19 research outputs found

    COVID-19 and chronological aging : senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection?

    Get PDF
    COVID-19, also known as SARS-CoV-2, is a new emerging zoonotic corona virus of the SARS (Severe Acute Respiratory Syndrome) and the MERS (Middle East Respiratory Syndrome) family. COVID-19 originated in China and spread world-wide, resulting in the pandemic of 2020. For some reason, COVID-19 shows a considerably higher mortality rate in patients with advanced chronological age. This begs the question as to whether there is a functional association between COVID-19 infection and the process of chronological aging. Two host receptors have been proposed for COVID-19. One is CD26 and the other is ACE-2 (angiotensin-converting enzyme 2). Interestingly, both CD26 and the angiotensin system show associations with senescence. Similarly, two proposed therapeutics for the treatment of COVID-19 infection are Azithromycin and Quercetin, both drugs with significant senolytic activity. Also, Chloroquine-related compounds inhibit the induction of the well-known senescence marker, Beta-galactosidase. Other anti-aging drugs should also be considered, such as Rapamycin and Doxycycline, as they behave as inhibitors of protein synthesis, blocking both SASP and viral replication. Therefore, we wish to speculate that the fight against COVID-19 disease should involve testing the hypothesis that senolytics and other anti-aging drugs may have a prominent role in preventing the transmission of the virus, as well as aid in its treatment. Thus, we propose that new clinical trials may be warranted, as several senolytic and anti-aging therapeutics are existing FDA-approved drugs, with excellent safety profiles, and would be readily available for drug repurposing efforts. As Azithromycin and Doxycycline are both commonly used antibiotics that inhibit viral replication and IL-6 production, we may want to consider this general class of antibiotics that functionally inhibits cellular protein synthesis as a side-effect, for the treatment and prevention of COVID-19 disease

    Gait speed as a measure in geriatric assessment in clinical settings: a systematic review

    No full text
    Background. Gait speed is a quick, inexpensive, reliable measure of functional capacity with well-documented predictive value for major health-related outcomes. Numerous epidemiological studies have documented gait speed in healthy, community-dwelling older people. The purpose of this study is to undertake a systematic review and meta-analysis of gait speed in a specific group with mobility limitations-geriatric patients in clinical settings

    Brief Report Mutation of the Protein Kinase I Alpha Leucine Zipper Domain Produces Hypertension and Progressive Left Ventricular Hypertrophy: A Novel Mouse Model of Age-

    No full text
    Hypertensive heart disease causes significant mortality in older patients, yet there is an incomplete understanding of molec-ular mechanisms that regulate age-dependent hypertensive left ventricular hypertrophy (LVH). Therefore, we tested the hypothesis that the cGMP-dependent protein kinase G I alpha (PKGIα) attenuates hypertensive LVH by evaluating the car-diac phenotype in mice with selective mutations of the PKGIα leucine zipper domain. These leucine zipper mutant (LZM) mice develop basal hypertension. Compared with wild-type controls, 8-month-old adult LZM mice developed increased left ventricular end-diastolic pressure but without frank LVH. In advanced age (15 months), the LZM mice developed overt pathological LVH. These findings reveal a role of PKGIα in normally attenuating hypertensive LVH. Therefore, mutation of the PKGIα LZ domain produces a clinically relevant model for hypertensive heart disease of aging. Key Words: Left ventricular hypertrophy—Hypertension—Protein kinase G
    corecore