115 research outputs found

    Quantum Cybernetics: A New Perspective for Nelson's Stochastic Theory, Nonlocality, and the Klein-Gordon Equation

    Full text link
    The Klein-Gordon equation is shown to be equivalent to coupled partial differential equations for a sub-quantum Brownian movement of a ''particle'', which is both passively affected by, and actively affecting, a diffusion process of its generally nonlocal environment. This indicates circularly causal, or ''cybernetic'', relationships between ''particles'' and their surroundings. Moreover, in the relativistic domain, the original stochastic theory of Nelson is shown to hold as a limiting case only, i.e., for a vanishing quantum potential.Comment: 21 pages; published in Phys. Lett. A 296 (2002) 1 -

    Definition and evolution of quantum cellular automata with two qubits per cell

    Full text link
    Studies of quantum computer implementations suggest cellular quantum computer architectures. These architectures can simulate the evolution of quantum cellular automata, which can possibly simulate both quantum and classical physical systems and processes. It is however known that except for the trivial case, unitary evolution of one-dimensional homogeneous quantum cellular automata with one qubit per cell is not possible. Quantum cellular automata that comprise two qubits per cell are defined and their evolution is studied using a quantum computer simulator. The evolution is unitary and its linearity manifests itself as a periodic structure in the probability distribution patterns.Comment: 13 pages, 4 figure

    The Vacuum Fluctuation Theorem: Exact Schroedinger Equation via Nonequilibrium Thermodynamics

    Full text link
    By assuming that a particle of energy hbar.omega is actually a dissipative system maintained in a nonequilibrium steady state by a constant throughput of energy (heat flow), the exact Schroedinger equation is derived, both for conservative and nonconservative systems. Thereby, only universal properties of oscillators and nonequilibrium thermostatting are used, such that a maximal model independence of the hypothesised sub-quantum physics is guaranteed. It is claimed that this represents the shortest derivation of the Schroedinger equation from (modern) classical physics in the literature, and the only exact one, too. Moreover, a "vacuum fluctuation theorem" is presented, with particular emphasis on possible applications for a better understanding of quantum mechanical nonlocal effects.Comment: 39 pages; sign error in equ. (3.2.29) now correcte

    An explanation of interference effects in the double slit experiment: Classical trajectories plus ballistic diffusion caused by zero-point fluctuations

    Full text link
    A classical explanation of interference effects in the double slit experiment is proposed. We claim that for every single "particle" a thermal context can be defined, which reflects its embedding within boundary conditions as given by the totality of arrangements in an experimental apparatus. To account for this context, we introduce a "path excitation field", which derives from the thermodynamics of the zero-point vacuum and which represents all possible paths a "particle" can take via thermal path fluctuations. The intensity distribution on a screen behind a double slit is calculated, as well as the corresponding trajectories and the probability density current. The trajectories are shown to obey a "no crossing" rule with respect to the central line, i.e., between the two slits and orthogonal to their connecting line. This agrees with the Bohmian interpretation, but appears here without the necessity of invoking the quantum potential.Comment: 26 pages, 6 figures; accepted version to be published in Annals of Physics (2012

    A classical explanation of quantization

    Full text link
    In the context of our recently developed emergent quantum mechanics, and, in particular, based on an assumed sub-quantum thermodynamics, the necessity of energy quantization as originally postulated by Max Planck is explained by means of purely classical physics. Moreover, under the same premises, also the energy spectrum of the quantum mechanical harmonic oscillator is derived. Essentially, Planck's constant h is shown to be indicative of a particle's "zitterbewegung" and thus of a fundamental angular momentum. The latter is identified with quantum mechanical spin, a residue of which is thus present even in the non-relativistic Schroedinger theory.Comment: 20 pages; version accepted for publication in Foundations of Physic

    Quantum Walks and Reversible Cellular Automata

    Full text link
    We investigate a connection between a property of the distribution and a conserved quantity for the reversible cellular automaton derived from a discrete-time quantum walk in one dimension. As a corollary, we give a detailed information of the quantum walk.Comment: 15 pages, minor corrections, some references adde

    Quantum features derived from the classical model of a bouncer-walker coupled to a zero-point field

    Full text link
    In our bouncer-walker model a quantum is a nonequilibrium steady-state maintained by a permanent throughput of energy. Specifically, we consider a "particle" as a bouncer whose oscillations are phase-locked with those of the energy-momentum reservoir of the zero-point field (ZPF), and we combine this with the random-walk model of the walker, again driven by the ZPF. Starting with this classical toy model of the bouncer-walker we were able to derive fundamental elements of quantum theory. Here this toy model is revisited with special emphasis on the mechanism of emergence. Especially the derivation of the total energy hbar.omega and the coupling to the ZPF are clarified. For this we make use of a sub-quantum equipartition theorem. It can further be shown that the couplings of both bouncer and walker to the ZPF are identical. Then we follow this path in accordance with previous work, expanding the view from the particle in its rest frame to a particle in motion. The basic features of ballistic diffusion are derived, especially the diffusion constant D, thus providing a missing link between the different approaches of our previous works.Comment: 14 pages, based on a talk given at "Emergent Quantum Mechanics (Heinz von Foerster Conference 2011)", see http://www.univie.ac.at/hvf11/congress/EmerQuM.htm

    On the absence of homogeneous scalar unitary cellular automata

    Full text link
    Failure to find homogeneous scalar unitary cellular automata (CA) in one dimension led to consideration of only ``approximately unitary'' CA---which motivated our recent proof of a No-go Lemma in one dimension. In this note we extend the one dimensional result to prove the absence of nontrivial homogeneous scalar unitary CA on Euclidean lattices in any dimension.Comment: 7 pages, plain TeX, 3 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages); minor changes (including title wording) in response to referee suggestions, also updated references; to appear in Phys. Lett.

    On the digraph of a unitary matrix

    Full text link
    Given a matrix M of size n, a digraph D on n vertices is said to be the digraph of M, when M_{ij} is different from 0 if and only if (v_{i},v_{j}) is an arc of D. We give a necessary condition, called strong quadrangularity, for a digraph to be the digraph of a unitary matrix. With the use of such a condition, we show that a line digraph, LD, is the digraph of a unitary matrix if and only if D is Eulerian. It follows that, if D is strongly connected and LD is the digraph of a unitary matrix then LD is Hamiltonian. We conclude with some elementary observations. Among the motivations of this paper are coined quantum random walks, and, more generally, discrete quantum evolution on digraphs.Comment: 6 page

    Quantization in classical mechanics and reality of Bohm's psi-field

    Full text link
    Based on the Chetaev theorem on stable dynamical trajectories in the presence of dissipative forces, we obtain the generalized condition for stability of Hamilton systems in the form of the Schrodinger equation. It is shown that the energy of dissipative forces, which generate the Chetaev generalized condition of stability, coincides exactly with the Bohm "quantum" potential. Within the framework of Bohmian quantum mechanics supplemented by the generalized Chetaev theorem and on the basis of the principle of least action for dissipative forces, we show that the squared amplitude of a wave function in the Schrodinger equation is equivalent semantically and syntactically to the probability density function for the number of particle trajectories, relative to which the velocity and the position of the particle are not hidden parameters. The conditions for the correctness of the Bohm-Chetaev interpretation of quantum mechanics are discussed.Comment: 16 pages, significant improvement after 0806.4050 and 0804.1427. (v2) revised and reconsidered conclusion
    • …
    corecore