
TR/11/90 November 1990
 Revised April 1991

TRANSFORMATION OF PROPOSITIONAL
CALCULUS STATEMENTS INTO INTEGER AND
MIXED INTEGER PROGRAMS: AN APPROACH

TOWARDS AUTOMATIC REFORMULATION

E. Hadjiconstantinou and G. Mitra

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/334844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TRANSFORMATION OF PROPOSITIONAL CALCULUS

STATEMENTS INTO INTEGER AND MIXED INTEGER PROGRAMS:

AN APPROACH TOWARDS AUTOMATIC REFORMULATION

BRUNEL UNVERSITY

SEP 1991

LIBRARY

E Hadjiconstantnou

Imperial College, London

G Mitra

 Brunel University, Uxbridge, Middlesex

The research work reported in this document was supported by the U.S. Army's
European Research Office, London

Contract No DAJA4S-87-C-003/USARDSG(UK)

w9198854

CONTENTS

0. ABSTRACT

 1. INTRODUCTION

2. PREVIOUS WORK

 2.1 First-Order Logic, Symbolic and Quantitative Methods.

 2.2 A Quantitative Approach: Efficient Formulation and Solution

 Procedures.

 2.3 Logic Programming, Artificial Intelligence: The Common

 Problems.

3. REPRESENTATION IN PROPOSITIONAL LOGIC

 AND O-l DISCRETE PROGRAMMING

 3.1 Basic Concepts-and Notations in Prepositional Logic.

 3.2 Reductions to Normal Forms.

 3.3 Polish Notation and Expression Trees

 3.4 Logic Forms Represented by 0-1 Variables and Linear

 (In) Equalities.

4. A SYSTEMATIC PROCEDURE FOR REFORMULATION

5. ILLUSTRATIVE EXAMPLES

 5.1 Example 1: [WILLMS87].

 5.2 Example 2: Crossword Compilation [WILSON89].

6. IMPLEMENTATION WITHIN AN LP MODELLING SYSTEM

7. DISCUSSION AND CONCLUSIONS

8. REFERENCES

0. ABSTRACT

A systematic procedure for transforming a set of logical statements or logical
conditions imposed on a model into an Integer Linear Progamming (ILP) formulation
Mixed Integer Programming (MIP) formulation is presented. An ILP stated as a
system of linear constraints involving integer variables and an objective function,
provides a powerful representation of decision problems through a tightly interrelated
closed system of choices. It supports direct representation of logical (Boolean or
prepositional calculus) expressions. Binary variables (hereafter called logical variables)
are first introduced and methods of logically connecting these to other variables are
then presented. Simple constraints can be combined to construct logical relationships
and the methods of formulating these are discussed. A reformulation procedure which
uses the extended reverse polish representation of a compound logical form is then
described. These reformulation procedures are illustrated by two examples. A scheme
of implementation.ithin an LP modelling system is outlined.

1

1. INTRODUCTION

In recent times first order logic in the form of prepositional or predicate
calculus has taken a central position in the formulation and solution of
problems taken from diverse domains such as management science models,
artificial (AI) intelligence, database applications, and programming languages
In AI for instance, not only automatic theorem proving via instantiation and
resolution is a leading topic of interest; the simplest form of knowledge
representation via production rules and diagnostic expert systems, which
provide explanation through chaining procedures, also have many applications.
All of these depend heavily on the underlying logic representation and the
related computational issue of making deductive inference.

Thus central to these applications is the problem of logical inference which is
the problem of determining if a particular conclusion in prepositional logic
follows from certain premises. The generally accepted type of inference
procedure, symbolic (as opposed to numeric) calculation has failed to solve
large inference problems. Even with successive generations of powerful
computers logicians have been able to handle problems of limited size.
Consequently, an alternative quantitative approach has been under invest-
igation in recent years. The current indications are that these quantitative
schemes to represent and solve problems of prepositional or predicate logic
lead to computationally superior inference procedures. The upsurge of interest
in applying mathematical programming to problems in prepositional logic can
be explained by highlighting the three underlying reasons set out below:

(i) An "intelligent" mathematical programming system is highly structured;
such a system can be used to exploit the high degree of mathematical
structure inherent in prepositional logic. This enables the development of
modelling procedures by which statements in prepositional logic can be
represented as discrete optimization problems involving 0-1 integer, and
continuous variables; that is, integer programmes (IP) and mixed integer
rogrammes (MIP).

(ii) Close parallels exist between some important concepts of prepositional
logic and mathematical programming which can lead to better methods, both
quantitative and symbolic, for solving logical problems more efficiently.
Furthermore, the results of this research can also be applied to solve various
types of optimization problems in the area of mathematical programming.

(iii) It is well known that inference is a very hard combinatorial problem. If
a knowledge base is encoded in the simplest sort of logical language
(prepositional calculus), then the inference problem cannot be solved in better
than "exponential" time. The situation is even worse when the data are
expressed in first-order predicate logic. However, it has been proved that
inference involving Horn clauses can be accomplished in linear time (Dowling
and Gallier [DOWGLR84]), using a class of resolution techniques. The
special structure of mathematical programming methods, which can be
potentially very fast, can then be exploited to provide a more robust approach

2

towards representing and solving problems considered by AI and expert
systems (it is usually possible to solve large IP models in a reasonable period
of time if they have a special structure).

The focus of this paper is to develop a systematic approach for transforming
statements in prepositional logic into integer or mixed integer programmes
This method is particularly suitable as a modelling technique which then
allows one to automate the conversion to an IP or MIP model. The final goal
is to integrate this modelling function an "intelligent" mathematical
programming modelling support system. The rest of the paper is organized in
the following way. In section 2 the background and motivations of earlier
work in this field are set out. Section 3 contains a summary description of the
important results in prepositional logic and the corresponding 0-1 discrete
programming equivalent forms. In section 4 these reformulation techniques
are used in a progressivece and a systematic reformulation procedure
is enunciated. Illustrative examples and implementation issues within an LP
modelling system are considered in sections 5 and 6 respectively.

2. PREVIOUS WORK

2.1 First-Order Logic, Symbolic and Quantitative Methods

Symbolic, as opposed to numeric, calculation is the mathematical manipulation
of symbols. In the domain of logic it was adapted by Boole who devised a
real workable system (he used 0 and 1 for truth values and arithmetic symbols
for logical operations) - which is now well known as the Boolean Algebra.
Today, problems in AI rely heavily on symbolic manipulation. The popular
resolution method for inference [ROBINS65] is designed for first-order
predicate logic. Resolution applied to prepositional logic is called ground
resolution and is part of Quine's algorithm [QUINEW55]. The difficulty of
the resolution algorithm is that it has recently been shown to have exponential
complexity and to become rapidly impractical as the problem increases in size
[HOOKERS 8b]. Due to the inability of traditional inference methods to deal
with large knowledge bases, most of the recent work in this area has been
directed toward automated theorem proving, which involves relatively small
knowledge bases. Hooker [HOOKER88a] surveys the application of
quantitative methods, and integer programming methods in particular as
applied to inference problems in prepositional logic. Williams
[WILLMS77, WTLLMS85], has shown how such problems could be modeled
as equations or inequalities involving 0-1 integer variables. That verification
or refutation of an argument could be modelled as a maximization or
minimization of an objective function in these variables leading to an Integer
Programme (IP) is also shown in this paper.

2.2 A Quantitative Approach: Efficient Formulation and Solution
 Procedures

Statements in prepositional calculus can be modelled as integer programmes in
different ways: thus a given compound proposition may have more than

3

one representation. It is, however, well known that from a computational
point of view one of these representations is superior to the others
[WILLMS74].

One obvious method of reformulation is to express a compound proposition
into a Conjunctive Normal Form (CNF) and then convert it into integer
programming constraints [BLARJL88] [WILSON90]. This is a cumbersome
approach as it requires more than one constraint to represent a compound
proposition. In general, a number of CNFs are possible and there is no
guarantee that a unique representation is obtained.

Williams argues that when using IP algorithms based on LP relaxations for
solving problems in prepositional calculus, it is desirable to "disaggregate"
the constraints so that the LP relaxation is as close to the convex hull of
feasible integer solutions as possible (that is, tight LP relaxations are
created). Taking into consideration the geometry of the convex hull
Jeroslow [JERSLW85] deduced that it is generally better to express a
model in the Disjunctive Normal Form (DNF) before converting it to a
representation in linear inequalities in terms of 0-1 variables. Blair,
Jeroslow and Lowe [BLARJL88] were apparently the first to solve non-
trivial inference problems with mathematical programming methods. They
examined the connections and parallels between prepositional logic and
integer programming and how these can be combined to create new

inference methods.

It is well known that most successful IP algorithms are based on "Branch
and Bound" or "Cutting-Plane" techniques or some combination of the two. Blair,
Jeroslow and Lowe showed that a branch-and-bound approach not only solves
satisfiability problems quickly, but it is closely related to a variant of the well
known Davis-Putnam procedure in logic. Later, Jeroslow and Wang
[JERWAN87] replaced the LP in the branch-and-bound method by a variable
f i x ing heu r i s t i c and ob t a ined a symbol i c me thod even f a s t e r t han t he
branch-and-bound tree search. Beaumont [BEAUMN87] approaches the
computational issue from the other direction. He first converts a MIP model
into a DNF and then solves the resulting model by an algorithm based on a
branch-and-bound procedure.

A well known class of inference problems, those involving Horn clauses,
define IPs whose duals have integral polytopes and that exhibit a dynamic
programming structure (Jeroslow and Wang [JERWAN89]). Roehrig
[ROEHRG88] considered problems in prepositional logic and suggested the
use of a variant of an effective IP heuristic to achieve fast inference. His
technique proved to be computationally more efficient compared to the
traditional symbolic methods. The resolution method for solving inference is
related to a cutting plane method for solving IPs and resolution can be
dramatically accelerated by treating resolvents as cutting planes
[HOOKER88b].

4

2.3 Logic Programming, Artificial Intelligence: The Common Problems

The growth in AI based wider modelling techniques can be traced back to
development of inference procedures and computational logic: thus
developments in natural language understanding, theorem proving and rule
based expert systems utilize the computational underpinning of first order
logic.

. Rule based expert systems

The simplest yet the most successful examples of expert systems use
production rule based knowledge representation. These are usually set out in
the well known prepositional logic forms (see section 3) and are called rules.
These rules and especially their statements are often exploited through the
explanations procedure. The end user of the ES application is given a
meaningful reasoning as to how a deduction was made [BSHORT84]. The
proposal that set covering IP models and their variation are used to provide
explanation in diagnostic expert systems has been put forward by Yager
[YAGERR85] and Reggia et al [REGNWN83].

. Constraint satisfaction and planning

AI planning and reasoning with time is a specialist area of study where the
applications of logic is extended to the time domain. AI planning is
concerned with the selection and sequencing of actions which achieve a set of
desirable goals: the main domains of its application are job shop scheduling,
production planning, maintenance scheduling, Steel [STEEL87] as well as
Allen [ALLENJ83] discuss the application of logic in these deductive systems.

. Games, Puzzles and Combinatorial Programming

Mathematical puzzles and games provide a rich source of application of AI
and logic. Crossword compilation Berghel [BERGHL87], cryptarithm and
"Smith-Jones-Robinson" problem of recreational logic [GARDNR61] are
typical examples which are well suited for solution through logic. A wide
range of combinatorial problems can also be cast in this paradigm and
Laurier's research focus [LARIER78] was indeed to unify the description and
solution of these problems.

. Constraint Logic Programming

Constraint logic programming, also known as constraint programming
systems (CPS), are in essence programming paradigms which seek to satisfy
arithmetic constraints within an otherwise logic programming framework.
The motivations, methodologies and their scope of application are well
discussed by Hentenryck [HENTRK89] and Chinneck et al [CHINBK89].
naturally the simplex algorithm is applied to achieve constraint satisfaction;
Lassez CLP(R) [LASSEC87] and Colmerauer [COLMRA87] PROLOG III are

5
two such CPSs. For constraints stated in discrete integers (natural numbers)
tree search method or interval arithmetic is applied to achieve constraint
satisfaction. Hentenryck [HENTRK89] CHIP and Brown and Chinneck
[BNPRLG88] BNR-PROLOG report two systems of this type.

3. REPRESENTATION IN PROPOSITIONAL LOGIC AND 0-1 DISCRETE
 PROGRAMMING

3.1 Basic Concepts and Notations in Propositional Logic
A "statement" defines a declarative sentence. For example, "Athens is the
capital of Greece" and "Five is an even number" are statements. This type of
statement, about which it is possible to say that it is either true or false, but
not both, is called a simple or individual or atomic proposition, (propositions and
statements are synonymous words). A proposition can take one of the
truth values true or false, that is the truth value of a true proposition is
TRUE (abbreviate to T) and the truth value of a false proposition is FALSE
(abbreviate to F). As no other value is permitted, the calculus of propositions
is referred to as a two-valued logic.

Propositional calculus enables compound propositions to be formed by
modifying a simple proposition with the word "not" or by connecting
propositions with the words "and", "or", "if ... then" (or implies) and "if and
only if". These five words are called prepositional or logical connectives and
they are known as the negation, conjunction, disjunction, implication and
equivalence, respectively. By repeatedly applying the connectives, the
compound propositions can be used in turn to create further compound
propositions. The symbolic representation of these connectives and their
interpretation are shown in Table 1.

No Name of
connective

Symbol Meaning of
connective

Other common words

1 negation ~P not P
Both P and Q
Either P or Q/at least one of
P or Q
Exactly one of P or Q is true

2 conjunction P ^ Q
P v Q

P and Q
P or Q 3

inclusive
disjuction

4 non-equivalence P ≠ Q
(P V Q)

P xor Q

(exclusive
disjunction)

P → Q

If P then Q 5

implication

P implies Q…P is a sufficient
condition for Q
P if and only if Q/P is a
necess- ary and sufficient
condition for
Q
Neither P nor Q/None of P or
Q is true

6

7

equivalence

joint denial

P ↔ Q
(P ≡ Q)

P iff Q

~(P v Q)

P nor Q

8 non-conjunction ~(P ^ Q) P nand Q
Not both P, Q

TABLE 1: Propositional Connectives

6

There are two meanings of the disjunction connective: the inclusive or
meaning that at least one disjunct is true (allowing for the possibility that
both disjuncts hold) and the exclusive or which is true if exactly one disjunct
is true but not both. The latter operation is also known as "non-equivalence".
Using the implication connective, a compound proposition has the form "if ...
then ...", the proposition following "if" is the antecedent and the proposition
following "then" is the consequent. Thus, the antecedent "implies" the
consequent.

It is convenient to represent arithmetic variables by small letters x, y, z, etc.,
and propositions by capital letters from the middle part of the alphabet, P, Q,
etc. Thus, P, Q, … are used to represent

(i) actions, options or yes/no decisions (that is, atomic propositions).

For example, P: "product is manufactured".
(ii) linear restrictions, that is, (in)equalities involving LP (or IP) variables.

For example, Q: "3x + 4y ≤ z"
(iii) compound propositions.

Let P, Q, R and S represent the atomic propositions

P: "It is raining today"
Q: "Today is clear"
R: "Yesterday was cloudy"

The following compound propositions can then be constructed:

~P : "It is not raining today"
Q v P : "Today is clear or today is raining"
P R : "If and only if, yesterday was cloudy today it is raining" ↔
Q v (R → P) : "Either today is clear or if yesterday was cloudy then it
 is raining today"
~R Q : "Yesterday was not cloudy and today is clear" ∧

To avoid an excess of parentheses in writing compound propositions in
symbolic form, the above connectives are considered to be binding in the
conventional order of precedence: negation "~", conjunction "^", disjunctions
" ", , implication "→" and equivalence "↔". For example, R ^ S→ P means ∨ ∨&
(R S) → P and ~R Q means (~R) ∧ ∧ ∧ Q.

For any assignment of truth values T or F to atomic propositions, depending
upon the connectives used, the truth value of a compound proposition can be
computed in a mechanical way by means of truth tables.

The truth values of six compound propositions, defined in terms of the truth
values of propositions P and Q, for the main prepositional connectives
described earlier, are shown in Table 2.

7
 7 7

TABLE 2: Definition of Connectives

3.2 Reductions to Normal Forms

It is possible to define all prepositional connectives in terms of a subset of
them. For example, they can all be defined in terms of the set (∧ ,~) so that ,,∨
a given expression can be converted into a "normal form". Such a subset is
known as a complete set of connectives. This is accomplished by replacing a
certain expression by another "equivalent" expression involving other
connectives. Two expressions are said to be "equivalent" if and only if, their
truth values are the same, and this is expressed as P↔Q (or P≡Q), that is P is
equivalent to Q.

For example, P→Q≡~PvQ, and ~~P≡P, are equivalent expressions. The
following laws of prepositional logic are known as De Morgan's Laws and
Distributive Laws:
 De Morgan's Laws
 ~(P Q) ≡ ~P ~Q ∨ ∧
 ~(P Q) ≡ ~P ~Q ∧ ∨
 Distributive Laws
 P∨ (Q∧R) ≡ (P Q) ∨ ∧ (P R) ∨
 P∧ (Q∨R) ≡ (P Q) (P∧ ∨ ∧R)

In the first law, " " distributes across "∨ ∧ ", while in the second law "∧ "
distributes across "∨ ".

By De Morgan's laws, conjunction can always be expressed in terms of
negation and disjunction. First use De Morgan's laws to get negations against
atomic propositions, and then recursively distribute " " over " " where it ∨ ∧
applies. This transforms a general compound proposition R to an equivalent
proposition of the form R1 ∧R2 ∧ ...Rn in which every Ri, i=l, …, n is a
disjunction of atomic propositions. The logical form R1∧ R2∧ ...Rn is called a
Conjunctive Normal Form (CNF) for R and the Ri are clauses of the CNF.
For example, applying De Morgan's and distributive laws ~P(Q R)→ (S∨T) can ∨
be written as (P ~Q∨S∨T) (P ~R S∨T). ∨ ∧ ∨ ∨

Similarly De Morgan's laws followed by the second distributive law are
applied to transform R to an equivalent proposition of the form S1 ∨ ∨S2 ...Sm
in which each Sj,j=l, ..., m is a conjunction of atomic propositions or their
negation. In this case S1∨ ∨ S2 ...Sm is called a Disjunctive Normal Form
(DNF).

P Q ~P P^Q PvQ P∨&Q P→Q P≡Q

1

1

0

0

1

0

1

0

0

0

1

1

1

0

0

0

1

1

1

0

0

1

1

0

1 1

0 0

1 0

1 1

8

In both normal forms, negation is only applied to atomic propositions. All
conjunctions may be removed leaving an expression entirely in "~" and " ". ∨
Similarly, all disjunctions may be removed leaving an expression entirely in
"~" and " ". Clearly, (~,∨) or (~,∧ ∧) define complete sets of connectives. This
implies that any expression can be converted to a conjunction or disjunction
of clauses by using the equivalent statements given in Table 3. It should be
pointed out, however, that in general, a number of conjunctive or disjunctive
normal forms are possible, leading to more than one representation for a
particular compound proposition. Using the method described above, the
most computationally efficient representation of a logical form is not
necessarily achieved. The authors therefore aim to provide a systematic
reformulation procedure with computer support, whereby alternative (discrete)
mathematical programming formulations can be constructed for a given logic
form.

No Statement Equivalent Forms

1 ~~P P

2 P∨&Q (~P Q)∨ (P∧ ∧~Q) Exclusion

3

4

~(P Q) ∨

~(P Q) ∧

~P ~Q ∧

~P ~Q ∨

De Morgan’s Laws

5

6

7

8

9

10

P→Q

P↔Q or

(P≡Q)

P→Q R ∧

P→Q R ∨

P∧Q→R

P∨Q→R

~P Q ∨

(P→Q) (Q→P) ∧

(~P Q) (~Q∨ P) ∨ ∧

(P→Q) (P→R) ∧

 (P→Q) ∨ (P→R)

(P→R) ∧ (Q→R)

(P→R) (Q→R) ∧

Implication

.

.

.

.

.

.

11

12

P∧ (QVR)

P∨ (Q R) ∧

(P^Q) ∨ (P^R)

(P∨Q) (PVR) ∧

Distributive Laws

TABLE 3: Transformation of Logical Statements
into Equivalent Forms

9

3.3 Polish Notation and Expression Trees

Using the normal precedence operators and the conventional evaluation of
expressions the following logical form

 P∨Q∨ ~R S ∧

would be written as

)).S)R~(()QP((∧∨∨

Not using brackets as above but simply placing the operator symbols at the
nodes, one can build up a tree representation which was discovered by
LuKasiewiz [LUKSWZ63] and is well known as the Polish notation. Choice
of the directions in which the variables and symbols are scanned leads to two
well known variations, namely, forward (right to left scan) or reverse (left to
right scan) Polish notation. The Polish notation for an expression is not
unique and within forward Polish, for instance, early-operator form or
late-operator form lead to two different notations and corresponds to inserting
Church's brackets [CHURCH44] from the left or from the right respectively.
The given expression can be written as

))SR~()QP((∧∨∨

 or

))).SR~(Q(P(∧∨∨

The tree representation for the first of these expression is shown in Diagram
3.1.

 ((P Q) ∨ (~R∨ ∧S))

 Diagram 3.1

10

For our purposes we call this an "expression tree". We note the limitation of
Prepositional calculus with only unary and binary logical operators. The
extended logical operators which involve n-tuples and n-place predicates (see
next section where we introduce connectives such as "exactly k out of n", "at
most k out of n") can be used to construct "extended expression trees". We
give illustrations of extended expression trees in the examples discussed in
section 5.

Reverse Polish notation found natural application in algebraic expression
evaluation in compilers for automatic computers. It is no coincidence
therefore that we find that our reformulation (translation) procedure is based
upon this fundamental representation that is the "extended expression tree".

3.4 Logic Forms Represented by 0-1 Variables and Linear (In) Equalities

We wish to transform a compound proposition into a system of linear
constraints so that the logical equivalence of the transformed expressions is
maintained. The resulting system of constraints clearly must have the same
truth table as the original statement, that is, the truth or falsity of the
statement is represented by the satisfaction or otherwise of the corresponding
set of linear equations and inequalities.

In order to explain the transformation process and the underlying principles
more clearly, two cases are distinguished, namely, connecting logical variables
and logically relating linear form constraints.

(i) Connecting logical variables

Let Pj denote the jth logical variable which takes values T or F and represents
an atomic proposition describing an action, option or decision. Associate an
integer variable with each type of action (or option). This variable, known as
the binary decision variable, is denoted by " jδ " and can take only the values 0
and 1 (binary). The connection of these variables to the propositions are
defined by the following relations:

 jδ = 1 iff proposition Pj is TRUE

 jδ = 0 iff proposition Pj is FALSE

Impositioin of logical conditions linking the different actions in a model is
achieved by expressing these conditions in the form of linear constraints
connecting the associated decision variables.

Using the prepositional connectives given in Table 1, and the equivalent
statements, given in Table 3, a list of standard form "variable transformations"
Tl.l ... T1.23 are defined. These transformations are applied to compound
propositions in volving one or more atomic propositions Pj, whereby the
compound propositions are restated in linear algebraic forms involving
decision variables. The two expressions are logically equivalent.

11

TABLE 4: VARIABLE TRANSFORMATIONS

Statement Constraint Transformation

~P1 1δ =0 Tl.l

P1 ∨ P2 1δ + 2δ ≥ l T1.2

2δ =1 T1.3 P1 ∨&P2 1δ +

P1 ∧ P2 1δ = 1, 2δ = 1 T1.4

~(P1∨ P2) 1δ =0, 2δ = 0 T1.5

~(P1∧P2) 1δ + 2δ 1≤ T1.6

P1 ~→ P2 1δ + 2δ 1≤ T1.7

P1→ P2 1δ - 2δ ≤0 T1.8

P1↔ P2 1δ - 2δ =0 T1.9

P1→ P2∧ P3 1δ ≤ 2δ , 1δ ≤ 3δ T1.10

2δ + 3δ Tl.ll P1 →P2 ∨P3 1δ ≤

P1 ∧P2→P3 1δ + 2δ - 3δ ≤ l T1.12

3δ , 3δ T1.13 P1∨P2→P3 1δ ≤ 2δ ≤

Pl ∧ (P2∨P3) 1δ =1, 2δ + 3δ ≥ l T1.14

3δ ≥ l T1.15 P1∨ (P2∧P3) 1δ + 2δ ≥ l , 1δ +

Some general forms of transformations are stated below:

P1∨ P2∨ ... Pn 1δ + 2δ ...+ nδ > 1 T1.16

P1∨&P2∨&... Pn 1δ + 2δ ...+ nδ =1 T1.17

Pl ∧ ...Pk →Pk+1∨ ...Pn (l - 1δ) . . . + 1k+δ +... + nδ ≥ l T1.18

"at least K out of n are TRUE" 1δ + 2δ ...+ nδ ≥k T1.19

"exactly k out of n are TRUE" 1δ + 2δ ...+ nδ = k T1.20

"at most k out of n are TRUE" 1δ + 2δ ...+ nδ ≤k T1.21

12

Pn ≡ P1 P∨ 2 ∨ ... Pk δ1+ δ2 ... + δk ≥δn, T1.22
 (-δj+ δn ≥0,j= l , . . . ,k)

Pn ≡ P1∧P2∧ ... Pk -δ1 -δ2 ... - δk +δn ≥1-k, T1.23
 (δj- δn ≥ 0,j= l , . . . ,k)

(ii) Logically relating linear form constraints

In order to reformulate "logical constraints in the general form", it is well
known that finite upper or lower bounds on the linear form must be used
Simonnard [SIMNRD66], Brearly, Mitra et al [BRMTWL75], Williams
[WILLMS89].
Consider the linear form restriction

 { }∑
=

n

1j
kjkjk bxa:LF ρ

where ρ defines the type of mathematical relation, ρ { }.,, =≥≤∈ Let Lk, Uk,
denote the lower and upper bounds, respectively, on the corresponding linear
form, that is

 Lk ≤∑
=

≤−
n

1j
kkjkj Ubxa

In our reformulation procedure, we use the finite bounds Lk and Uk .These
bounds may be given or, alternatively, can be computed for finite ranges of xj
[BRMTWL75].
A "Logical Constra int in the Implicat ion Form" (LCIF) is a logical
combination of simple consraints and is defined as
 If antecedent then consequent

where the antecedent is a logical variable and the consequent is a linear form
constraint.
A "logical constraint in the general form" can be always reduced to an LCIF
using standard transformations. To model the LCIF, a 0-1 indicator variable
is linked to the antecedent. Whether the linear form constraint LFk applies
or otherwise is indicated by a 0-1 variable δ’

k ,

 δ’
k = 1 iff the kth linear restriction applies

 = 0 iff the kth linear restriction does not apply

13

A set of constraint transformations T2 are defined below which illustrate how
this binary variable, namely the indicator variable of the antecedent, using the
bound value relates to the linear form restriction, that is the consequent.

 TABLE 5: CONSTRAINT TRANSFORMATIONS

Statement Constraint Transform

δ'k = 1→ xk ≥ Lk xk ≥ Lk δ '
k T2.1

δ '
k = 0 → xk ≤ 0 xk ≤ Uk δ ' k T2.2

δ'k = 1→ ∑ ≤ b
j

jkj xa k -b∑
j

jkj xa k≤ Uk(1- δ '
k) T2.3

δ'k =1→ ≥b∑
j

jkj xa k -b∑
j

jkj xa k ≥ Lk (1- δ '
k) T2.4

δ'k = 1→ = b∑
j

jkj xa k T2.3 (δ'k = 1→ ∑
j

jkj xa ≤ bk) T2.5

 T2.4 (δ'k =1→ ∑
j

jkj xa ≥bk)

14

4. A SYSTEMATIC PROCEDURE FOR REFORMULATION

Having represented in the previous sections, compound propositions as
(in)equalities, the next step is to model more complicated logical statements
by further inequalities. As a result of the many, but equivalent, forms any
logical statement can take, there are often different ways of generating the
same or equivalent mathematical reformulations.

One possible way would be to convert the desired expression into a normal
form such as the conjunction of disjunctive terms, the clauses. Each clause is
then transformed into a linear constraint (applying transformation T1.16) so
that the resulting CNF can be represented by a system of constraints, derived
in this manner, which have to be satisfied invoking the logical "and" operation.

In the absence of a systematic approach, the above process appears to be
unduly complicated. This has motivated us to propose a systematic procedure
to reformulate a logical condition imposed on a model into a set of integer
linear constraints. Our approach, in essence, involves identifying a precise
compound statement of the problem and then processing this statement. This
compound statement (S) is represented as an extended expression tree by the
Polish notation (see section 3.3) and two working stack mechanisms, namely
VSTACK for variables and CSTACK for constraints are created. The
expression tree is traversed, that is, the expression is analysed and constraints
are created (using variable and constraint transformations of section 3) in
CSTACK using variables which are introduced in VSTACK. The steps of the
procedure which fully processes and resolves the tree are set out below.

STEP 1 Write explicitly the required condition in words, in the form of a logical

compound statement, using known logical operators. Let S be this
statement.

STEP 2 Identify simple (atomic) propositions Pj which can be used to state S.

Express S in terms of the (extended) set of logical connectives - "not",
"and", "or", "implies" (see Table 1), "at least k out of n", "exactly k out of
n", "at most k out of n" (see Table 4 for these extensions), and the
atomic propositions Pj. Use Church's brackets to indicate precedence of
sub-expressions. If necessary, apply transformations from Table 3 to
obtain an equivalent statement of S.

STEP 3 Construct the expression tree for S based on the forward/backward
Polish notation whereby each logical connective in S is used as a
predicate, that is, connective - name (list of arguments).

Construct this tree using the (extended) set of connectives as
intermediate nodes and the simple propositions Pj or their negations as
terminal nodes. Any subtree represents a compound proposition.

15

Define 0-1 decision variables δj to represent the truth or falsity of each
one of the simple propositions PJ, that is

δj = 1/0 iff Pj is true/false

Introduce the variables δj into VSTACK.

STEP 4 Traverse the tree from the bottom, that is, use the terminal node index k
to identify the corresponding compound proposition Qk (subtree) and
the related 0-1 indicator variable . Introduce again into the '

kδ
'
kδ

VSTACK.

Convert the first-order compound propositions at the lowest levels of the
tree into associated linear restrictions using Table 4 of variable
transformations. Introduce these into CSTACK.

Apply the constraint transformations of Table 5 to convert the resulting
LCIF k = 1→ Q'δ k, into an integer linear restriction for this node.
Pop-up the most recently placed constraint in CSTACK and then insert
this new restriction into CSTACK. All terminal nodes are resolved in
this way and the resulting integer linear constraints are inserted in the
'constraint' stack.

STEP 5 Continue traversal of the tree upwards by processing all nodes of the

tree in the following way.

Introduce an indicator variable k for any node k at intermediate to top 'δ
levels in the tree, and update VSTACK.

Produce an LCIF for this node involving and the compound '
kδ

propositions Qk1,...,Qkn or their associated indicator variables ,..., 'δ '
''kn

δ1k
corresponding to the n branches of node k.

Apply the variable and constraint transformations of Tables 4 and 5,
respectively, to convert the result ing LCIF into an integer l inear
restriction and add it to CSTACK.

If at any node in the two highest levels of the tree, a standard tree
representation from Table 4 is identified and all associated nodes are
resolved, do not introduce a new indicator variable for this node, but
simply add the corresponding integer constraint, as obtained from Table
4, directly to CSTACK. The node is then considered resolved.

STEP 6 If a l l nodes of the t ree are resolved then s top. At the end of the

procedure, CSTACK contains all integer linear constraints and the
VSTACK contains the decision and indicator variables used by these
constraints.

 16

STEPS 1-3

σk a symbol taken from the extended set of connectives
Pj atomic or simple proposition or its negation represented by terminal node.

19

Apply constraint transformations (Table 5) to convert the resulting LCIF's
into integer linear restrictions:

Node 4 (using T2.4) : δ1 + δ2 + δ3 + δ4 + δ5 - 3 0 (5.1.1) ≥'δ 4

Node 5 (using T2.3) : δ3 + δ4 + δ5 + δ6 + δ8 + δ9+ 3 6 (5.1.2) ≤'δ4

Node 6 (using T2.3) : ≤1 - δ'
6δ 5 (5.1.3)

 (orTl.10)

 ≤1- δ'
6δ 6 (5.1.41)

 ≤1- δ'
6δ 7 (5.1.5)

Node 7 (using T2.4) : δ7 + δ8 + δ9 - 2 0 (5.1.6) ≥'
7δ

All terminal nodes are considered resolved.

STEP 5

Consider the intermediate node 3.

Associate the indicator variable δ'3 and produce the following LCIF:

δ '
3 = 1 → Q4 V Q5

or (using T1 .2) δ '
3 = 1 → + δ '

4+ δ '
5 ≥1

or (using T2.4) δ '
4 + δ '

5- δ '
3 ≥0 (5.1.7)

Consider node 2.

The tree representation corresponding to variable transformation T1.12 can be
identified. Since nodes 3, 6 and 7 are resolved, the root node 1 is resolved by
simply inserting the following integer linear constraint in CSTACK.

δ '
3 + (1- δ '

6) -δ '
7 ≤1

or δ '
3 - δ '

6 -δ '
7 ≤ 0 (5.1.8)

STEP 6

All nodes are resolved. The complete IP representation is given by
constraints (5.1.1) - (5.1.8) and

δ1,…. δ9, δ '
3 , …δ '

7 ∈{0,l

20

5.2 Example 2: Crossword Compilation ([WILSON89])

This problem has a logical structure; it can be formulated in terms of Boolean
Algebra and then conver ted in to an in teger programming sys tem of
constraints. The objective is to fill in an n × n full puzzle with complete
interlocking using words from a given lexicon.

Define the following sets

I the set of rows (i ∈ I)

M the set of columns (m ∈ M)

J the set of letters of the alphasbet (j ∈ J)

and let n = |M| = |I|. Given also is a lexicon of n-letter words.

To formulate the problem, the following set of logical conditions have to be
modelled.

STEP 1

Cl : "Each cell (i,m) of the matrix must be occupied by exactly one letter of
the alphabet."

C2 : "If cell (i,m) is occupied by letter j then at least (n-1) cells (i,m')(m'≠m,
 must be occupied by letters j' ∈ J1 (j) and at least (n-1) cells (i'.m), i'≠ i
 must be occupied by letters j" ∈ J2 (j).

 J1(j): set of letters which by virtue of the lexicon could appear in
cells (i, m'), m' ≠ m given that letter j appears in cell (i,m).

 J2(j): set of letters which by virtue of the lexicon could appear in
 cells (i', m), i' ≠ I given that letter j is in cell (i, m).

 21

STEP 2

Define atomic propositions

Pimj : "Cell (i- m) is occupied by letter j" ∀ i ∈ I, m ∈ M, j ∈ J.

Rewrite C1 : "Exactly one of propositions PimA P.∨ imB P.∨ ∨imC … P.
imZ”

 for all i ∈ I, m ∈ M.

Rewrite C2 : "If {Pimj- is TRUE] then

{{at least (n-1) of are TRUE for m' ≠m, j' "'mji
P ∈ J1(j)}” ,

and

{at least (n-1) of Pi'mj" are TRUE for i' ≠i, j” ∈J2 (j)})"

for all i ∈ I, m ∈ M, j ∈ J.

 STEP 3

 Tree representation of:

Define 0-1 decision variables δi,m,j ∀ i,m,j

δi,m,j
 = 1, letter j is placed in cell (i,m) that is Pi,m,j: is TRUE

 = 0 otherwise.

22

STEP 4

Cl : Using T1.20, compound proposition Q1 corresponding to node 1

(Q1 : PimA P.∨ ∨ ∨imB … P. .
imZ) can be represented by

∑
∈

=
Jj

imj 1δ for given i,m (5.2.1)

C2 : Assign 0-1 indicator variables to nodes 3 and 4.

Q3 : "at least (n-1) of (m' ≠ m, j'' jim
P ’ ∈J1(j))"

Q4 : "at least (n-1) of (i' ≠ i, j"'mji
P ’ ∈J2(j))"

Apply variable transformation T1.19 to convert Q3 and Q4 into integer linear
constraints.

Q3: for given i, m, j

()
1

'
1'

'' −≥

≠

∑
∈

n

mm
jJj

jimδ

Q4: for given i, m, j.
()

ii

n
jJj

mji

≠

−≥∑
∈

'

1
2"

"'δ

δ'3 = 1→ : Node 3
()

1

'
1'

'' −≥

≠

∑
∈

n

mm
jJj

jimδ

δ'4 = 1→ : Node 4
()

ii

n
jJj

mji

≠

−≥∑
∈

'

1
2"

"'δ

Apply constraint transformation (Table 5) T2.4 to convert the above LCIF's
into integer linear constraints:

Node 3 : ∑
∈
≠

−≥
1'

'

3'')1(
jj
mn

njim δδ (5 .2 .2)

Node 4 : (5 .2 .3)
()

()
ii

n
jJj

mji

≠

−≥∑
∈

'

'1 4
"

"'
2

δδ

Termina l nodes 3 and 4 a re reso lved .

23

 STEP 5

C o n s i d e r n o d e 2 . T h e t r e e r e p r e s e n t a t i o n c o r r e s p o n d i n g to variable
transformation T1.10 can be identified, that is,

Pimj → Q3 ^ Q4 and the following linear constraints can be inserted in

CSTACK.

δ imj≤δ '
3 (5.2.4)

δ imj≤δ’
4 (5.2.5)

Node 2 is resolved.

STEP 6

The complete IP representation for logical conditions Cl and C2 is given by
constraints (5.2.1) - (5.2.5) ∀ i ∈ I, m ∈ M, j ∈ J and the integrality conditions.

 24

6. IMPLEMENTATION WITHIN AN LP MODELLING SYSTEM

Systems and languages for specifying LP and IP models are well established as
practical tools for constructing optimisation applications. Fourer [FOURER83]
provided an excellent summary of the state of the art at the beginning of the 80's
and an update of this information can be found in the two special issues
[MITRAG87] on this topic. The importance of including logic forms within
quantitative modelling paradigm is now well accepted. In the MODLER system of
Greenberg [GREENB90] it is possible to combine logical and linear restrictions,
and the structural modelling language (SML) of Geoffrion [GEOFFR90] includes
prepositional calculus and predicate calculus modelling in levels two and three
respectively. We intend to incorporate the reformulation method described in this
paper into CAMPS which is an interactive modelling system [LUCMIT88]. The
design objectives of this modelling system are broad: the system is set out to help
non-expert LP users to come to grips with the task of conceptualising and
describing LP models, whereas the expert LP user is also supported in his
requirements to construct large and complex LP models. We are not aware o any f
MP modelling system which provides reformulation support as described in this
paper.

Consider the main menu, the modelling menu (MODEL), and the information flow
diagram of CAMPS as set out in Diagrams 3, 4 and 5. The option
REFORMULATION in Diagram 5 is introduced to encapsulate the automatic
transformations and constraint generation described in this paper. The
REFORMULATION menu in the prototype form is shown in Diagram 6.

REFORMULATION

 1. STATEMENT
 2. DIMENSIONS
 3. PROPOSITIONS
 4. IP - VARIABLES
 5. EQUIVALENT FORMS
 6. TRANSFORMSIONS
 7. BOUNDS
 8. RETURN

Diagram 6.

STATEMENT simply records a compact textual natural language statement of the
problem against the global model statement S.

25

1. MODEL 1. NAMES
2. GENERATE 2. DIMENSIONS
3. OPTIMISE 3. TABLES
4. REPORT 4. VARIABLES
5. UTILITIES 5. CONSTRAINTS
6. LOGOUT 6. REFORMULATION

7. RETURN

DIAGRAM 3 DIAGRAM 5

MODEL GENERATE OPTIMISE REPORT

UT AR RO GM

UTILITIES

1A

NAMES
DIMENTIONS
TABLES
VARIABLES
REFORMUL-
ATION
CONSTRAINTS

INTERNAL
EXTERNAL
MODEL
PROGRAM
INTERFACE

PREPARE
RUN
SUMMARY
…..

VERIABLES
ROWS
…..

LIST
RENAME
DELETE
PRINT
DOCUMENT
DEBUG

Hierarchical relationship of main menu options
and

information flow through the five aster files
as effected by the subsystem

 IA GM GM AR RO UT AR UT
 ↑↓ ↑↓ ↓ ↑ ↓ ↓ ↓↑ ↓↑
UT AR UT RO UT AR
 ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↑ ↓ ↑

MODEL
SOLUTIO

N

ANALYSE
AND

REPORT

MODEL
DOCUMENA

-ATION

MODEL
DATA

MPSX
DATA

FORMAT

DIAGRAM 4

 26

Since REFORMULATION is a submenu of MODEL all the existing attributes of a
given model such as DIMENSIONS, VARIABLES and CONSTRAINTS defined in
the model are inherited. The DIMENSION option is therefore a continuation of
DIMENSION in th parent menu. Under PROPOSITIONS, Pj, Qe j, and Rk (see last
two sections) are ef ed in that order. As in main CAMPS approach where d in
arithme perators ar prompted here logical oprators are prompted and chosen to tic o e
define the LOGICAL Forms. The full statements of the propositions are also
entered here and used later for the purpose of documentation.

IP-VARIABLES option i used to define the δ s a bi , δ ' k ' decis ion nd var ia les .
E Q U I V A L E N T F O R M S a n d s i m p l y d i s p l a y t h e T R A N S F O R M A T I O N S
information in Table 3 and e list of transformations T1.1...T1.18, respectively. th
They also llow these o be chosen for the reformulation procedure. In relating a t
constraints logically to each the it may be necessary to compute bounds on the o r
linear rms. Such bounds can be derived by invoking the BOUNDS option. A full fo
system specification fo implementation of the reformulation support is given in r
[MT...90]. This report also contains examples of dialogue for the il lustrative
problems.

7. DISCUSSION AND CONCLUSIONS

In this paper we have irst reviewed the s, the f relationship between logical form
methods of computing inferences either symbolically or quantitatively and the
discrete programm ng ethods. The important connectives with AI and logic i m
programming av also been reviewed. A systematic procedure for reformulating h e
logic forms IP nd MIP is described and illustrated by two representative to a forms
examples. blue fo integrating this automatic procedure within an iteractive A print r
modelling system is then rward. Constraint logic programming uses simple pu fot
unsophisticate algorithms r onstraint s tisfaction. In d fo c a contrast computational
mathematical programming is concerned with fficient algorithms exploiting e
problem stru ture and many instances of uccess in large and complex c has s
applications. The ideas put orw rd here add to the conceptual foundations of f a
intelligent model ng systems for Mathematical Programming. We also hope the li
research reported in this paper will provide motivation to bring the work of CLP
and MP communities closer together.

27

8. REFERENCES

[ALLENJ83] Allen, J. F., 1983, "Maintaining knowledge about temporal intervals",
Comm. ACM., 26.

[BCHNKM89] Brown, R. G., Chinneck, J. W. and Karam, G. M., 1989, "Optimization
 with constraint programming systems", Impact of Recent Advances in Computing

 Science on Operations Research, R Sharda et al editors, North Holland, 463-473.
[BEAUMN87] Beaumont, N., 1987, "An algorithm for disjunctive programs", Monash

University, Victoria 3168, Australia.
[BERGH87] Berghel, H., 1987, "Crossword compilation with horn clauses", The

Computer Journal, 30, 183-188.
[BNPRLG88] Bell Northern Research, 1988, Prolog Language Description, Version

1.0, O Hawa, Canada.
[BLARJL88] Blair, C. E., Jeroslow, R. G., Lowe, J. K., 1988, "Some results and

experiments in programming techniques for prepositional logic", Computers and
Operations Research, 13, (5), 633-645.

[BRMTWL75] rley, A. ., Mitra, ., Williams, H. P., 1975, "Analysis of Brea L G
mathema al grammi problems prior to applying e simplex algorithm", tic pro ng th
Mathem cal gramm 8, 4-83. ati Pro ing, 5

[BSHORT84 hanan, G. and Shortliffe, E. H., 1984, "Rule based expert] Buc B.
systems: the MYCIN experiments of the heuristic programming project,
Addison-Wesley, Reading, Mass., USA.

[CHURCH44] Church, A., 1944, "Introduction to Mathematical Logic", Annals of
Mathematical Studies, 13, Part 1.

[COLMRA87] Colmerauer, A., 1987, "Opening the PROLOG III Universe", Byte
Magazine, August 1987.

[DOWGLR84] Dowling, W F. an Gallier, J. H., 1984 "L near time algorithms for . d , i
testing satisfiability and horn forumlae, Journal of Logic Programming, 3,
267-284.

[FOURER83] Fourer, R., 1983, "Modeling languages versus matrix generators for
linear programming". ACM Trans. Math. Soft ware 9, 143-183.

[GARDNR61] Gardener, M., 1961, "More mathematical puzzles and diversions",
Penguin Books.

[GEOFFR90] Geoffrion, A.M., 1990, "The SML language for strucutural modeling",
Working Paper No.378, Western Management Science Institute, University of
California, Los Angeles.

[GREENB90] Greenberg, primer for MODLER: Modeling by H.J., 1990, "A
object-driven linear elem t r ion s", Mathematics Department, University en elat ship
of Colorado at Denver.

[HENTRK89] Hentenryck, P. V., 1989, "Constraint satisfaction in logic
Programmi g", MIT Press, Massachusetts, USA. n

[HOOKER88a] Hooker, J. N., 1988, "A quantitative approach to logical inference",
Decision Support Systems, 4, 45-69.

[HOOKER88b] Hooker, J. N., 1988,"Resolution versus cutting plane solution of
inference problems: some computational experience", Operations Research
Letters 7, No.l, 1-7.

[JERSLW85] Jeroslow, R., 1985, "An extension of mixed integer programming
models and techniques to some database and artificial intelligence settings",
Working Paper, Georgia Institute of Technology, Atlanta, California.

28

[JERWAN87] Jeroslow, R. G., Wang, J., 1987, "Solving prepositional satisfiability
 problems", working paper, Georgia Institute of Technology, Atlanta, CA.
[JERWAN89] Jeroslow, R., Wang, J., 1989, "Programming integer polyhedra and

horn clause knowledge bases", ORSA Journal on Computing, 1, (1), 7-19.
[LARJER78] Lauriere, J. L., 1978, "A language and a program for stating and

solving combinatorial problems", Artificial Intelligence, 10, 29-127.
 [LASSZC87] Lassez, C., 1987, "Constraint logic programming", Byte Magazine,

August 1987, 171-176.
 [LUCMIT88] Lucas, C. and Mitra, ., 1988, "Com uter-assist d mathematical G p e

 programming (modelling0 system: CAMPS", The Computer Journal, 31, 4,
1988.

 [LUKSWZ63] Lukasiewicz, J., 1963, "Elements of Mathematics Logic" (English
Translation from Polish), Pergamon Press, Oxford.

 [MITRA87] Mitra, G., 1987, Guest editor, Mathematical Programming Modelling
 Systems, IMA Journal of Mathematics in Management, Oxford University Press,

Special issues Vol.1, No. 3 and No.4.
 [POST87] Post, S., 1987 "Reasoning with incomp and uncertain knowledge as an , lete

 integer linear program", ResearchPlanning Corporation, Virginia 22102. Also in
 the Proceedings of xp t S stems an Their pplication, Avignon, France. E er y d A
[QUINEW55] Quine, W. V., 1955, "A way to simplify truth functions", American

Mathematical Monthly, 62, 627-631.
 [REGNWN83] Reggia, J. A., Nau, D. S. and Wang, P. Y., 1983, "Diagnostic expert

 systems based on a set covering model", Int. Jour. Man-Machine Studies, 19,
437-460.

 [ROBINS65] Robinson, J.A., 1965 " machine oriented logic based on the A
 resolution principle", Journal of he CM, 12 t A , 23-41.
 [ROEHR88] Roehrig, S. F., 1988, "A pivoting approach the solution of inference to

problems", US Coast Guard R&D Center, Groton CT, 06340.
 [SIMNRD66] Simmonard, M., 1966, Linear Programming, Prentice Hall
 [STEEL87] Steel, S., 1987, "Tutorial notes", AISB Tutorial Essex University, UK.
 [WBLLMS74] Williams, H.P., 74, "Experiments in the form lation of integer 19 u

programming problems", th tical Programming Study, Vol.2, pp. 180-197. Ma ema
[WILLMS77] Williams, H. P., 1977, "Logical problems and integer programming",

Bulletin of the Institute of Mathematics and its Applications", 13, 18-20.
[WILLMS85] Williams, H. P., 1985, "Model Building in Mathematical
Programming", Wiley, New York.

 [WILLMS87] Williams, H. P 1987, "Line and int er ro ing applied to ., ar eg p gramm
 the prepositional calculus", International Journal of Sy Resarch and stems

Information Science, , 81- 0. 2 10
 [WILLMS 89] Williams, H. P. and McKinnon, .M., 1989, truct integer K.I "Cons ing

 programming models by the predicate calculus of Operations Research, ", Annals
Vol.2 l,p.227-246.

 [WILSON89] Wilson, J. M., 1989, "Crossword compilation using integer
programming", The Computer Journal, 32, (3), 273-275.

[YAGERR85] Yager, R. R., 1985, "Explanatory models in expert systems", Int. Jour.
 Man-Machine Studies, 23, 539-549.

NOT TO BE
REMOVED

 FROM THE LIBRARY

