30 research outputs found

    Red star-forming and blue passive galaxies in clusters

    Full text link
    We explore the relation between colour and specific star formation rate (derived from optical spectra obtained by SDSS DR4) of over 6,000 galaxies (M_r<=-20.5) in and around low redshift (z<0.12) clusters. Even though most red galaxies have little or no ongoing star formation, and most blue galaxies are currently forming stars, there are significant populations of red star-forming (SF) and blue passive galaxies. This paper examines various properties of galaxies belonging to the latter two categories. These properties include morphological parameters, internal extinction, spectral features such as EW(H_delta) and the 4000 ang break, and metallicity. Our analysis shows that the blue passive galaxies have properties very similar to their SF counterparts, except that their large range in EW(H_delta) indicates recent truncation of star formation. The red SF galaxies fall into two broad categories, one of them being massive galaxies in cluster cores dominated by an old stellar population, but with evidence of current star formation in the core. For the remaining red SF galaxies it is evident from various metallicity measures and mean stellar ages, that their colours result from the predominance of a metal-rich stellar population. The implication of the properties of these SF galaxies on environmental studies, like that of the Butcher-Oemler effect, is discussed.Comment: 13 pages, 11 figures, accepted for publication in MNRA

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic

    The invasive and metastatic properties of hormone-independent but hormone-responsive variants of MCF-7 human breast cancer cells

    No full text
    We have previously isolated a series of MCF-7 human breast cancer cell variants which no longer require estrogen-supplementation for tumor growth in nude mice (Clarke et al. Proc Natl Acad Sci USA 86: 3649-3653, 1989). We now report that these hormone-independent and hormone-responsive variants (MIII, MCF7/LCC1) can invade locally from solid mammary fat pad tumors, and produce primary extensions on the surface of intraperitoneal structures including liver, pancreas, and diaphragm. Both lymphatic and hematogenous dissemination are observed, resulting in the establishing of pulmonary, bone, and renal metastases. The pattern of metastasis by MIII and MCF7/LCC1 cells closely resembles that frequently observed in breast cancer patients, and provides the first evidence of metastasis from MCF-7 cells growing in vivo without supplementary estrogen. The interexperimental incidence of metastases, and the time from cell inoculation to the appearance of metastatic disease are variable. The increased metastatic potential is not associated with an increase in either the level of laminin attachment, laminin receptor mRNA expression, or secreted type IV collagenolytic activity. We also did not detect a significant decrease in the steady-state mRNA levels of the metastasis inhibitor nm23 gene. However, when growing without estrogen in vitro, MCF7/LCC1 cells produce elevated levels of the estrogen-inducible cathepsin D enzyme
    corecore