research

A composition theorem for the Fourier Entropy-Influence conjecture

Abstract

The Fourier Entropy-Influence (FEI) conjecture of Friedgut and Kalai [FK96] seeks to relate two fundamental measures of Boolean function complexity: it states that H[f]CInf[f]H[f] \leq C Inf[f] holds for every Boolean function ff, where H[f]H[f] denotes the spectral entropy of ff, Inf[f]Inf[f] is its total influence, and C>0C > 0 is a universal constant. Despite significant interest in the conjecture it has only been shown to hold for a few classes of Boolean functions. Our main result is a composition theorem for the FEI conjecture. We show that if g1,...,gkg_1,...,g_k are functions over disjoint sets of variables satisfying the conjecture, and if the Fourier transform of FF taken with respect to the product distribution with biases E[g1],...,E[gk]E[g_1],...,E[g_k] satisfies the conjecture, then their composition F(g1(x1),...,gk(xk))F(g_1(x^1),...,g_k(x^k)) satisfies the conjecture. As an application we show that the FEI conjecture holds for read-once formulas over arbitrary gates of bounded arity, extending a recent result [OWZ11] which proved it for read-once decision trees. Our techniques also yield an explicit function with the largest known ratio of C6.278C \geq 6.278 between H[f]H[f] and Inf[f]Inf[f], improving on the previous lower bound of 4.615

    Similar works

    Full text

    thumbnail-image

    Available Versions