission scenario (b2a, CCCma) and 71% for a maximum emission scenario 

(a2a, CCCma).  The American pika was recently nominated as a candidate species for the 

Endangered Species Act (USFWS 2009).  Due to this species sensitivity to high 

temperatures; petitioners suggest that the American pika is threatened by climate change 

and other factors (USFWS 2009).  Based on available scientific information, the United 

States Fish and Wildlife Service (USFWS) determined that this species does not warrant 

protection as a threatened or endangered species under the Endangered Species Act 

(USFWS 2010).  The percent reductions in distributions of the remaining five species 

showed the predicted pattern (Table 5).  My results suggest that the persistence of habitat 

specific species, including montane mammals in the Great Basin and other species in 

general, are threatened by changes in climate.  The application of this approach to 

broader scales might help us understand how climate change is likely to alter the 

distribution and abundance of species. 

 When comparing the species by mountain matrix predicted by McDonald and 

Brown (1992) to my predictions, there are some differences for both a minimum emission 

scenario (Table 14) and a maximum (Table 15) emission scenario.  There is some 

disagreement between model predictions relative to species occurrence and persistence, 

these instances are noted with a 1
A
, 0

B
, 1

C
, and 1

D
.  1

A
 represents instances in which I 

predicted that the species will persist on the mountain range and McDonald and Brown 

(1992) predict that the species will become extinct on the mountain range (23, minimum 

(b2a) emission scenario; 24, maximum (a2a) emission scenario) (Tables 14 and 15).  0
B
 

represented instances where I predicted that the species does not occur on the mountain 
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range and McDonald and Brown (1992) predict that the species will become extinct on 

the mountain range (3, minimum (b2a) emission scenario; 3, maximum (a2a) emission 

scenario)(Tables 14 and 15).  1
C
 represents instances where I predicted that the species 

will become extinct on the mountain range and McDonald and Brown (1992) suggest that 

the species does not occur on the mountain range (7, minimum (b2a) emission scenario; 

10, maximum (a2a) emission scenario) (Tables 14 and 15).  1
D
 indicated instances where 

I predicted that the species will become extinct on the mountain range and McDonald and 

Brown (1992) predict that the species will persist on the mountain range (0, minimum 

(b2a) emission scenario; 6, maximum (a2a) emission scenario) (Tables 14 and 15).  

Instances in which models disagree are noted on Tables 14 and 15.  There is some 

agreement between model predictions relative to species extinctions, these instances are 

noted with a 1
E
 representing agreement on local extinctions of species.  There was 

agreement between models on the predicted extinctions of four species for a minimum 

emission scenario (b2a, CCCma): Belding’s ground squirrel was not predicted to persist 

on Toiyabe Range, the mountain cottontail was not predicted to persist on Panamint 

Range and Spring Mountains, and the Western jumping mouse was not predicted to 

persist on the Oquirrh Mountains.  There was agreement between models on the predicted 

extinctions of five species for a maximum emission scenario (a2a, CCCma): Belding’s 

ground squirrel was not predicted to persist on Toiyabe Range, the mountain cottontail 

was not predicted to persist on Panamint Range and Spring Mountains, and the cliff 

chipmunk wass not predicted to persist on Sheep Range and Spruce Mountains. 

The model developed by McDonald and Brown (1992) evaluated how climate 

change was likely to affect extinction of montane mammals in the Great Basin.  
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McDonald and Brown (1992) used a community level approach to make predictions 

about processes such as extinction that operate at the population level; therefore, the 

concepts that were applied do not match the hierarchical level at which the process of 

acts upon.  Species respond to environmental changes in temperature and precipitation 

independently of one another by adapting or moving into suitable habitats (Gleason 

1939).  To make more accurate predictions, I used a population level approach to predict 

the effects of climate change on species distributions.  The assumption of the McDonald 

and Brown (1992) model that all of the zones of vegetation would shift up in elevation by 

500 meters was flawed in that they neglected to consider that areas at higher latitudes are 

not likely to experience equal shifts in elevation when compared to areas at lower 

latitudes; therefore, this assumption is too general.  Changes in temperature are likely to 

result in changes in precipitation patterns as well; the assumption that precipitation would 

remain constant under an assumed scenario for changing climate is not supported.  

Criticisms of the McDonald and Brown (1992) model include cross-valley dispersal due 

to recent finding that suggest species are able to tolerate the conditions that occur at 

lower elevations, indicating they might be able to disperse across desert valleys (Grayson 

& Livingston 1993; Grayson et al. 1996; Skaggs & Boecklen 1996; Lawler 1998).  

Another criticism regards the occurrence of species in areas in which they were not 

previously thought to occur, indicating this region is not as well described as previously 

suggested (Grayson & Livingston 1993; Grayson et al. 1996; Skaggs & Boecklen 1996; 

Lawler 1998).  The bushy-tailed woodrat has been documented at low elevations and in 

habitat other than montane vegetation, suggesting that the species is not geographically 

restricted to the mountaintops of the Great Basin (Grayson et al. 1996, Grayson & 



28 

 

 

Madsen 2000).  Although McDonald and Brown (1992) had some flaws associated with 

their model, this does not weaken its heuristic value. 

Some causes for the difference in model predictions include the sources of data 

and how the data were applied to the model.  There are three possible explanations for 

instances where unexpected presences might occur (noted as 1
U
 in Table 8).  Unexpected 

presences suggest that some species have avoided detection in areas that have previously 

been surveyed (Grayson & Livingston 1993); this might occur as a result of temporal 

biases, survey biases, or the surveyor’s ability to detect the species.  Many species, 

including the American pika, continue to be discovered in areas in which they were not 

thought to occur in the past, suggesting that there is still a great need to document and 

study species distributions and their associated ecological and environmental 

requirements (Simpson 2009).  Unexpected presences might also suggest that faunal 

relaxation is occurring at a faster rate than previously thought and as a result species are 

absent from areas where environmental conditions are suitable for the species to occur.  

Unexpected presences might also suggest that the model has made errors of commission 

in which the species is predicted to occur in an area where the species in fact does not 

occur.  

One limitation associated with my approach is the use of highly correlated 

independent variables.  Because temperature influences precipitation patterns, and both 

temperature and precipitation influence the distributions of vegetative associations, it is 

difficult to determine which variable contributed more to the model equation and as a 

result had a greater influence in determining the distribution of the species.  The 

predicted distribution of a species might appear to be influenced more by one of many 
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independent variables, but because the independent variables are highly correlated, it is 

difficult to determine the actual contribution of the variables.  

The use of vegetation distributions along with environmental variables is useful in 

training the model to predict the distribution of a species based on environmental 

variables, but it might also negatively affect the model’s ability to accurately make 

predictions about a distribution that best fits the sample points of the species.  The 

inclusion of variables that are not relevant to the actual distribution of a species can 

appear to improve model predictions when in fact they have no effect on the real 

distribution. This can potentially result in over-fitting of the model which decreases the 

model’s ability to accurately predict the distribution of the species. 

The Great Basin is considered to be a non-equilibrial system (at least for some of 

the species), but my approach assumes that the system is equilibrial.  As a result the 

model might predict reduced distributions.  If a species was predicted to be absent from a 

mountain range for historical conditions it is assumed that the species is unlikely to 

successfully move into new areas where it did not occur previously but in which 

environmental conditions are appropriate.  Violating the assumption of equilibrial 

distribution might yield predictions that underestimate the actual distributions of the 

species.  Understanding model assumptions and limitations is beneficial in being able to 

accurately assess model predictions. Comparisons between model techniques and 

predictions is critical in understanding how climate change is likely to alter the patterns 

and processes that are operating both at a global scale and smaller scales. 

Although it is unclear as to how anthropogenic changes in climate are likely to 

affect ecosystem functions and species across the globe, most researchers agree that 
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climate change poses a serious threat to biodiversity (Thomas et al. 2004; Thomas et al. 

2006; Massot et al. 2008; Rosenzweig et al. 2008).  The effects of climate changes have 

been documented in several taxa including plants, insects, birds and mammals (Hoegh-

Guldberg 1999; Parmesan et al. 1999; Peñuelas & Filella 2001; Pounds 2001; Walther et 

al. 2002; La Sorte & Thompson 2007; Kelly & Goulden 2008; Moritz et al. 2008).  

Changes in climate are likely to alter the distribution and abundance of species; therefore, 

some species will become increasingly vulnerable to extinctions (McLaughlin et al. 

2002).   Based on our results, it is predicted that changes in climate will cause 

geographically isolated montane species to move up elevational gradients which will 

result in considerable reductions in distribution, and as a result, species populations will 

decrease and will be pushed closer to the brink of extinction.   

By applying models and understanding the advantages and limitations associated 

with each, we can infer something about patterns and processes that are operating in the 

systems.  By comparing between model assumptions and predictions, researchers can 

gain a better understanding about how the system is likely to change as a result of climate 

change.  Comparisons between model predictions provide a basis on which researchers 

can develop generalizations about the influence of climate change on species 

distributions in an effort to conserve biodiversity.   

Understanding how climate change will affect the distribution and continued 

persistence of species across the globe can be better understood through the use of 

predictive modeling techniques.  Modeling techniques provide a glimpse at the potential 

effects of climate change on species distributions and ecosystem functions.  Although the 

predictions associated with the models are difficult to assess, there are generalities among 
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models that are consistent throughout model predictions.  These generalities provide 

some indications as to where conservation and management efforts should be focused to 

conserve species that are most vulnerable to changes in climate.  Therefore it is 

imperative that we evaluate and understand how climate change is likely to alter species 

distributions, especially those species that have specific habitat requirements, are not as 

abundant, and are unable to move freely through a fragmented landscape.    

 The uncertainties associated with climate change make it very difficult to develop 

management and conservation practices that will help ensure the conservation of global 

biodiversity.  Disciplines involved in management or conservation decisions often have 

to make decisions with very little understanding about the organism in question and with 

limited amounts of data (Starfield & Bleloch 1986).  There is a wealth of information in 

the literature and museum records that can be used along with species distribution 

modeling programs to provide insight into how species are likely to respond to the 

changes in climate.  Model predictions can help us better understand the uncertainties 

associated with climate change.  Although model predictions are difficult to test, 

comparisons between model predictions can help develop generalities about species 

responses to climate change.  Instances in which my model predictions agreed with the 

McDonald and Brown (1992) model suggest that we should pay particular attention to 

those species at those particular sites (Table 14 and 15).  There was general agreement 

between both my models for a minimum (b2a) and maximum (a2a) emission scenarios 

and the McDonald and Brown (1992) model for three local extinctions of Belding’s 

ground squirrel, mountain cottontail, and Western jumping mouse, indicating that we 

should monitor these species closely at those sites.  The predictions that are produced by 
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the models can then help develop a plan of action or help guide the establishment of new 

reserves and wildlife refuges in an effort to minimize the effects of habitat fragmentation 

and allow for the movement of organisms in response to climate change.  

 Humans have a significant impact on terrestrial, aquatic, and marine systems.   

Most notably, we have also had a significant impact on our atmosphere.  Climate change 

is likely to become one of the greatest challenges for wildlife managers and conservation 

biologists and their ability to maintain sustainable populations and functional ecological 

process.  Species with specific habitat requirements and low abundances are the most 

likely to be at risk due to changes in climate.  It is important to conservation biologists 

that we identify species that are most susceptible to changes in climate and that 

conservation plans are developed in an effort to ensure that species will be able to move 

in response to the changing environmental conditions.  Habitat corridors would provide 

suitable routes through that would allow species move into and out of habitats and reduce 

the negative impacts associated with habitat fragmentation and isolation.  Species 

distribution modeling techniques provide a means by which researchers can evaluate 

what conditions allow for the persistence of species. These techniques could help guide 

the selection and development of future wildlife conservation reserves. These reserves 

would provide habitat that would be suitable for species to persist.  In an effort to 

understand the effects of climate change on the persistence of biodiversity, it is crucial 

that we look to the future to try to gain a better understanding of how global 

anthropogenic changes are likely to affect the persistence of species.  By studying the 

effects that humans have on global processes, we can develop new and innovative 
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techniques to help reduce the human environmental footprint and, as a result, minimize 

the loss of biodiversity and maintain ecosystem function. 
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Table 1.  Montane mammal species of the Great Basin (adapted from McDonald & 

Brown 1992).  The list indicates the identity of the species that were under 

consideration for this analysis.  *Indicate species that were excluded from the 

sample due to an insufficient number of locality points.  ** indicates species 

whose model did not perform statistically better than expected by chance and as a 

result were removed from the analysis. 
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Table 2.  Historical occurrence records of twelve small boreal mammal species among 

nineteen isolated mountain ranges in the Great Basin (adapted from McDonald & 

Brown 1992).  1 = species occurs on mountain range. 0 = species do not occur on 

mountain range. 
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Table 3.  Predicted distribution of twelve small boreal mammal species among nineteen 

isolated mountain ranges in the Great Basin for an assumed scenario of climate 

change (Adapted from McDonald & Brown 1992).  1 = species occurs on 

mountain range.  0 = species do not occur on mountain range.  1
E
 = Species 

predicted to go extinct for an assumed scenario of changing climate.  
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Table 4.  GAP map land cover classes defined as montane vegetation occurring at 

elevations above 2280 meters.  Results indicating model performance relative to 

predicting the distributions of montane vegetation classes as measured by errors 

of omission.  The historical distribution of each montane vegetation class is listed 

along with the predicted distributions for a minimum (b2a, CCCma) and 

maximum (a2a, CCCma) emission scenario. 
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Table 5.  Results indicating model performance relative to predicting the distributions of 

montane mammals as measured by errors of omission.  The historical distribution 

of each montane mammal is listed along with the predicted future distributions for 

a minimum (b2a, CCCma) and a maximum (a2a, CCCma) emission scenario.  

Negative signs represent reductions in distribution and positive signs represent 

expansions in distribution.  Models for species that did not perform significantly 

better than expected by chance are indicated with ** after the scientific name, 

these species were not included in subsequent analyses.  Models for species that 

performed marginally better than expected by chance are indicated with 
♦ 

after the 

scientific name. 
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Table 6.  Percent contribution of the five most significant environmental variables in each 

of the species distribution models ranked from highest importance (1) to least 

importance (5) along with the percent contribution of each to the training of the 

data set.  Variables include minimum monthly temperature (tmin), maximum 

monthly temperature (tmax), and monthly precipitation (prec).  1 = Jan, 2 = Feb, 3 

= Mar, 4 = Apr, 5 = May, 6 = Jun, 7 = Jul, 8 = Aug, 9 = Sep, 10 = Oct, 11 = Nov, 

12 = Dec. 
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Table 7.  Distribution of nine small boreal mammal species among nineteen isolated 

mountain ranges in the Great Basin predicted by Maxent modeling for historical 

conditions. 
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Table 8.  Historical distributions of nine montane mammals predicted by Maxent 

compared to the species distribution documented by McDonald and Brown 

(1992).  Unexpected presences are when a species is predicted to be present (1) on 

a mountain range, but the species is not noted as occurring on that mountain range 

by McDonald and Brown (1992).  1
U
 = Unexpected presences. 
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Table 9.  Historical distributions of nine montane mammals predicted by Maxent 

compared to the species distribution documented by McDonald and Brown 

(1992).  Errors of omission are referred to as instances where a species is 

predicted to be absent on a mountain range (0), but the species is noted as 

occurring on that mountain range by McDonald and Brown (1992).  0
O
 = Error of 

Omission. 
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Table 10.  Distribution of nine small boreal mammal species among nineteen isolated 

mountain ranges in the Great Basin predicted by Maxent for a minimum emission 

scenario (b2a, CCCma). 
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Table 11.  Distribution of nine small boreal mammal species among nineteen isolated 

mountain ranges in the Great Basin predicted by Maxent for a maximum emission 

scenario (a2a, CCCma). 
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Table 12.  Extinctions predicted by Maxent for the minimum emission scenario (b2a, 

CCCma).  Instances where species are predicted to be absent for historical 

conditions are unlikely to occur on the same mountain range for an assumed 

emission scenario due to the assumption that the system is nonequilibrial (Brown 

1971).  1
E 

 = Predicted extinctions, 0
I
 = Species absent for historical conditions 

but present for a minimum emission scenario. 
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Table 13.  Extinctions predicted by Maxent for the maximum emission scenario (a2a, 

CCCma).  Instances where species are predicted to be absent for historical 

conditions are unlikely to occur on the same mountain range for an assumed 

emission scenario due to the assumption that the system is nonequilibrial (Brown 

1971).  1
E 

 = Predicted extinctions, 0
I
 = Species absent for historical conditions 

but present for a minimum emission scenario. 
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Table 14.  Comparison between the predicted extinctions by Maxent for a minimum 

emission scenario (b2a, CCCma) and the predicted extinctions for the McDonald 

and Brown (1992) model.  1 = The species is predicted to persist on the mountain 

range, 0 = The species is not predicted to occur on the mountain range, 1
A 

= 

Maxent predicts that the species will persist on the mountain range and McDonald 

and Brown (1992) predict that the species will become extinct on the mountain 

range, 0
B 

= Maxent predicts that the species did not occur on the mountain range 

and McDonald and Brown (1992) predict that the species will become extinct on 

the mountain range, 1
C 

= Maxent predicts that the species will become extinct on 

the mountain range and McDonald and Brown (1992) suggests that the species 

did not occur on the mountain range, 1
D 

= Maxent predicts that the species will 

become extinct on the mountain range and McDonald and Brown (1992) predict 

that the species will persist on the mountain range, 1
E
  = Maxent and McDonald 

and Brown (1992) predict that the species will become extinct on the mountain 

range. 
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Table 15.  Comparison between the predicted extinctions by Maxent for a maximum 

emission scenario (a2a, CCCma) and the predicted extinctions for the McDonald 

and Brown (1992) model.  1 = The species is predicted to persist on the mountain 

range, 0 = The species is not predicted to occur on the mountain range, 1
A 

= 

Maxent predicts that the species will persist on the mountain range and McDonald 

and Brown (1992) predict that the species will become extinct on the mountain 

range, 0
B 

= Maxent predicts that the species did not occur on the mountain range 

and McDonald and Brown (1992) predict that the species will become extinct on 

the mountain range, 1
C 

= Maxent predicts that the species will become extinct on 

the mountain range and McDonald and Brown (1992) suggests that the species 

did not occur on the mountain range, 1
D 

= Maxent predicts that the species will 

become extinct on the mountain range and McDonald and Brown (1992) predict 

that the species will persist on the mountain range, 1
E
  = Maxent and McDonald 

and Brown (1992) predict that the species will become extinct on the mountain 

range. 
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Figure 1.  A) The Great Basin (indicated with the solid fill) is an arid region in the 

western portion of the United States.  B) Nineteen isolated mountain ranges in the 

Great Basin with intervening desert valleys that are surrounded by the Sierra 

Nevada mountains to the West and the Rocky mountains to the East (Adapted 

from Brown 1971, Grayson & Livingston 1993).  Two mountain ranges; DE and 

SR (shaded in dark grey), were not included in the original analysis by Brown 

(1971), but were included in the analysis by McDonald and Brown (1992).  (Site 

abbreviations: DC = Deep Creek Range, DE = Desatoya Mountains, DM = 

Diamond Mountains,  GR = Grant Range, OD = Oquirrh Mountains, PM = 

Panamint Range, PR = Pilot Range, RC = Roberts Creek, RB = Ruby Mountains, 

SC = Schell Creek Range, SR = Sheep Range, SN = Snake Range, SP = Spring 

Mountains, SU = Spruce Mountains, ST = Stansbury Mountains, TO = Toiyabe 

Range, TQ = Toquima Range,  WP = White Pine Range, WI = White-Inyo 

Range). 
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Figure 2.  A) Model of the historical distribution of montane vegetation throughout the 

Great Basin for historical conditions.  B) Model of the future distribution of 

montane vegetation for a climate change emission scenario.  C) Model of the 

historical distribution of montane mammals throughout the Great Basin for 

historical conditions.  D) Model of the future distribution of montane mammals 

for a climate change emission scenario. 
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Figure 3.  A) Maxent results: probability map of occurrence for the historical distribution 

of the American pika (Ochotona princeps).  Warm colors indicate high 

probability of occurrence and cool colors indicate low probability of 

occurrence. 
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Figure 4.  A) Mosaic of the predicted distributions by Maxent of montane habitat 

throughout the Great Basin for historical conditions.  B) Mosaic of the 

predicted distributions by Maxent of montane habitat throughout the Great 

Basin for a minimum emission scenario (b2a, CCCma).  C) Mosaic of the 

predicted distributions by Maxent of montane habitat throughout the Great 

Basin for a maximum emission scenario (a2a, CCCma).  Colors used in 

vegetation maps referring to the distribution of each vegetation class by 

code number (see Table 4). GB = Extent of the Great Basin. 
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Figure 5.  A) Distribution of the Golden-mantled ground squirrel (Callospermophilus 

lateralis) in the Great Basin predicted by Maxent for historical conditions.  

B) Distribution of the Golden-mantled ground squirrel in the Great Basin 

predicted by Maxent for minimum emission scenario (b2a, CCCma).  C) 

Distribution of the Golden-mantled ground squirrel in the Great Basin 

predicted by Maxent for maximum emission scenario (a2a, CCCma).  

Shaded areas indicate the predicted distribution of the species. 
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Figure 6.  A) Distribution of the Long-tailed vole (Microtus longicaudus) in the Great 

Basin predicted by Maxent for historical conditions.  B) Distribution of the 

Long-tailed vole in the Great Basin predicted by Maxent for minimum 

emission scenario (b2a, CCCma).  C) Distribution of the Long-tailed vole 

in the Great Basin predicted by Maxent for maximum emission scenario 

(a2a, CCCma).  Shaded areas indicate the predicted distribution of the 

species. 
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Figure 7.  A) Distribution of the American pika (Ochotona princeps) in the Great Basin 

predicted by Maxent for historical conditions.  B) Distribution of the 

American pika in the Great Basin predicted by Maxent for minimum 

emission scenario (b2a, CCCma).  C) Distribution of the American pika in 

the Great Basin predicted by Maxent for maximum emission scenario (a2a, 

CCCma).  Shaded areas indicate the predicted distribution of the species. 
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Figure 8.  A) Distribution of the vagrant shrew (Sorex vagrans) in the Great Basin 

predicted by Maxent for historical conditions.  B) Distribution of the 

vagrant shrew in the Great Basin predicted by Maxent for minimum 

emission scenario (b2a, CCCma).  C) Distribution of the vagrant shrew in 

the Great Basin predicted by Maxent for maximum emission scenario (a2a, 

CCCma).  Shaded areas indicate the predicted distribution of the species. 
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Figure 9.  A) Distribution of the mountain cottontail (Sylvilagus nuttallii) in the Great 

Basin predicted by Maxent for historical conditions.  B) Distribution of the 

mountain cottontail in the Great Basin predicted by Maxent for minimum 

emission scenario (b2a, CCCma).  C) Distribution of the mountain 

cottontail in the Great Basin predicted by Maxent for maximum emission 

scenario (a2a, CCCma).  Shaded areas indicate the predicted distribution of 

the species. 
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Figure 10.  A) Distribution of the cliff chipmunk (Tamias dorsalis) in the Great Basin 

predicted by Maxent for historical conditions.  B) Distribution of the cliff 

chipmunk in the Great Basin predicted by Maxent for minimum emission 

scenario (b2a, CCCma).  C) Distribution of the cliff chipmunk in the Great 

Basin predicted by Maxent for maximum emission scenario (a2a, CCCma).  

Shaded areas indicate the predicted distribution of the species. 
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Figure 11.  A) Distribution of the Uinta chipmunk (Tamias umbrinus) in the Great Basin 

predicted by Maxent for historical conditions.  B) Distribution of the Uinta 

chipmunk in the Great Basin predicted by Maxent for minimum emission 

scenario (b2a, CCCma).  C) Distribution of the Uinta chipmunk in the 

Great Basin predicted by Maxent for maximum emission scenario (a2a, 

CCCma).  Shaded areas indicate the predicted distribution of the species. 
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Figure 12.  A) Distribution of the Belding’s ground squirrel (Urocitellus beldingi) in the 

Great Basin predicted by Maxent for historical conditions.  B) Distribution 

of the Belding’s ground squirrel in the Great Basin predicted by Maxent for 

minimum emission scenario (b2a, CCCma).  C) Distribution of the 

Belding’s ground squirrel in the Great Basin predicted by Maxent for 

maximum emission scenario (a2a, CCCma).  Shaded areas indicate the 

predicted distribution of the species. 
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Figure 13.  A) Distribution of the Western jumping mouse (Zapus princeps) in the Great 

Basin predicted by Maxent for historical conditions.  B) Distribution of the 

Western jumping mouse in the Great Basin predicted by Maxent for 

minimum emission scenario (b2a, CCCma).  C) Distribution of the Western 

jumping mouse in the Great Basin predicted by Maxent for maximum 

emission scenario (a2a, CCCma).  Shaded areas indicate the predicted 

distribution of the species. 
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