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Abstract—Mobile Networks are subject to “signaling storms”
launched by malware or apps, which overload the the bandwidth
at the cell, the backbones signaling servers, and Cloud servers,
and may also deplete the battery power of mobile devices. This
paper reviews the subject and discusses a novel technique to
detect and mitigate such signaling storms. Through a mathemat-
ical analysis we introduce a technique based on tracking time-out
transitions in the signaling system that can substantially reduce
both the number of attacked mobiles and the signaling overload
in the backbone.
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I. INTRODUCTION

5G is challenged by broadband requirements such as video
streaming and the Internet of Things that require low signaling
overhead and quality of service (QoS) with higher traffic
volume and bandwidths. However the mobile network control
plane can be attacked by short and frequent communications
that take advantage of vulnerabilities in signaling and simple
applications such as paging [1], service requests [2] and radio
resource control (RRC) [3], [4]. Such attacks can compromise
a large number of mobile devices, or can target a list of
mobiles by carefully timing the transmissions. They have
been known to compromise connections for large sets of
mobiles and there have been frequent industry reports about
this matter [5]–[10]. Such attacks can also be the result of
malfunctioning apps, and the outcome is to overload the
individual mobiles, the wireless access networks, the signaling
network and servers of the core network, and the Clouds which
may be used in the process. Security is becoming ever more
important, also due to the fact that critical applications [11]–
[13] are transitioning to mobile devices supported by Clouds,
including emergency management, Smart Electric Metering
and Grid Control. signaling storms are mainly caused by
misbehaving mobile apps that repeatedly establish and tear-
down data connections [14] with a serious effect on the QoS
of the network control plane [15], and many events have been
reported to illustrate such attacks [5]–[8]. Similar events have
also been observed for mobile devices that seek to connect to
Cloud services [9], [16]. Thus significant efforts are required
to be made to understand the security of mobile connections,
making them resilient and reliable in the face of malicious
apps [17].

II. STORMS AND SIGNALING OVERLOAD

The Internet carries a lot of unwanted traffic [18], which
includes remote DoS attacks, scanning worms, viruses [19]
and spam. While mobile networks can be protected through
middleboxes, a recent review [20], [21] found that 51% of
carriers allow mobile devices to be probed from the Internet.
Malware infections that target mobiles can generate exces-
sive signaling, including premium SMS diallers, spammers,
adware and bot-clients [10], and recent analysis of of mobile
subscribers in China [22] indicates correlation between the fre-
quency of resource-inefficient traffic and malicious activities.
Thus signaling storms will continue to pose challenges with
traffic growth [23] and IoT systems [24], [25].

A. The Mathematical Model

The analysis is conducted with a stochastic network model
[26]–[30], and normal and attacked mobiles are represented
by s(t) at time t ≥ 0 :

s(t) = (b, B, C, A1, a1, ... , Ai, ai, ..; t) (1)

where:
• b is the number of mobiles which are just starting their

communication in low bandwidth mode,
• B is the number of unattacked mobiles which are in high

bandwidth mode,
• C is the number of unattacked mobiles that have started

to transfer or receive data or voice in high bandwidth
mode,

• Ai is the number of attacked mobiles which are in high
bandwidth mode and have undergone a time-out for i−1
times,

• ai is the number of attacked mobiles which have entered
low bandwidth mode from high bandwidth mode after i
time-outs,

With Poisson arrivals at rate λ for new “calls” first admitted
in state b, then requesting high bandwidth at rate r, so that
with probability 1−α the call is “normal” then entering state
B. With probability α it will be an attacked call, requesting
high bandwidth and enter stating A1. Once a call enters state
A1, it will time-out after a time of average value τ−1. Note
that the time-out is a parameter that is set by the operator, and
in practice it is of the order of a few seconds. After entering
state A1, if the mobile device or operator is very “clever”, the
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call may be detected as being anomalous, and removed at rate
β1, which reflects the speed with which the is eliminated from
further activity. Such a facility for blocking malicious calls is
not currently available. However, typically the call will manage
to request high bandwidth and enter state A2 at rate r1.

Proceeding in the same manner, in state Ai the anomalous
call will again not start a normal communication, so it will
eventually time-out after an average time τ−1

i and enter state
ai:

ΛA1 = αΛb, (2)
Λai = ΛAi ,

ΛAi+1 = Λai

ri

ri + βi
,

= αΛb

i∏
l=1

fl, where

fl =
rl

rl + βl
,

and Λb is the rate at which calls enter state b, which will
be determined below from a more detailed analysis. Different
calls will interfere each other via (a) the access to limited
wireless bandwidth, and (b) possible congestion due to sig-
naling and traffic in the backbone. However if we neglect
these points, calls act independently of each other so that the
average number of calls in each of the “attacked” states, that
are denoted by ai and Ai, is the average arrival rate of calls
into the state, multiplied by the average time spent by a call
in that state, so that we have:

NA1 =
αΛb

τ1
, (3)

NAi
=

αΛb

τi

i−1∏
l=1

fl, i > 1,

Nai =
αΛb

ri + βi

i−1∏
l=1

fl, i > 1.

As a consequence, the total average number of attacked calls
becomes:

Na =
∞∑

i=1

[Nai
+ NAi

],

= αΛb

∞∑
i=1

{[
i−1∏
l=1

fl][
1
τi

+
1

ri + βi
]}. (4)

The rate parameters ri are actually congestion dependent
since a mobile can only access bandwidth if enough bandwidth
for a reasonable level of QoS is available, and if interference
will not be excessive. Let W denote the bandwidth that is
available in a given cell through the effect of one or more base
stations. If we call Ni the average number of mobiles that are
in state i ∈ {b, B, C, a, A}, then the bandwidth availability
will depend essentially on NB , NC , NAi

because for a
total amount of bandwidth in the system at a base station
level of say W , the total amount of available bandwidth
may be expressed as some value W ∗ = W − w1(NB +
NC +

∑
i NAi)−w2(Nb +

∑
i Nai) where w1 and w2 denote

the bandwidth allocated per high and low bandwidth request,

respectively. Thus in reality the rates ri will be “slowed down”
as W ∗ becomes smaller since requests will be delayed or will
even remain unsatisfied. The matter is of course more complex,
because not only the bandwidth allocation itself but the error
probabilities in the channel will be affected by the number of
mobiles that are actually communicating via the base stations.

Now with regard to normal or un-attacked calls, once a
call requests high bandwidth and enters state B, it will start
communicating and this will be expressed as a transition rate
κ which takes the call into “communication state” C. From C
the call’s activity may be interrupted, as when a mobile device
stops sending or receiving data to/from a web site, or when
a voice call has a silent period, in which case the call will
return to state B at rate µ. Similarly, the call may end at rate
δ, leaving the system.

From B it may either return to C at rate κ signifying that
transmission or reception has started once again, or it may
time-out at rate τ and return to state b. Once it returns to state
b after a time-out, the call can try again to enter state B or
state A as a normal or attacked call, since we have to include
the fact that a normal call may become an attacked call after
acquiring malware during its “normal” communication with
a web site or with another mobile. As a consequence, we
can calculate the rates at which the calls enter these normal
operating states become:

Λb = λ +
τ

τ + κ
ΛB , (5)

ΛB = (1− α)Λb +
µ

µ + δ
ΛC ,

ΛC =
κ

κ + τ
ΛB ,

which yields:

ΛB = γΛb, where (6)

γ =
1− α

1− µκ
(µ+δ)(κ+τ)

, and

τ

τ + κ
γ =

τ(1− α)
τ + κ− µκ

µ+δ

,

Λb =
λ

1− τ
τ+κγ

, so

=
λ

1− τ(1−α)
τ+κ− µκ

µ+δ

,

ΛB =
λγ

1− τ
τ+κγ

,

ΛC =
κλγ

κ + τ(1− γ)
.

III. THE TIME-OUT

The expression for Na in (4) provides us with insight into
how the time-out may be used to mitigate attacks. Indeed,
combining the expression for Na with Λb given in (6) when
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τi, ri and βi do not depend on i, we have:

Na = αλ
r + β + τ

βτ [1− τ(1−α)
τ+κ− µκ

µ+δ
]
, (7)

= αλ
r + β + τ

βτ [1− τ(1−α)

τ+ δκ
µ+δ

]
, or

= αλ
(r + β + τ)(τ + δκ

µ+δ )

βτ(ατ + δκ
µ+δ )

.

so that we may study how Na varies with τ . In particular, we
easily see that:
• As τ → 0, the effect the time-out is removed since it

is infinite, and we have Na → +∞ which indicates that
the number of attacked mobiles will grow indefinitely
because a finite time-out helps to identify and eliminate
the attacked mobile devices.

• If τ → +∞ the time-out is very fast and Na → λ
β . Note

that λ which is the rate of incoming calls may be quite
high in the thousands of calls per minute, while β−1 is
the average time it takes to decide that a given mobile has
been attacked, and may take minutes. As a result, their
product λβ−1 may also be quite high.

Thus it will be better to choose an optimum value of τ
between these two extremes, which helps to minimise the total
number of attacked mobiles Na. When we take the derivative
of (8) we remain with a second degree equation in τ , the
solution of which yields:

1/τ∗Na
=


√

(1−α)[ κδ
(µ+δ)(β+r)−α]−α

κδ
µ+δ

, if κδ
(µ+δ)(β+r) > α

1−α ,

0, otherwise.
(8)

A simple order of magnitude estimate will tell us that δ << µ
since a complete call will typically be much longer than the
time between successive accesses to a web site, or “silent”
periods within an interaction from a mobile device can be
numerous but short in comparison with the duration of the
call as a whole. Similarly, we can assume that r >> β since
the time it will take to identify and eliminate an attacked call
will be much longer than the time needed to request high
bandwidth once the call is initiated. Finally, κ may be of the
same order of magnitude to r or much smaller, because the
transmission times that are represented by κ−1 are very short
if the device is downloading or uploading bursts of data, but
may be much longer (i.e. κ much smaller) if the mobile device
is downloading video streams. Thus we can expect that in
practice the condition

κδ

(µ + δ)(β + r)
>

α

1− α
,

that guarantees the existence of a non-zero minimum value is
only satisfied for quite a small value of the attack probability
α.

IV. MITIGATION

Choosing a relatively small value of the time-out of the
order of a few seconds is useful, but an additional mechanism

is needed to mitigate the effect of storms. Therefore we suggest
that a counter value n be selected so that as long as the
number of successive times that the mobile uses the time-out is
less than n, then the mobile remains attached to the network.
However as soon as this number reaches n, then the mobile is
detached after a time of average value β−1. Thus β−1 can be
viewed as the decision time plus the physical detachment time
that is needed. Based on this principle, and with reference to
our earlier definition of βi, we have:

βi =
{

0, 1 ≤ i < n,
β, i ≥ n

so mitigation is activated when high bandwidth is requested
n successive times, each followed by a time-out. Using the
previous analysis, the number of average number of attacked
calls becomes:

Na = αΛb[(n− 1 +
r

β
)(

1
τ

+
1
r
) +

1
τ

] (9)

while the resulting signaling rate from the attack is:

Λa = αΛb +
∞∑

i=1

[Λai
+ ΛAi

] = αΛb[2n + 1 +
2r

β
] (10)

A large value of n will improve the chances of correctly
detecting a misbehaving mobile user, providing mitigation
with full confidence to detach the misbehaving mobile from
the network. If n is small we may have false positives,
requiring analysis of the user’s behaviour with other ongoing
connections, or checking some data plane attributes such
as destination IP addresses or port numbers that may be
associated with malicious activities. Thus the higher the n,
the faster the decision can be to disconnect the mobile, i.e. β
increases with the threshold n, with a slope or derivative with
respect to n expressed as β

′
. W can show that the value n∗

that minimises both Na and Λa, satisfies:(
β(n∗)

)2 ≈ r.β
′
(n∗). (11)

Figure 1 shows Na and Λa versus n when β(n) = 0.02n with
r = 0.5 secs−1, and we see that n∗ = 5 as predicted by (11).

A. Simulation

In this section, the joint detection and mitigation approach is
evaluated using a mobile network simulator [31], representing
both normal and attack events as in [32]. In Figure 2 the
signaling misbehaviour increases from instants 2800 to 4000
secs after the simulation begins, and the mitigation scheme
is activated at 7000 secs. Figure 2(a) shows the number of
signaling messages sent and received by the RNC, while the
response time for the application at a normal mobile is shown
in Figure 2(b).

V. CONCLUSIONS

The recent growth in mobile data traffic is marked by an
even greater surge in signaling loads due to interactions that
include devices, apps, network configuration, cloud services
and users. As mobile devices and apps increasingly access
the Cloud in order to offload computationally intensive or
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Fig. 1. Number of attacked mobiles (left) and resulting signaling overload
(right) versus the number of false transitions that triggers the mitigation
mechanism, when λ = 10 calls/s, τ−1 = 5s, α = 0.1, r−1 = 2s,
κ−1 = 10s, δ−1 = 5mins, and µ−1 = 5s. We observe a clear value of n
which is optimum.

energy-costly activities, signaling storms can create heavy
overloads that can significantly impair system performance
and offer very poor quality of service to users. In addition,
future machine to machine applications may be significantly
impaired by such attacks, while Cloud services that are used
by mobile devices can also become overloaded. We therefore
propose a detection and mitigation technique for storms that
uses a software counter for each mobile user, within mobile
devices or in signaling system. When a maximum threshold
of transitions to high bandwidth requests are detected which
time-out because they do not make data or voice transfers, the
mobile device is temporarily suspended, also limiting energy
consumption in the network [30] and mobile battery depletion,
and protecting against useless consumption of paid services.
In future work, other techniques for dealing with detection
and mitigation are worth investigation, such as collecting
successive high bandwidth requests and serialising them [33]
in the backbone network, and dropping them when they are
so numerous that an indication of an attack can be suspected.
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