Given a matrix M of size n, a digraph D on n vertices is said to be the
digraph of M, when M_{ij} is different from 0 if and only if (v_{i},v_{j}) is
an arc of D. We give a necessary condition, called strong quadrangularity, for
a digraph to be the digraph of a unitary matrix. With the use of such a
condition, we show that a line digraph, LD, is the digraph of a unitary matrix
if and only if D is Eulerian. It follows that, if D is strongly connected and
LD is the digraph of a unitary matrix then LD is Hamiltonian. We conclude with
some elementary observations. Among the motivations of this paper are coined
quantum random walks, and, more generally, discrete quantum evolution on
digraphs.Comment: 6 page