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Summary In the present work we reviewed recent advances concerning

neuroprotective=neurotrophic effects of acute or chronic nicotine exposure,

and the signalling pathways mediating these effects, including mechanisms

implicated in nicotine addiction and nAChR desensitization. Experimental

and clinical data largely indicate long-lasting effects of nicotine and nicotinic

agonists that imply a neuroprotective=neurotrophic role of nAChR activation,

involving mainly a7 and a4b2 nAChR subtypes, as evidenced using selective

nAChR agonists. Compounds interacting with neuronal nAChRs have the

potential to be neuroprotective and treatment with nAChR agonists elicits

long-lasting neurotrophic effects, e.g. improvement of cognitive performance

in a variety of behavioural tests in rats, monkeys and humans. Nicotine

addiction, which is mediated by interaction with nACh receptors, is believed

to involve the modification of signalling cascades that modulate synaptic

plasticity and gene expression. Desensitization, in addition to protecting cells

from uncontrolled excitation, is recently considered as a form of signal

plasticity. nAChR can generate these longe-lasting effects by elaboration of

complex intracellular signals that mediate medium to long-term events crucial

for neuronal maintenance, survival and regeneration. Although a comprehen-

sive survey of the gene-based molecular mechanisms that underlie nicotine

effects has yet not been performed a growing amount of data is beginning to

improve our understanding of signalling mechanisms that lead to neurotrop-

hic=neuroprotective responses. Evidence for an involvement of the fibroblast

growth factor-2 gene in nAChR mechanisms mediating neuronal survival,

trophism and plasticity has been obtained. However, more work is needed to

establish the mechanisms involved in the effects of nicotinic receptor subtype

activation from cognition-enhancing and neurotrophic effects to smoking

behaviour and to determine more precisely the therapeutic objectives in po-

tential nicotinic drug treatments of neurodegenerative diseases.
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Nicotinic acetylcholine receptors

Neuronal nicotinic acetylcholine receptors (nAChRs) be-

long to the superfamily of ligand-gated ion channels and

are located in both the peripheral and central nervous sys-

tems. They are composed of five subunits and at present

nine nicotinic receptor a subunits (a2–a10) and three b
subunits (b2–b4) have been identified, each encoded by a

different gene (Picciotto et al., 2001). In heterologous ex-

pression nAChR can contain more than one of the a2,

a3, a4 or a6 subunits and=or both b2 and b4 subunits as

well (Couturier et al., 1990). Accordingly, several different

combinations of nAChR subunit mRNA and=or proteins

have been identified in the central and peripheral nervous

structures (Le Novere et al., 2002). The subunits a7, a8,

a9, and a10 subunits can form homomeric receptors (Le

Novere and Changeux, 1995). These multiple combinations

of nAChR subunits possess distinct pharmacological and

physiological properties. Thus nAChRs show different affin-

ity for ligands, variability of permeability for cations and

rate of desensitization (Changeux et al., 1998).

The distribution of neuronal nAChR in the CNS differs

for the different subunits and the most common subunit

arrangements within the central nervous system include

the a4=b2 type receptor and the a7 type receptor. The a4

and b2 are present in the entire nervous system (Wada

et al., 1989). By contrast the distribution of a7 subunit

mRNA is restricted to certain layers of cerebral cortex, to

the hypothalamus, hippocampus and to some brain stem

nuclei (Seguela et al., 1993). nAChR containing other sub-

units are localized in important brain regions, but they are

less abundant. The a2 subunit is expressed at very low

levels in restricted brain regions (Wada et al., 1989). The

a5 subunit mRNA is expressed at high levels in neurons

of the subiculum, pre- and parasubiculum, substantia nigra,

ventral tegmental area, and weakly expressed in the cerebral
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cortex (Wada et al., 1990). The a3 and b4 subunits, which

form the main nAChR responsible for nicotinic synaptic

transmission in autonomic ganglia, are highly enriched in

the medial habenula (Le Novere and Changeux, 1995). The

a6 and b3 subunits are highly and selectively enriched in

catecolaminergic nuclei, such as the dopaminergic neurons

of the substantia nigra, and the noradrenergic neurons of

the locus coeruleus (Le Novere and Changeux, 1995). It

has therefore been proposed that they can form, together

with other subunits, the nAChR responsible for catechol-

amine release in the basal ganglia and hippocampus (Le

Novere and Changeux, 1995). nAChRs located presynapti-

cally regulate the release of serotonin, dopamine, norepi-

nephrine (Summers and Giacobini, 1995), glutamate (Gray

et al., 1996), gamma-aminobutyric acid (Ji and Dani, 2000)

and acetylcholine (Tani et al., 1998). The a4=b2 nicotinic

receptor binds nicotine with high affinity, while the a7

nicotinic receptor binds nicotine with a low affinity (Lena

and Changeux, 1998). When agonists bind to the nAChR,

the receptor complex undergoes a conformational change

in its structure, which allows the channel gate to open,

permitting the passage of cations through the channel pore.

However functionally, the nAChR complex can exist in

three conformational states, which are dynamically regu-

lated by exposure to the agonist: closed, open and desensi-

tized states.

Neuroprotective==neurotrophic effects of nAChR

activation

Recently an increasing number of potent nAChR agonists

have been used in experimental research and clinical trials,

and have been found displaying efficacy and=or a more

selective affinity than nicotine for neuronal nAChR sub-

types, some of which are considered potential candidates

not only for the treatment of neurodegenerative disease such

as Alzheimer’s disease (AD) and Parkinson’s disease (PD)

(Bannon et al., 1998), but also, as discussed below, for cog-

nitive disorders associated with Schizophrenia (Kem, 2000).

A growing number of in vivo and in vitro findings have

shown that nAChRs activation have the potential to be

neuroprotective=neurotrophic.

Evidence in vivo

nAChRs have important roles in development and synaptic

plasticity (Broide and Leslie, 1999; Levin et al., 1999). a7

nAChRs are expressed early in development and have been

shown to be important for the control of neurite outgrowth,

and are involved in events of synaptic remodelling in the

adult nervous system (Pugh and Berg, 1994). The high

concentration of a7 receptors in the hippocampus, a region

of the brain that is critical for memory, also supports a role

for a7 receptors in the modulation of synaptic plasticity

and in memory formation (Small et al., 2001). Nicotinic

receptors can modulate the rhythmic activity important for

synaptic plasticity, the basis for learning and memory

(Huerta and Lisman, 1993).

Many studies have analysed the effect of nAChR ago-

nists and antagonists on cognitive performance in a vari-

ety of behavioural tests in rats, monkeys and humans, and

their specific involvement in cognitive function, such as

attention, learning, sensory perception, memory consoli-

dation and arousal has been reported (Levin and Simon,

1998). The nAChR agonist nicotine improves cognition

for prolonged periods in non-human primates and in

rodents even after nicotine discontinuation (Gould and

Stephen, 2003; Buccafusco et al., 2005). By contrast, a

blockade of nicotinic receptors by a nicotinic receptor

antagonist impairs memory function (Levin and Rezvani,

2000).

Performance in attention and working memory tasks is

improved by nicotine (Gioanni et al., 1999; Levin et al.,

2002), and involves multiple brain areas, such as hip-

pocampus, amygdala, and particularly the prefrontal cor-

tex that has been implicated in attention and working

memory and goal-directed behaviour (Groenewegen and

Uylings, 2000). Epibatidine has been found to induce Long-

term potentiation (LTP), improve memory and learning in

human and experimental animal models and to be neuro-

protective in several in vitro models (Jonnala et al., 2002)

and both a7 and a4b2 nAChRs are essential for these

effects. The GTS-21 nicotinic agonist with potent func-

tional selectivity for the a7 nAChR subtype improves mem-

ory performance in several tests, such as one-way active

avoidance, Lashley III maze testing, and 17 arm radial maze

test performance in aged rats, and improve cognitive and

perceptual disturbances in schizophrenia (Arendash et al.,

1995). The nicotinic agonist SIB-1508Y, selective for

a4b2, and the nicotinic agonist SIB-1553A, active at b4

nAChRs, exhibit ability to improve cognitive activity and

learning in a variety of models and to promote locomotor

activity (Vernier et al., 1999), with long-lasting effects, in

chronic low-dose MPTP-treated monkeys (Schneider et al.,

2003). In addition, functional magnetic resonance imaging

studies have shown increased activation of frontal net-

works by nicotine administration during attention tasks

(Lawrence et al., 2002). Nicotinic receptor function may

also be critical for maintenance of cognitive function dur-

ing aging. Increased neurodegeneration is seen in aged
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b2 subunit knockout mice and is associated with learn-

ing deficits as shown during different conditioning tasks

(Picciotto et al., 2001).

The mechanism of the persisting effects of nAChR acti-

vation is currently unknown, although the involvement of

an alteration in nAChR expression or of interactions with

other transmitter systems has been suggested (Levin and

Simon, 1998). Recently we have taken into consideration

the possibility that this persistence of nicotine effects could

also be related to the increased levels of neurotrophic fac-

tors observed following nAChR agonist treatment in differ-

ent experimental models (Belluardo et al., 1998, 1999b,

2000).

Neuroprotective effects of nAChR activation have been

shown in different models with lesions of septohippo-

campal or nigrostriatal systems. Nicotinic agonists protect

against neocortical neuronal cell loss induced by nucleus

magnocellularis lesions in the rats and delayed hippocam-

pal CA1 subregion neuronal death by ischemia (Nanri

et al., 1998) and against septal cholinergic neurons death

following fimbrial transaction (Martin et al., 2004), and

septohippocampal lesion with induced deficits in spatial

memory (Decker et al., 1994b, 1995) or working memory

(Levin et al., 1993). Prenatal nicotine exposure resulted in a

trophic influence on cerebral cortex development character-

ized by premature increases in cholinergic projections

based on analysis of choline acetyltransferase (Navarro

et al., 1989).

Chronic nicotine treatment counteracts the disappear-

ance of tyrosine-hydroxylase-immunoreactive or elimi-

nates asymmetry in striatal glucose utilization in the

mesostriatal dopamine system after partial hemitransec-

tion in the rat (Janson et al., 1988a, 1989; Janson and

Moller, 1993; Jeyarasasingam et al., 2002), and protects

against neurodegeneration of dopaminergic neurons in the

MPTP model (Janson et al., 1988b) and the meth-amphet-

amine mice model of Parkinson’s disease (Maggio et al.,

1998).

Evidence in vitro

There exist numerous model systems in which nicotine has

shown protective effects on neurons, including exposure

to cytotoxic insults of glutamate, b-amyloid or 6-OHDA

(Ryan et al., 2001). Nicotine induces protection of cultured

cortical and striatal neurons against cytotoxicity mediated

by NMDA and AMPA receptors (Kaneko et al., 1997), and

of cultured hippocampal and cerebellar neurons against

kainic acid induced neurotoxicity (Semba et al., 1996).

This nAChR neuroprotection against glutamate cytotox-

icity seems to be mediated by their inhibitory action on

NO-formation (Shimohama et al., 1996). Other studies

have shown that nicotine rescues PC12 cells from death

induced by NGF deprivation (Jonnala et al., 2002). Nico-

tine has recently been shown to inhibit Ab aggregation by

preventing the conversion from a- helix to b-sheet confor-

mations (Salomon et al., 1996). Nicotine was found to

prevent Ab toxicity in hippocampal neurons (Zamani and

Allen, 2001) and in cortical neurons (Shimohama and

Kihara, 2001), and it has been suggested that nicotine-

induced protection from Ab toxicity is mediated by the

phosphatidylinositol 3-kinase cascade (Kihara et al., 2001).

Nicotine also inhibits Ab induced phospholipase A2 acti-

vation (Singh et al., 1998). Taken together the results of

nicotine inhibition of Ab toxicity in cell culture suggested

the possibility that the nAChR may be a therapeutic target

in AD.

Clinical evidence

Parkinson’s disease and Alzheimer disease – Epidemiological

and clinical studies have for a long time suggested a poten-

tial neuroprotective=neurotrophic role of nicotine in neu-

rodegenerative disease, such as AD and PD (Quik, 2004;

Newhouse et al., 2004). During the progression of AD,

cholinergic inputs degenerate and the number of nAChRs

in some areas decreases (Gotti and Clementi, 2004) and

high affinity nAChR of the a4b2 subtype, are significantly

lost in AD (Court et al., 2001). This loss likely occurs early

in the disease and is probably not true for a7-nAChR

(Martin-Ruiz et al., 1999) although a loss of a7-nAChRs

in AD has been reported (Banerjee et al., 2000). This loss

of nicotinic mechanisms, which modulates the gain and

accuracy of synapses and modulates the excitability of cir-

cuits, is likely to contribute to the overall cognitive deficits

associated with AD. Therefore cognitive changes in AD, in-

cluding memory loss, are also likely to be caused by changes

in synaptic plasticity in addition to non-specific neurotoxicity

and=or cell loss (Small et al., 2001).

Clinical studies have revealed that nicotine is effective in

ameliorating memory and attention deficits in AD patients

(Newhouse et al., 2001), and to improve learning and mem-

ory in normal humans (Warburton et al., 1986). Numerous

studies now demonstrate that chronic nicotine exposure

induces increased numbers of CNS nAChR in animals

and in human smokers in vivo (Wonnacott, 1990) and this

up-regulation of receptor number has been proposed to be

responsible for nicotine’s neuroprotective action (Jonnala

and Buccafusco, 2001). ABT-594 and ABT-418, potent and

selective agonists for the a4b2 subtype (Bannon et al.,
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1998) are 3–10-fold more potent than nicotine as to mem-

ory-enhancing actions (Decker et al., 1994a) and improve

in subjects with moderate AD deficits in total recall in a

verbal learning task, in a selective reminding task, and in

non-verbal tasks such as spatial learning and memory and

repeated acquisition.

Treatments with cholinesterase inhibitors, such as phy-

sostigmine, have shown cognitive improvements (De La

Garza, 2003). Recently galantamine, a modest acetylcholi-

nesterase inhibitor and allosteric potentiating ligand at

nAChRs, has shown neuroprotective effects against a vari-

ety of cytotoxic agents, such as b-amyloid, glutamate and

sustained cholinergic stress in vivo (Geerts, 2005) and ef-

fects on memory, hippocampal plasticity, and elevates the

number of nicotinic receptors within the hippocampus and

neocortex (Barnes et al., 2000). In patients with AD, galan-

tamine improves cognitive functional and behavioural

symptoms (Maelicke et al., 2001). There is ample evidence

that these effects of galantamine are mediated through

allosteric potentiation of the a7 subunits with the addi-

tional benefit of a lower degree of receptor desensitization

(Maelicke et al., 2001). Taken together, the loss of nAChRs

associated with AD, with the ability of nicotine to upregu-

late its receptors and the epidemological data showing

smokers to be at less risk of AD than non smokers, are

consistent with the hypothesis of nicotine receptor involve-

ment in neuroprotective=neurotrophic functions (Perry et al.,

1999).

Like for AD an inverse association between cigarette

smoking and PD has been reported (Baron, 1986). Accord-

ing to epidemiological studies, it has been shown that

cigarette smoking may have therapeutic implications in

PD (Baron, 1986) with substantial improvement of the PD

symptoms (Kelton et al., 2000), and acute i.v. nicotine

improved reaction time, speed of processing and tracking

errors, but not selective attention and semantic retrieval

(Fratiglioni and Wang, 2000). Based on the epidemiologi-

cal studies and the neuroprotective actions of nicotine in

animal models of PD (Janson et al., 1988a, b; Fuxe et al.,

1990) the potential role of nAChRs as targets for treatment

of this disease has been raised (Belluardo et al., 2000;

Burghaus et al., 2003), including the specific treatment of

cognitive dysfunction associated with PD (Forgacs and

Bodis-Wollner, 2004). Some of these effects on learning

and memory may not only be caused by neurotrophic

actions by nicotine and other nicotinic receptor agonists,

but may also be mediated by the enhancement of dopami-

nergic and noradrenergic function via the ability of nico-

tinic receptor agonists to enhance the release of dopamine

and norepinephrine in the brain including the striatum

(Summers et al., 1997; Andersson et al., 1981; Fuxe et al.,

1989), as well as to increases in tyrosine hydroxylase

and dopamine b-hydroxylase mRNA levels (Gueorguiev

et al., 2000). Therefore, treatment with nicotine, or pref-

erably selective nicotinic agonists, could attenuate nigro-

striatal damage and reduce PD progression and thus

provide neuroprotective effects by selectively stimulating

nAChR subtypes as well as improve PD symptoms by in-

creasing dopamine release and synthesis (Kelton et al.,

2000; Lichtensteiger et al., 1982; Kita et al., 1992;

Andersson et al., 1981; Fuxe et al., 1986).

Schizophrenia – Over the last twenty years, a high inci-

dence of smoking has been observed in subjects suffering

from schizophrenia (Sacco et al., 2004) and clinical data

suggested that nicotine improves certain cognitive and sen-

sory abnormalities associated with schizophrenia such as

deficits in sensory gating (Ripoll et al., 2004; Tanabe et al.,

2005). Data available suggested that nicotine improves

attention and inhibitory functions in hippocampus and cin-

gulate gyrus with involvement of GABAergic mechanisms

(Tanabe et al., 2005). Furthermore, a partial a7 agonist im-

proves auditory P50 suppression in schizophrenia (Koike

et al., 2005) and it has been indicated to be reasonable

candidates for the treatment of cognitive and perceptual

disturbances in schizophrenia (Koike et al., 2005; Deutsch

et al., 2005), since inter alia a7 nicotinic receptor activa-

tion may create a glutamatergically mediated increase in

dopamine release in the prefrontal cortex, and in area impli-

cated in the development of negative symptoms in patients

with schizophrenia (Nomikos et al., 2000). Recent studies

have shown that also galantamine improves the cognitive

performances of patients with refractory schizophrenia hav-

ing auditory hallucinations and a disorganized form of

schizophrenia (Allen and McEvoy, 2002). Therefore, the

alleviation of certain symptoms of some forms of schizo-

phrenia induced by nicotine could explain the high incidence

of smoking among schizophrenic patients and suggests that

nicotine intake by cigarette consumption may be a form

of self-medication. It is of substantial interest that there

exists a differential modulation of gene expression in

NMDA postsynaptic densities in schizophrenic smokers

vs. control smokers (Mexal et al., 2005). It is also possible

to conceive that neurotrophic actions of nicotinic agonists

can be involved in antischizophrenic actions in view of the

neurodevelopmental theory of schizophrenia (Lipska, 2004;

Freedman, 2005), since nicotinic receptors and FGF-2 exist

in the subependymal layer rich in neuronal progenitor cells

(Mudo’ et al., 2005).

Taken together the available experimental and clinical

data largely indicate long-lasting beneficial effects of nico-
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tine and nicotinic agonists that imply a neuroprotective=

neurotrophic role of nAChR activation, giving these recep-

tors a therapeutic role in PD and AD. In addition, a7 ago-

nists may have a therapeutic potential in schizophrenia.

Nicotine addiction and neuroplasticity

Brain nAChRs distribute to postsynaptic, as well as to pre-,

peri- and other, sites, where they may modulate the neuro-

transmitter release, synapse action and neuronal activity, play-

ing important roles in many physiological processes including

neuron development, learning and memory, and reward

responses as well as in addiction development (Dani et al.,

2001). Addictive drugs produce forms of structural plasticity

similar to those associated with other forms of experience-

dependent plasticity. Nicotine addiction, which is mediated by

interaction with nAChRs, is believed to involve the modifica-

tion of signalling cascades that modulate synaptic plasticity

and gene expression, as proposed for other drugs of abuse

(Dani et al., 2001; Nestler, 2002).

A growing body of evidence has shown that drugs of

abuse can activate memory mechanisms in the circuits of

the mesolimbic reward center (Nestler, 2001; Samaha and

Robinson, 2005). It has been reported that nicotine in the

ventral midbrain (VTA), via MLA-sensitive nAChR, stim-

ulates both glutamatergic terminals and DA neurons

directly, potentiating excitatory transmission in the VTA

and replace presynaptic stimulation completely in LTP

induction, generating synaptic plasticity (Mansvelder

and McGehee, 2000). The glutamatergic input to the DA

neurons can undergo LTP in response to pairing of pre-

and postsynaptic stimulation, and this process is depen-

dent on NMDA receptor activation (Bonci and Malenka,

1999).

A limited exposure to nicotine is sufficient to induce

lasting changes in the circuitry of the mesolimbic DA

reward system as shown in human adolescents express-

ing behaviours that support the observations of lasting

changes in synaptic activity by a single exposure to nico-

tine (Mansvelder and McGehee, 2000), or initial symptoms

of nicotine dependence after smoking of only a few ciga-

rettes (DiFranza and Wellman, 2003). Early on acute

nicotine injections and acute intermittent exposure to ciga-

rette smoke was found to increase DA turnover and release

in certain limbic DA nerve terminal systems of the nucleus

accumbens and the olfactory tubercle (Andersson et al.,

1981; Fuxe et al., 1986). With continued nicotine exposure,

plastic molecular alterations in central DA systems might

underlie the continued propensity to consume nicotine by

inducing craving, the aversive effects of withdrawal, and

aberrant incentive-salience attribution to environmental stim-

uli that are associated with nicotine. The synaptic mech-

anisms that nicotine activates within the DA reward system

are likely to underlie the early steps of nicotine dependence

and it is one of the critical areas for future research on the

physiological basis of nicotine addiction (Pulvirenti and

Diana, 2001).

Desensitization: neuroprotection and plastic changes

Work from several laboratories show that when ACh, nico-

tine or related agonists are continuously applied nAChRs

become ‘desensitized’ or temporarily inactive (Giniatullin

et al., 2005). Desensitization in addition to protecting cells

from uncontrolled excitation is recently considered as a

form of signal plasticity that might modify synaptic effi-

cacy in various brain regions (Dani et al., 2001; Mansvelder

and McGehee, 2002). In fact, the most obvious neuropro-

tective action of desensitized nAChRs is to inhibit exces-

sive excitation dependent on high permeability to Caþþ of

activated nAChRs. In line with this, mutation at the posi-

tion leucine 247 of the a7 subunit significantly inhibits

desensitization and inserting this mutation into mice can

induce animal death (Wang and Sun, 2005). Recently, a

reasonable working hypothesis has been developed stating

that the phenomena of desensitization beyond simply nico-

tinic receptor inactivation may contribute to the array of

potential effects associated with chronic nicotine exposure.

Numerous studies have demonstrated that chronic nicotine

exposure induces increased numbers of CNS nAChRs both

in vivo in animals and in human smokers, caused by post-

translational mechanisms (Benwell et al., 1988), and in vitro

(Bencherif et al., 1995), although other investigations sup-

port a change not in the number of receptors but in their

state of binding and response to ligands (Vallejo et al.,

2005). This nicotine up-regulation of receptor number is

viewed as responses to desensitization thereby also im-

plying that the desensitized nAChRs may be responsible

for the nicotine’s neuroprotective action (Jonnala and

Buccafusco, 2001). The mechanism may also involve an

enhanced intracellular maturation of the nicotinic receptors

(Sallette et al., 2005). Pretreatment with nicotine for 24 h

has been shown to alleviate the toxic actions of MPTP,

indicating a neuroprotective effect of desensitized nAChRs,

and the neuroprotective action of nicotine in cultured PC12

cells has been suggested to be due to upregulation of a7-

containing nAChRs following their persistent desensitiza-

tion (Jonnala and Buccafusco, 2001). According to this

finding, it has been reported that desensitized a7 nAChRs

have a neuroprotective function through modulating signal
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transduction pathways (Dajas-Bailador et al., 2000; Dani,

2001).

A consistent number of reports suggested that the desen-

sitized nAChRs induced by chronic nicotine may be im-

portant for learning and memory (Lindstrom et al., 1987).

In this context, acute or prolonged chronic nicotine treat-

ment can decrease the threshold for LTP induction in

the hippocampus CA1 and can reverse the age-dependent

decrease in LTP-induction (Fujii and Sumikawa, 2001).

Because a decreased threshold for LTP may be mimicked

by MLA and prevented by a non a7 nAChR blocker, it has

been suggested that a7 nAChR desensitization are mainly

responsible for the effects (Fujii and Sumikawa, 2001).

Furthermore, in view of the negative association between

cigarette smoking and PD or AD, it has also been suggested

that desensitized nAChRs may be responsible for their

neuroprotective actions (Baron, 1996). The use of allosteric

modulator drugs that do not act as agonists on nAChRs,

and therefore cannot generate their widespread desensiti-

zation (Maelicke et al., 2000) may be important tools

for understanding the role of receptor desensitization in

neuroprotection.

Molecular mechanisms mediating neuroprotective

effects of nAChR activation

Nicotine and other nAChR agonists as above described

have neuroprotective=neurotrophic effects in several in vivo

and in vitro models of neuronal death (O’Neill et al., 2002).

Nevertheless, intracellular steps that mediate these effects

of nAChR ligands are not fully solved.

Concerning neuroprotective effects, nAChR activation

evoking Caþþ influx is likely to represent a first step in

the intracellular signalling cascades (Dajas-Bailador et al.,

2000) followed by diverse downstream pathways and pro-

cesses that are subsequently activated. Thus, this activation

of downstream signalling pathways appears necessary for

the prevention of neuronal death. Consistent with this

suggestion, block of Caþþ influx following activation of

a7 nAChR promotes survival of spinal cord motoneurons

from programmed cell death (Messi et al., 1997). In hippo-

campal slices nicotine-induced protection against acute

NMDA damage is mediated by the activation of phosphat-

idylinositol 3-kinase and ERK=MAPK (Ferchmin et al.,

2003) or protein kinase C (Li et al., 1999) and regulation

of Bcl-2 and Bcl-x expression, which may be involved in

prevention of neuronal death (Toborek et al., 2000; Mai et al.,

2003). Other results suggested that nAChR stimulation

induces neuroprotection against glutamate cytotoxicity by

its inhibitory action on NO-formation (Shimohama et al.,

1996). Stimulation of nAChR can also lead to the increased

expression of neurotrophic factors (Belluardo et al., 2000).

Therefore, activation of diverse signalling mechanisms

might subsequently lead to neuroprotection through inhibi-

tion of apoptosis and=or increased expression of neuro-

trophic factors crucial for neuronal maintenance, survival

(Belluardo et al., 2000; Roceri et al., 2001).

Molecular mechanisms mediating neurotrophic

effects of nAChR activation

Regulation of gene expression by synaptic activity is essen-

tial both for normal development in the nervous system and

for long-term components of synaptic plasticity (Dajas-

Bailador et al., 2000). The chain of events connecting

synaptic activity and gene expression is often initiated

by calcium influx (Hardingham et al., 2001), and nAChRs,

and particularly the a7 nAChR, are permeable to Caþþ. In

neurons, nAChRs activation can play a relevant role in Caþþ

signalling not only because of the Caþþ entry through differ-

ent nAChR subtypes, but also because nAChR depolariza-

tion of the plasma membrane can activate voltage operated

calcium channels and may also increase intracellular Caþþ

by inducing Caþþ mobilization from intracellular stores.

The absolute quantity and strategic localization of Caþþ

entry through nAChRs is likely to be relevant for the reg-

ulation of calcium-mediated downstream intracellular

events, including transmitter release, cell excitability, acti-

vation of protein kinases, gene expression, cell differentia-

tion and survival and new protein synthesis, ultimately

leading to changes in synaptic plasticity and neuronal re-

modelling (Dajas-Bailador et al., 2000). Therefore, in addi-

tion to rapid changes in membrane potential, activation of

nAChR can also generate longer-lasting effects in the

receptive neuron, which contribute to the elaboration of

complex intracellular signals that mediate medium-to long-

term events (Role and Berg, 1996).

nAChRs have been implicated in a wide variety of neuro-

trophic events, including learning and memory, which

involve mechanisms for calcium-dependent synaptic regula-

tion (Dajas-Bailador et al., 2000). nAChR agonists activate

mechanisms of synaptic plasticity and long-term enhance-

ment of memory, which involve an increase in the number

and efficiency of synaptic connections between neurons.

Long-lasting cognitive effects of nAChR ligands may be

attributed to the cellular changes that result in synaptic plas-

ticity and LTP is a model of the synaptic plasticity of learn-

ing and memory (Buccafusco et al., 2005).

During the past few decades, the pathways that are in-

volved in synaptic plasticity have been elucidated (Kandel,
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2001), particularly the phenomenon of LTP, which is an

increase in synaptic strength that can persist for extended

periods of time (Bliss and Lomo, 1973). The phases of LTP

correlate with the stages of memory, and impairment of

the mechanisms of LTP leads to memory deficits (Kandel,

2001). In the early phase of LTP, which lasts only hours,

Caþþ dependent second messenger systems modify existing

proteins to enhance neurotransmitter release from presynap-

tic neurons and support short-term memory. Late phases of

LTP require protein synthesis, lasting at least a day, and

require prolonged elevation of the intracellular Caþþ con-

centration. The latter activates a cascade that involves ade-

nylyl cyclase, cAMP and second messengers such as protein

kinase A and mitogen-activated protein kinase (MAPK)

(Impey et al., 1999). In turn, these events may enhance the

activity of transcription factors, e.g. the cAMP response

element-binding protein-1 (CREB-1), which increases the

expression of immediate early genes and stimulates the

synthesis of growth factors and other proteins that potentiate

cell excitability and support the formation of new synaptic

connections. The growth and maintenance of new synaptic

connections enables the persistence of long-term memory

(Kandel, 2001). Much evidence indicate that activation of

nAChRs may initiate a cascade of cellular signals that pro-

duces long-term molecular changes involved in the molecu-

lar mechanisms of memory. Repeated exposure to nAChR

agonists enhances LTP more than a single dose administra-

tion, whereas a persistent activation of nAChRs is not

required for the maintenance phase of LTP. These effects

of nAChR agonists have been characterized most exten-

sively in the hippocampus, where a7 nAChR activation

enhance the probability of LTP and might contribute to the

mechanisms that underlie the effects of nicotine on cognition

(Ji et al., 2001).

nAChR agonists may activate several mechanisms which

may induce long-term changes leading to more complex

neurotrophic response in addition to increased number and

efficiency of synaptic connections between neurons.

Nicotine treatment by increasing permeability of nAChR

to Caþþ can induce PKC activity (Fenster et al., 1999), and

CaþþCaM-dependent protein kinase II, and both effects

can be reversed by nAChR antagonists (Damaj, 2000).

The mitogen-activated protein kinase (MAPK or Erk1=2)

pathway can also be activated by nicotine-dependent in-

creases in Caþþ levels (Cox et al., 1996) or alternatively,

changes in MAPK activity might be regulated by nicotine-

dependent alterations in the levels of fibroblast growth fac-

tors that would activate tyrosine kinase receptor-mediated

pathways (Blum et al., 1996). Similarly, Nicotine-depen-

dent changes in phospholipase C (Pandey, 1996) and PKA

signalling pathways might also be mediated by upstream

effects of nicotine on neurotrophic factors or neurotrans-

mitter release.

Previous studies have demonstrated that nicotine admin-

istration modulated the expression of a variety of genes,

and transcriptional activation (Shim et al., 2000). Exposure

to nAChR agonists elevates the expression of the im-

mediate early genes c-Fos and JunB in several brain areas

(Harlan and Garcia, 1998). The immediate early genes reg-

ulate the transcription of downstream targets that have

diverse roles in signalling, cell growth and cell main-

tenance. Recently, Gene-array technology indicates that

nicotine administration might affect numerous genes, in-

cluding those involved in intracellular signalling, transcrip-

tion, translation, CREB phosphorylation (Gueorguiev et al.,

2004), transmitter receptors, ion channel signalling path-

ways (Sun et al., 2004) and proteins associated with RNA

binding and the plasma membrane (Dunckley and Lukas,

2003). We used Rat Genome U34A Affymetrix GeneChip

arrays to find in the rat parietal cortex new genes respon-

sive to acute intermittent nicotine treatment and linked to

neuroprotection (Belluardo et al., 2005). In this study 25

modified genes were selected and among them five genes

encoding transcription factors were found up regulated

(Nr4a1, Cebpg, Egr-1, Egr-2, JunB). All these transcription

factors show special significance in view of their known

role in regulation of several genes, some of which are

involved in neurotrophic and=or neuroprotective actions.

Among the intracellular events regulated by nAChR acti-

vation, the CREB and ERK=MAPK signalling cascades

have attracted particular attention because their activities

are central to long-term plasticity in the nervous system

(Sweatt, 2001). In fact, activation of ERK=MAPK is re-

quired for the formation of contextual and spatial memories

in mammals (Sweatt, 2001) and nAChR mediate the Caþþ-

dependent activation of ERK=MAPK and sustained phos-

phorylation of CREB in several neuronal models (Chang

and Berg, 2001). Nicotine can alter gene expression in rat

hippocampal neurons, as reflected by activation of the tran-

scription factor CREB and appearance of the immediate

early gene product c-Fos. The process depends on both

CaM and MAP kinases and on calcium release from inter-

nal stores (Hu et al., 2002). These findings in addition to

having directly physiological relevance in learning and

memory, may also have pathological relevance in addiction

(Nestler, 2002). Nicotine dependence, which is mediated

by interaction with nAChR, is likely to involve the mod-

ification of signalling cascades that modulate synaptic plas-

ticity and gene expression, as proposed for other drugs of

abuse (Nestler, 2001; Dani et al., 2001). Although there are
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few reports on the contributions of signalling pathways in

models of nicotine addiction, several studies have focused

on the modulation of CREB following chronic treatment with

nicotine. CREB activation is required for nicotine reward

(Walters et al., 2005) and nicotine withdrawal significantly

reduced the concentrations of CREB and phosphorylated

CREB in rat cortex and amygdala (Pandey et al., 2001). Phos-

phorylated CREB appears also to be decreased in the nucleus

accumbens in mice following chronic consumption of nico-

tine in their drinking water (Brunzell et al., 2003). Overall,

these results support a role for ERK and CREB activity

in neural plasticity associated with nicotine dependence.

nAChRs activation is involved on neurotrophic

factor gene expression

The mechanisms by which nicotinic signalling may regu-

lates gene expression are poorly understood, and it is not

known how such mechanisms interact with other calcium

dependent pathways controlling transcription. Therefore, a

comprehensive survey of the gene-based molecular mech-

anisms that underlie nicotine effects is yet to be performed.

During the last years we have begun a study aimed to

identify genes encoding neurotrophic factors targeted by

nAChR activation and to elucidate the signalling pathways

through which nAChR regulate their expression.

Several neuronal populations within the adult CNS re-

quire the presence of neurotrophic factors to maintain neu-

ronal function (Sofroniew et al., 1990) and survival (Barde,

1989). Long-term changes in synaptic plasticity are asso-

ciated with neurotrophic factors (Pang et al., 2004) and the

reduction in neurotrophic factor expression may result in

the neuronal atrophy seen in normal ageing or the neuronal

loss observed in neurodegenerative disorders such as AD

and PD (Connor and Dragunow, 1998). Therefore a neuro-

trophic factor gene regulation by nAChR signalling has

been also taken into consideration as a possible mecha-

nism involved in neuroprotective=neurotrophic effects by

nAChR activation.

We have analysed the effects of acute intermittent nico-

tine treatment on FGF-2 expression and the results obtained

(Belluardo et al., 1998) showed that treatment with acute

intermittent nicotine (four i.p. injections at intervals of

30 min; 1 mg=kg), or with other nicotinic agonists such

as epibatidine and ABT-594, lead to a substantial upregula-

tion of FGF-2 mRNA and protein levels in the cerebral

cortex, the hippocampal formation, the striatum and the

ventral midbrain. An extension of this model to the study

of aged rats (24 months old) showed that the nicotine-

induced increases of FGF-2 mRNA levels is preserved

during aging (Belluardo et al., 1999a, 2000). In cultured

chromaffin cells from bovine adrenal medullae stimulation

of nAChR increases FGF-2 gene expression (Stachowiak

et al., 1994). This nAChR-mediated increase in expression

of FGF-2 gene was mediated by adenylate cyclase or pro-

tein kinase C and dependent on nuclear interaction of trans-

activating factors with a novel cis-acting element (Moffett

et al., 1998). In order to elucidate the signalling pathways

through which nAChR regulate FGF-2 expression we focus

on transcription factors identifying a potential role of

CREB. We could verify the presence in the promoter of

the FGF-2 gene a CRE-site which is able to bind CREB

(unpublished data). This involvement of CREB is also sup-

ported by the ability of acute nicotine treatment to induce

phosphorylation of CREB, without a change in CREB

levels, and to increase activation of ERK-1 (unpublished

data), which suggests an involvement of Ras=mitogen-

activated protein kinase (MAPK) pathways.

This regulation of FGF-2 gene in turn can exert neuro-

trophic functions involving neuronal survival, trophism and

plasticity. FGF-2 exerts its pleiotropic effect through spe-

cific high- and low-affinity receptors named FGFR-1-4

(Belluardo et al., 1997). FGF-2 has been implicated to be

the potent neurotrophic factor that promotes mitosis and

differentiation of neuroblasts (Mayer et al., 1993), and neu-

ronal survival and neurite extension (Ferrari et al., 1989)

and protects cultured central neurons from different insults

(Cheng and Mattson, 1991). An in vivo protective role for

FGF-2 has been indicated by studies showing that FGF-2

can support the survival of cholinergic basal forebrain neu-

rons following fimbria transaction (Anderson et al., 1988),

dopaminergic neurons following MPTP toxicity (Chadi

et al., 1993) and hippocampal neurons following cerebral

ischemia (Nakata et al., 1993) or hippocampal damage

after excytotoxic injury (Mattson et al., 1989). Endogenous

expression of FGF-2 blocked by neutralizing antibodies

following unilateral suction lesions of the motor cortex

retards recovery from injury in rats (Rowntree and Kolb,

1997). A loss of FGF-2 in the substantia nigra in PD has

been reported (Tooyama et al., 1993). Transgenic mice

lacking FGF-2 showed a reduction in the neuronal density

in the motor cortex, with layer V more greatly affected

(Ortega et al., 1998), suggesting that FGF-2 controls mi-

gration, differentiation and survival especially of cortical

neurons (Dono et al., 1998). Recently FGF-2 has been im-

plicated in neurogenesis in adult rat brain (Kuhn et al.,

1997). In this context we revealed in the neuroepithelium

of the subventricular zone of the lateral ventricle in the adult

rat brain the existence of a trophic mechanism mediated by

FGF-2 and its receptor and regulated by nAChR, activation
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of which by acute intermittent nicotine treatment enhances

neuronal precursor proliferation (Mudo’ et al., 2005) Other

pieces of evidence that nAChRs may play a direct role in the

regulation of neurogenesis come from the reported decline

of hippocampal cell proliferation in mice lacking the b2

subunit (Harrist et al., 2004), and a decrease of neurogenesis

in the adult hippocampal formation following chronic nico-

tine self-administration (Abrous et al., 2002). These findings

suggest the possibility of in vivo regulation of neurogenesis

in the adult brain by nicotine agonists and may help to

develop treatment stimulating neurogenesis with important

therapeutic implication.

Several reports have showed that other neurotrophic

factors may be under regulation of nAChR activation.

Intra-hippocampal administration of nicotine increases

transiently NGF in the CA1 and dentate gyrus of the hip-

pocampus and PC12 neuronal cells exposed to nicotine

increase NGF receptor expression (Jonnala et al., 2002).

Acute intermittent nicotine treatment increase levels of

BDNF in the rat striatum (Maggio et al., 1998), although

other reports in similar experimental models have indicated

as unchanged the BDNF levels (Belluardo et al., 1999a).

NGF itself enhances ACh release (Lapchak et al., 1994),

increases mRNA that encodes nAChR subunits (Henderson

et al., 1994) and promotes sprouting of ACh-containing

fibers in the septum (Heisenberg et al., 1994). Nevertheless,

in contrast to NGF, which is expressed only in restricted

regions of brain and does not give account for the large

effects of nicotine in several brain regions, FGF-2 is widely

distributed in the adult CNS both in neuronal and non

neuronal cells (Fuxe et al., 1996) and the potent and wide-

spread activation of FGF-2 in several brain regions follow-

ing nicotine treatment suggested that the cholinergic

activation of the FGF-2 gene via nAChR may be better

suited to participate in the plasticity changes and improved

neuronal survival in the brain found after nicotine agonist

treatment. Therefore, this FGF-2 nicotine activation sup-

ports the suggestion that the previously observed neuropro-

tective effects of nicotine and the potential beneficial

effects of nicotine agonists in the treatment of AD and

PD, may at least in part involve an activation of the neu-

ronal and glial FGF-2 signalling.

Conclusions

Although the large amount of data acquired in the last years

have added new important insight in our understanding the

molecular mechanisms that underlie nicotine effects, more

work is needed to establish the mechanisms involved in

any nicotinic receptor activation effects, from cognition-

enhancing effects to smoking behaviour, and to determine

more precisely the therapeutic objectives in potential nic-

otinic drug treatment of neurodegenerative diseases. In addi-

tion, it will be also important to determine how the diverse

nAChR subtypes are integrated in such actions and the

impact of their changes for pathology, and to define whether

neuroprotective=neurotrophic and cognitive enhancements

are mediated via acute activation, repetitive activation, or

more chronic inactivation of nAChR function or by some

combination of these actions. Such knowledge is important

for the development of targeted drug therapies acting on

nAChRs to delay the onset and progression of chronic age

related brain neurodegenerative pathologies, as seen in PD

and AD, leading to improvement of cognitive abilities.
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