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A B S T R A C T

The network organization of the human brain varies across individuals, changes with development and aging, and differs in disease. Discovering the major dimensions
along which this variability is displayed remains a central goal of both neuroscience and clinical medicine. Such efforts can be usefully framed within the context of the
brain’s modular network organization, which can be assessed quantitatively using computational techniques and extended for the purposes of multi-scale analysis,
dimensionality reduction, and biomarker generation. Although the concept of modularity and its utility in describing brain network organization is clear, principled
methods for comparing multi-scale communities across individuals and time are surprisingly lacking. Here, we present a method that uses multi-layer networks to
simultaneously discover the modular structure of many subjects at once. This method builds upon the well-known multi-layer modularity maximization technique, and
provides a viable and principled tool for studying differences in network communities across individuals and within individuals across time. We test this method on
two datasets and identify consistent patterns of inter-subject community variability, demonstrating that this variability – which would be undetectable using past
approaches – is associated with measures of cognitive performance. In general, the multi-layer, multi-subject framework proposed here represents an advance over
current approaches by straighforwardly mapping community assignments across subjects and holds promise for future investigations of inter-subject community
variation in clinical populations or as a result of task constraints.

1. Introduction

The human brain is a complex network of functionally interconnected
brain areas. Its architecture is strikingly non-random across a spectrum of
scales, ranging from the local scale of individual brain areas to the global
scale of the entire brain (Bullmore and Sporns, 2009; Betzel and Bassett,
2017). Situated between these two extremes is the meso-scale comprised
of sub-networks of topologically-related neural elements referred to as
“communities” or “modules” (Newman, 2012; Sporns and Betzel, 2016).

The brain’s community structure reflects regularities in its wiring dia-
gram, delineating groups of brain areas with shared functionality (Power
et al., 2011; Crossley et al., 2013). Critically, the brain’s community
structure spans multiple organizational scales, ranging from small com-
munities associated with functionally-specialized areas (the scale
measurable with MRI) to larger communities associated with more
general brain and cognitive functions (Betzel and Bassett, 2017).

Increasingly, the brain’s community structure has become the focus of
many investigations. By characterizing the variability of community
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structure across individuals or between clinical populations, recent
studies have sought a deeper understanding of neuropsychiatric disor-
ders (de Haan et al., 2012; Alexander-Bloch et al., 2010), development
and aging (Gu et al., 2015; Chan et al., 2014; Geerligs et al., 2014), and
diverse cognitive processes (Cole et al., 2014). Despite such broad in-
terest, there remains a paucity of principled methods for detecting and
comparing communities across individuals, and little consensus on which
approach maximizes advantages and minimizes disadvantages in the
context of neuroscientific inquiry. Virtually all extant community
detection methods rely on heuristics or make strong assumptions about
the number and size of communities, the consistency of communities
across individuals, and the nature of community identity as one maps
community structure from one subject to another. Although these as-
sumptions are made in order to facilitate further analyses, they can also
entail unwanted biases, thereby limiting inference.

Broadly, existing approaches for comparing community structure
across individuals exhibit both striking benefits and marked limitations.
Consider, as an example, the popular consensus approach, in which group-
level communities are imposed uniformly across all subjects.1 This
approach confers two notable advantages. First, the uniformity of com-
munities permits straightforward comparisons across individuals. Sec-
ond, because the communities are defined at the group level, they are
likely less susceptible to overfitting. Yet, a notable disadvantage of the
approach is that it precludes the possibility that communities vary across
individuals. While this assumption of conservation of community struc-
ture across individuals might be reasonable in certain analyses of neuro-
typical cohorts (although even this assumption may be too strong; see
Gordon et al., 2017a), it becomes increasingly problematic in clinical
populations where heterogeneity in pathology leads to patient-specific
disruptions in neuroanatomy and physiology.

Other approaches can overcome these specific issues, but are limited
in different ways. Data-driven community detection methods (Newman
and Girvan, 2004; Rosvall and Bergstrom, 2008) naturally accommodate
inter-individual community variability, but can overfit noisy network
data or result in situations where the mapping of communities across
individuals is ambiguous or even impossible. This latter issue can be
partially mitigated using template-matching techiques, such as those that
register detected communities to a common set of “canonical” commu-
nities (Gordon et al., 2017a). However, template-matching requires users
to specify a set of template communities, restricting investigation to a
single topological scale, and precluding hierarchical or multi-scale
community analysis (Betzel and Bassett, 2017; Bellec et al., 2010;
Schaefer et al., 2017). Moreover, template communities are oftentimes
established based on resting-state data whose relationship with
task-evoked community structure remains unclear (Cole et al., 2014).

Here, we propose a framework that flexibly accommodates multi-
scale community analysis while unambiguously mapping communities
from one subject to another. This framework builds on the well-known
technique of modularity maximization (Newman and Girvan, 2004),
which algorithmically decomposes networks into internally cohesive
communities and has recently been extended to be compatible with
multi-layer networks (Mucha et al., 2010). Past applications of
multi-layer modularity maximization have been largely restricted to
so-called time-varying networks, where each layer represents a snapshot
of a functional brain network localized to a particular window in time
(Bassett et al., 2011; Braun et al., 2015; Betzel et al., 2017). We present a
modification in which network layers represent connectivity data from
single subjects that are then made interdependent upon one another
through the addition of inter-layer couplings.

Here, we apply multi-layer, multi-subject modularity maximization to

functional connectivity data acquired as part of the Human Connectome
Project (HCP) (Van Essen et al., 2013) and the “Midnight Scan Club”
(MSC) (Gordon et al., 2017b). First, we show that this approach naturally
resolves ambiguities related to the mapping of communities across sub-
jects while simultaneously recapitulating the known topography of
resting-state and intrinsic connectivity networks. Next, we show that
community structure varies across subjects along “modes” that are
aligned with distinct organizational scales. Importantly, we show that the
association of cognitive performance measures with community vari-
ability is also scale-dependent, emphasizing the necessity of detecting
and analyzing community structure at multiple topological scales.
Finally, using MSC data, we replicate modes of inter-subject community
variability, but show that these modes differ from those associated with
intra-subject community variability, reaffirming recent findings that
variability of network organization within individuals is unique and may
be a powerful source of behavioral variation. Our findings showcase the
relevance of multi-scale community analysis and present methodology
that will reduce the ambiguity typically associated with mapping and
comparing communities across cohorts of individuals.

2. Results

The brain’s community structure reflects cohesive groups of func-
tionally related brain areas and spans multiple organizational scales.
Inter-subject variability in the community assignments of particular brain
areas has been associated with an individual’s disease, developmental,
and cognitive state (de Haan et al., 2012; Alexander-Bloch et al., 2010;
Gu et al., 2015; Chan et al., 2014; Geerligs et al., 2014). Current methods
for studying this variability suffer from performance issues and tradeoffs
that limit their utility. Here, we present an extension of the multi-layer
modularity maximization framework to accommodate multi-subject
datasets. This extension addresses many of the existing shortcomings
associated with current methods and seamlessly maps communities
across individuals and scales. In this section, we present the results of
applying the multi-layer, multi-subject modularity maximization frame-
work to functional connectivity data taken from the Human Connectome
Project (HCP) (Van Essen et al., 2013) and the “Midnight Scan Club”
(MSC) (Gordon et al., 2017b).

2.1. Detecting multi-layer, multi-subject community structure in the HCP
dataset

2.1.1. Basic analysis
Characterizing inter-subject variability in community structure can

provide valuable behavioral and clinical insight. Here, we examine pat-
terns of inter-subject community variability using a novel community
detection approach, which we apply to functional connectivity (FC) data
made available as part of the HCP dataset. Specifically, we analyze
“discovery” and “replication” cohorts each composed of T ¼ 80 subjects
(see Materials and Methods for preprocessing and cohort definition
details). Our proposed community detection approach is based on a
multi-layer variant (Mucha et al., 2010) of the well-known modularity
maximization framework (Newman and Girvan, 2004). In this approach,
we treat subject’s connectivity matrices as “layers” that are consolidated
in a unified multi-layer network, which serves as input to the community
detection algorithm. By applying modularity maximization to a single
multi-layer network object, we can detect communities in all layers (i.e.
subjects) simultaneously. Critically, this allows us to preserve community
identity across subjects. That is, two brain areas with the same commu-
nity label are treated as members of the same community, irrespective of
whether they correspond to different parts of the brain or appear in
unique subjects. This feature of multi-layer modularity maximization
allows us to trivially map community assignments from one subject to
another (Fig. 1).

Multi-layer modularity maximization depends upon two free param-
eters. The structural resolution parameter, γ, determines the size of

1 Group-level community labels can be obtained in a number of ways,
including data-driven methods such as community detection (Fortunato, 2010)
or system labels taken from canonical brain atlases (Yeo et al., 2011; Power
et al., 2011).

R.F. Betzel et al. NeuroImage 202 (2019) 115990

2



communities: smaller or larger values of γ result in correspondingly
larger or smaller communities. The inter-subject coupling parameter, ω,
determines the consistency of communities across layers, which in our
case represent subjects: smaller or larger values of ω emphasize com-
munity organization that is either unique to individual subjects or shared
by the entire cohort, respectively. Usually, applications using multi-layer
modularity maximization focus on a restricted subset of the fγ;ωg
parameter space, resulting in communities of characteristic size and
variability. Here, however, we develop a procedure to efficiently sample
a much larger region of fγ;ωg parameter space (see Materials and
Methods for details). In addition, this procedure estimates the bound-
aries of a subspace of fγ;ωg parameter space in which detected partitions
result in more than 1 community but fewer than N communities and in
which intersubject variability is non-extreme, meaning that there exists
at least one detected community that is shared across subjects. As a
result, the effective parameter spaced sampled by this procedure is non-
rectangular. See, for example, Fig. 2a.

Using this procedure, we generated 40000 samples of multi-subject
community structure, i.e. simultaneous estimates of each brain area’s
community assignment for each subject in the cohort. We first aimed to
benchmark the sampling procedure to confirm that it was capable of
detectingmeaningful community structure at different topological scales.
To this end, we examined subdivisions of parameter space where the
algorithm detected consensus partitions of the brain into 2, 5, 8, 11, 14,
and 17 communities (note: these numbers excluded singleton commu-
nities; Fig. 2a). For each community within a consensus partition, we
calculated its homogeneity with respect to 13 systems identified a priori
(Gordon et al., 2014). That is, a community comprised only of nodes
assigned to the Auditory system would have greater homogeneity than a
community comprised of nodes belonging to both the Auditory and

Salience systems. In Fig. 2b,c we show examples of detected communities.
Each community and its constituent nodes are colored as the weighted
sum of those nodes’ systems’ RGB triplets. As expected, the homogeneity
increased with the number of communities, and the detected commu-
nities better approximated the a priori defined systems (Gordon et al.,
2014).

We further characterized each sampled partition by measuring the
variability of brain area i’s community assignment across subjects as the
normalized entropy, hi. Intuitively, the value of hi is equal to 0 when i has
the same community assignment across individuals and is close to 1
when i’s assignment is less consistent. The N � 1 vector H ¼ fhig there-
fore encodes the pattern of community variability across the entire brain.
Accordingly, the average normalized entropy, H ¼ 1

N

PN
i¼1hi, serves as an

index of community variability across brain areas and individuals.
As expected, we found that the number of communities varied

monotonically with γ, the structural resolution parameter that shifts the
scale at which communities are detected (Fig. 3a). Smaller values of γ
generally resulted in larger communities while larger values of γ resulted
in smaller communities. We also found that the number of non-singleton
communities peaked at an intermediate value of γ � 1:1 (Fig. 3b), so that
the number of singleton communities increased with γ. In addition, we
observed that the mean normalized entropy varied considerably over the
full parameter space, and was greatest when both the inter-subject
coupling and structural resolution parameters, ω and γ, were small
(Fig. 3c).

Our community detection approach was designed to uncover com-
munities of different sizes and with varying inter-subject consistency.
However, some hypotheses may be easier to test by focusing on com-
munities with a more restricted set of characteristics and statistics, such
as a given number or size, or a given level of inter-subject variability. Our

Fig. 1. Multi-subject modularity, communities, and areal entropy. (a) Single-subject networks are represented as layers in a multi-layer network ensemble. Each
node is linked to itself across layers, illustrated here by interlayer connections. Note that community labels are indicated by node color. (b) Maximizing a multi-layer
modularity function returns a set of single-subject partitions. Importantly, community labels are preserved across layers; thus, if the label C1 appears in layers r and s,
we assume that the same community has recurred. This property allows us to make several useful measurements. We can calculate, for each node, the mode of its
community assignment across subjects to generate a consensus partition. We can also calculate the entropy of each node’s community assignments, which measures
the variability of communities across subjects. (c) The preservation of community labels also allows for a direct comparison of any one subject to any other subject.
Given partitions of subjects (or layers), denoted here with variables r and s, we can generate a bit vector whose values are f0; 1g depending on whether a given node
has the same or different community assignments. Doing so for all pairs of subjects generates a three-dimensional entropy tensor. When averaged over nodes, this tensor
generates a T � T matrix whose elements indicate, in total, the number of non-identical community assignments between pairs of subjects. When averaged over either
of its other dimensions, the result is an N � T matrix, whose elements indicate, in total, the similarity of a node’s community assignment within a given subject to that
of the remaining T � 1 subjects.
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approach naturally allows us to test these more focused hypotheses. As an
example, we could specify the set of all partitions resulting in six com-
munities (Fig. 3d; blue points) or the set of all partitions resulting in a
particular level of inter-subject variability (average normalized entropy
between 0.2 and 0.25) (Fig. 3d; red points). These partitions, or even
their intersection (Fig. 3d; yellow points), could be extracted for addi-
tional analyses, allowing for a more detailed and nuanced exploration of
community structure across subjects. As an example, we show detected

communities and community entropies in Fig. 3e,f corresponding to one
of the yellow points in Fig. 3d.

Collectively, these observations illustrate the mechanisms by which
modularity maximization can be used to generate estimates of multi-
subject community structure. Due to the two free parameters in the
optimization, the method has marked utility in detecting communities at
different organizational scales and with varying levels of consistency
across subjects, motivating further characterization of community

Fig. 2. Examples of detected community
structure. (a) The composition of detected
communities depends on the structural reso-
lution parameter, γ, and on the inter-subject
coupling parameter, ω. To generate a sam-
ple of possible partitions, we chose random
combinations of γ and ω and estimate
consensus community structure at those
points. We show, here, the locations in
parameter space where the resulting
consensus partitions contained 2, 5, 8, 11,
14, and 17 non-singleton communities per
subject. (b) We ordered all consensus parti-
tions in ascending order according to their
number of non-singleton communities. Each
community was colored by the weighted
average of its constituent brain areas’ cogni-
tive systems. For example, a community
comprised of exclusively DMN brain areas
would be assigned the DMN color (red, in
this case), whereas a system composed of an
equal number of DMN and visual brain areas
would have a purple color (the average of the
DMN’s red and the visual system’s blue). (c)
We also show example consensus partitions
as we vary the number of non-singleton
communities to 2, 5, 8, 11, 14, and 17.

Fig. 3. Multi-scale analysis strategy and schematic. Points are sampled in a two-dimensional constrained parameter space. The structural resolution parameter, γ,
determines the number and size of communities while the inter-layer coupling parameter, ω, tunes the consistency of communities across individuals. Here, we
summarize the statistics of communities detected using this sampling approach applied to the HCP dataset. (a) The number of communities per layer. (b) The number
of communities per layer after excluding singleton communities, which are communities composed of a single node. (c) The mean inter-subject entropy (variability).
(d) We can query particular subsets of partitions based on the number of communities, their average entropy, or other statistics, allowing us not only to probe different
organizational scales of the network, but also to accommodate varying degrees of heterogeneity across subjects. (e) An example of the detected partitions and their
consistency across T ¼ 80 subjects. (f) The variability (inter-subject entropy) of community assignments across individuals. Brighter (yellow) coloring indicates greater
levels of variability.
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structure across the γ, ω parameter space.

2.1.2. Principal component analysis and modes of inter-subject variation
The sampling procedure described in the previous section generated

40000 estimates of multi-scale, multi-subject community structure. For
each sample, we characterized the inter-subject variability of commu-
nities as a normalized entropy vector, H. An important practical question
is whether these patterns of variability are themselves variable, and if so,
whether that variability is structured in some meaningful way. If, for
example, community structure varies across subjects differently
depending upon the size and the number of detected communities, such
variability could have profound implications for any study of community-
level correlates of behavioral measures or clinical scores. To address this
possibility, we stored the full set of entropy vectors in a 333� 40000
matrix (each column corresponded to a single sample). We column-
normalized this matrix and then performed a principal component
analysis (PCA), generating 332 orthonormal vectors (principal compo-
nent scores) and their relative contribution to each of the 40000 entropy
estimates (principal component coefficients). That is, PC scores gener-
ated brain maps while PC coefficients are defined in the parameter space.
Intuitively, these can be thought of as “modes” by which communities
varied across subjects.

To test whether the PC scores generated here were meaningful, both
practically and statistically, we performed two confirmatory analyses.
First, we compared PCs calculated from discovery and replication data-
sets. In general, we found excellent correspondence across cohorts, with
strong one-to-one PC score correlations persisting over, at least, the first
twenty PCs (See Fig. S1a). Second, we compared the cumulative variance
explained by PCs in the discovery cohort with the cumulative variance
explained under a null model in which elements of the entropy matrix
were permuted randomly and independently within columns. We found
that the variance explained by the observed data was greater than that of
the null model for up to thirteen components (p � 0 based on 100 rep-
etitions See Figs. S1b and c). We also note that, in general, the first few
principal components explained a large fraction of the variance in com-
munity structure, suggesting that inter-subject variability, although tak-
ing place along multiple modes, is nonetheless relatively low-
dimensional. Collectively, these findings indicate that PC scores were
largely replicable across two non-overlapping groups of human partici-
pants and that the total variance explained by the first few PCs exceeded
that of a chance model.

Next, we characterized PC properties including their localization in
parameter space and cortical topography. First, we observed that the PCs
were highly localized, both in terms of their location in parameter space
as well as their cortical topography. Focusing on the first four compo-
nents collectively explaining � 78% variance, we found that PC co-
efficients were largely non-overlapping, tiling the parameter space and
varying as a function of the structural resolution parameter, γ
(Fig. 4a,d,g,j). This tiling phenomenon indicates that the “modes” by
which communities vary across subjects are scale-dependent, and vary
with the number and size of detected communities.

Next, we focused on the topographic distribution of PCs across the
cortical surface. We found that the first component, PC1, which corre-
sponded to relatively small values of γ where communities were large and
few in number, implicated areas that make up the default mode (DMN),
cingulo-parietal (CP), and salience systems (Fig. 4b,c). In particular, the
PC scores of regions within the DMN were low (high consistency across
individuals) while the PC scores of regions within the CP and SAL were
high (low consistency and high variability across individuals). Across the
first four principal components, different patterns of inter-subject vari-
ability were apparent. For example, in the case of PC3, we observed that
the community assignments of the retrosplenial-temporal system (RT)
were highly variable across individuals, while the dorsal attention
(DAN), fronto-parietal (FP), and somatomotor (SMhand; SMmouth)
systems were particularly stable (Fig. 4e and f). In the case of PC4, on the
other hand, variability in virtually all primary sensory systems tended to

be low, including auditory (AUD), somatomotor (SMhand; SMmouth),
and visual (VIS), while the variability in community assignments across
higher-order systems tended to be high (Fig. 4k,l). Details concerning
additional components can be found in Fig. S2. Notably, we find similar
patterns of variability using a different parcellation of the brain into N ¼
200 regions (Schaefer et al., 2017) (Fig. S3).

To better understand the origins of each PC, we performed additional
characterizations. Whereas the previous analysis described PCs in terms
of canonical systems from (Gordon et al., 2014), this additional analysis
contextualized PCs with respect to detected communities themselves.
Briefly, we focused only on the sub-region of parameter space for which
ω < 10�2, as virtually all inter-subject variation occurred as a function of
γ within this regime. We then partitioned this space into four segments
according to the “dominant component,” i.e. the PC with the greatest
z-scored average coefficient (Fig. 5a). Separately and within each regime,
we calculated the co-assignment probability for every pair of nodes and
derived consensus communities (Fig. 5b–i).

Each segment corresponded to a different PC. Our aim was to
describe, in greater detail, the typical community structure within each
segment and to understand the differences between segments. The first
segment, which corresponded to the smallest values of γ and PC1, was
composed of four communities; the first two were large and divided the
cerebral cortex broadly along the association-sensory dimension. The
first community was comprised of default (DMN) and fronto-parietal (FP)
networks, while the second community consisted of auditory (AUD),
motor (SMhand; SMmouth), and visual plus cingulo-opercular (CO) and
dorsal attention (DAN) systems (Fig. 5j). The smaller communities con-
sisted of cingulo-parietal (CP) and salience (SAL) networks, which were
also among the most variable across subjects (Fig. 5n), suggesting that
inter-subject variability at this coarse scale may be driven by differences
in aligning this small community within the two larger communities
across subjects.

The next three segments involved progressive refinement of these two
larger communities as they sub-divide into smaller clusters. In the second
segment, which corresponds to PC3, the sensory network fragments, with
the dorsal attention (DAN) and cingulo-opercular (CO) networksmerging
with the cingulo-parietal (CP) network, leaving the auditory (AUD),
somatomotor (SMhand; SMmouth), and visual (VIS) networks as a
community of their own (Fig. 5k). This sensory network is further refined
within the third segment, corresponding to PC2, in which the visual
network breaks away to form its own community. In the same segment,
the default (DMN) and fronto-parietal (FP) community, which had up to
this point remained largely intact since the first segment, divided into
separate communities (Fig. 5l). In the final segment, which corresponded
to PC4, the cingulo-opercular (CO) and dorsal attention (DAN) systems
sub-divide into distinct clusters (Fig. 5m). Each step in this progression
was also accompanied by changes in inter-subject community variability,
beginning with a stable default mode (DMN) (Fig. 5n) , and terminating
with stable sensory systems (Fig. 5q), suggesting that γ-dependent
misalignment of subjects to specific communities within each consensus
partition may drive distinct modes of variability.

Taken together, these findings suggest that inter-subject community
variability is not well-summarized by a single spatial pattern nor is it
localized to a particular cognitive or functional system. Rather, the
variability of community assignments across subjects depends on topo-
logical scale, as operationalized by the number and size of identified
communities. This point is important, as the number and size of detected
communities is usually determined by a user-defined resolution param-
eter (Reichardt and Bornholdt, 2006; Kheirkhahzadeh et al., 2016),
implying that the pattern of inter-subject variability in communities can
effectively be tuned by the user. This fact has important implications for
applications in which one wishes to understand the relation between
some aspect of network community structure and a clinical or cognitive
outcome. In particular, these findings suggest that patterns of
inter-subject variability can be modulated by a resolution parameter,
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which in principle could result in different patterns of
community-behavior correlations. We explore this possibility in greater
detail in the next section.

2.1.3. Brain-behavior correlations are scale dependent
One approach for relating brain network architecture to behavior

involves associating measures of community structure with a behavioral,
cognitive, or clinical measure of interest. In the previous section, we
demonstrated that community structure varies across subjects along
distinct scale-dependent modes, suggesting that brain-behavior associa-
tions could exhibit similar dependencies. This observation has important
practical implications; if brain-behavior correlations are multi-scale, then
any study focusing on a single organizational scale may fail to fully
characterize all relevant patterns of brain-behavior correlations.

In principle, the very fact that we observe scale-specific modes of
community variation indicates that any comparison of community
structure with behavioral or psychometric data would also exhibit scale
specificity. To show that this is indeed the case, we calculated a subject-
level analog of the normalized entropy measure, hir . This score measured
for each node, i, and for each subject, r, the fraction of all other subjects in
which i’s community assignment differed at a given point in parameter
space (see Materials and Methods). Intuitively, this measure assesses
the similarity of that node’s community assignment to its assignment in
other subjects. We calculated this measure for each subject and assessed
whether its variability across subjects was correlated with any of four
behavioral indices related to performance on social (SOC) or relational
(REL) cognition, language (LANG), or working memory (WM) tasks. Note
that the derivation of these indices has been described elsewhere (Ber-
tolero et al., 2015; Bertolero et al., 2017) and are also briefly summarized
in Materials and Methods.

In this section we aim to assess whether there exists evidence that
brain-behavior correlations are scale-dependent. That is, we aim to
address the question of whether our choice of community detection pa-
rameters γ and ω influences the brain-wide pattern of correlations be-
tween community structure and behavioral measures. Whereas the goal
of many neuroimaging analyses is to identify strong associations between
community structure and a particular behavioral variable of interest, we
aim simply to show that the correlation pattern varies as a function of γ
and ω. In this particular example, we are not necessarily seeking strong
correlations, nor are we emphasizing a particular behavioral variable
more than any other. In fact, three of the four measures that we study are
strongly correlated with one another, implying that if we were to observe
a scale-dependent effect in one of these measures, it is likely that we
would find a similar effect in the remaining two (see Fig. S8). Our aim is
simply to assess whether correlation patterns vary across the parameter
space.

To assess whether this was the case, we identified the points in
parameter space where PC coefficients were greatest for the first four PCs
(Fig. 6a). Separately for each PC, we computed the average correlation of
inter-individual community variability with behavioral indices for each
node. We illustrate this procedure more clearly in Fig. S4. The result of
this procedure was a series of sixteen vectors of length ½333 � 1�. The ith
element of a given vector represented the correlation of brain region i’s
inter-individual community variability with one of four behavioral
measures, assayed separately for each of four PCs. To assess the spatial
similarity of these brain-wide correlation patterns across PCs and
behavioral measures, we computed their spatial similarity as a 16� 16
correlation matrix (Fig. 6b). In general, we observed that the cortical
topography of these correlation patterns varied both across behavioral
indices and across the different PCs (Fig. 6b). To further illustrate this

Fig. 4. Modes of inter-subject community
variability. Principal component co-
efficients and scores for the first four com-
ponents. (a) PC coefficients for the first
component projected into fγ;ωg parameter
space. (b) PC scores for the same component
projected onto the cortical surface. The
community assignments of bright orange
brain areas are highly variable across sub-
jects at orange points in the parameter space.
Conversely, the community assignments of
blue brain areas are highly consistent across
subjects at those same points. (c) Areal
values of principal component scores aver-
aged across thirteen previously-defined
resting state functional systems (Gordon
et al., 2014). This panel helps shift focus
away from area-level community variability
and onto system level patterns of variation.
The remaining panels show corresponding
plots for PC2, PC3, and PC4. Note: we present
principal components in the order in which
they are expressed along the γ axis. This
choice results in the following ordering: PC1,
PC3, PC2, and PC4.
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observation, we show examples of brain-wide correlation patterns of
subject-level normalized entropy with the working memory (WM)
behavioral index (Fig. 6c–j; the results for other behavioral indices are
included in Supplementary Figs. S5 and S7). In general, the correlation
pattern varied across the parameter space, although most variation
occurred as a function of γ. Depending upon where in the {γ, ω}
parameter space the correlations were estimated, the correlation
magnitude was largest within different brain systems. For example,
examining correlation patterns at parameter values with strong loadings
onto PC1, we find evidence of system-level correlations within cingulo-
opercular (CO) and visual (VIS) systems, and anti-correlations in
default mode (DMN) and both dorsal/ventral attention (DAN/VAN)
systems (Fig. 6e). These correlation patterns are contrasted with those
observed at PC4, which are dominated by a strong positive correlation in
the somatomotor (SMhand) system. Together, these findings demon-
strate that not only does the brain’s modular architecture vary across
individuals in a scale specific manner, but that associations of this vari-
ability with behavior also vary in a scale-specific manner. This obser-
vation motivates the re-exploration of previously analyzed data, wherein
multi-scale associationsmight have been overlooked, and should spur the
collection and analysis of datasets designed to tease apart scale-specific
effects.

Finally, we note that, here, we deliberately resist detailed interpre-
tation of reported brain-behavior correlations. Further, we report
unthresholded correlation maps, retaining all correlations irrespective of

their statistical significance. In general, valid statistical testing is essen-
tial in any study attempting to link neuroimaging and behavioral data
(and we show the results of statistical tests in Fig. S6). However, we note
that in the present study, our aim was not to identify particular brain
areas whose modular structures were robustly and significantly associ-
ated with behavior, but to demonstrate the level of subjectivity that en-
ters into module detection and how it propagates to later analyses where
those modules are linked to behavior.

2.2. Detecting multi-layer, multi-subject community structure in the
Midnight Scan Club dataset

In the previous sections we usedmulti-layer modularity maximization
to detect and characterize patterns of inter-subject community variability
in multi-subject cohorts. While network organization certainly varies
across individuals, networks also vary within an individual over suc-
cessive scans separated by hours, days, or weeks (Gordon et al., 2017b;
Laumann et al., 2015; Poldrack et al., 2015; Kong et al., 2018).
Within-subject variability along different dimensions of network orga-
nization has proven useful for explaining variation in task state (Gratton
et al., 2018), level of attention (Shine et al., 2016a), and affective state
(Betzel et al., 2017).

Here, we repeated our previous analyses using the recently published
“Midnight Scan Club” (MSC) dataset in which ten participants underwent
repeated fMRI scans (10 times per subject). Using these data we aimed to

Fig. 5. Community structure changes
as a function of γ. We restricted our
analysis to the region of parameter space
with ω < 10�2. Within this space,
virtually all variation in community
structure occurs as a function of γ. We
then calculated the average PC coeffi-
cient for each of the four PCs as a func-
tion of γ and z-scored these values for
each PC independently. (a) This pro-
cedure enabled us to partition γ values
into four segments according to which
PC is dominant at that point in param-
eter space. (b–e) For each segment,
which corresponded to a different PC’s
dominance, we calculated the co-
assignment probability for all pairs of
nodes. (f–i) We also derived each seg-
ments’ consensus communities. (j–m)
We also assessed how brain systems
defined a priori (Gordon et al., 2014) are
distributed across detected commu-
nities. In these panels, each column
corresponds to one of the thirteen a
priori systems and each row corresponds
to a detected community. Columns were
normalized so that they sum to unity.
Within a column the values of cells
indicate the fraction of that system’s
regions that were assigned to each of the
detected communities. (n–q) We break
down the PC scores by detected
communities.
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compare patterns of inter- and intra-subject variability in the modular
organization of functional brain networks. To accomplish this aim, we
performed two rounds of multi-layer modularity maximization. For each
subject, we first generated an average connectivity matrix by aggregating
useable fMRI BOLD time series data from all resting scan sessions, and
then we calculated the inter-areal correlation matrix. This procedure
resulted in ten connectivity matrices (one per subject) that were treated
as the layers of a multi-layer network model. As part of our second
analysis, we focused on individual scan sessions from the six subjects
(MSC01, MSC02, MSC03, MSC05, MSC06, and MSC07) with at least 300
low-motion frames in each of their ten scan sessions. We then estimated
session-specific connectivity matrices for each subject and constructed
their respective multi-layer network model whose t-th layer represented
a subject’s connectivity pattern on the t-th scan session. As with the HCP
dataset, we used our multi-scale sampling procedure to sample values for
the structural and inter-layer coupling parameters and to detect com-
munities at those points in parameter space. As before, we calculated
normalized entropy measures to characterize patterns of variability
across layers (either subjects or scan sessions) and to decompose these
patterns into principal component scores and coefficients using SVD. By
comparing the PCs generated from the inter-subject analysis with those
generated by the intra-subject analysis, we could effectively identify
differences in patterns of inter-subject versus intra-subject community
variability.

To do so, we first assessed patterns of inter-subject variability by
examining the multi-layer network where each layer corresponded to the
session-averaged connectivity matrix for a different subject. Interest-
ingly, despite the fact that these data were independently acquired and
processed using a different pipeline, we found similar patterns of inter-
subject variability in the MSC dataset as in the HCP dataset. We focus,
in particular, on the first three PCs, which we denote MSCPC1 , MSCPC2 ,
and MSCPC3 . As with HCPPC1 , the brain areas in MSCPC1 associated with

the lowest inter-subject variability were concentrated in the DMN
(Fig. 7a). This similarity is further illustrated by computing the system-
averaged correlation of MSCPC1 scores and HCPPC1 scores; we observed
that the two variables exhibit a strong positive correlation (r ¼ 0:79,
p < 0:05; Fig. 7d). We find analogous relations by pairing MSCPC2 with
HCPPC2 (Fig. 7b,e), and by pairing MSCPC3 with HCPPC4 (Fig. 7c,f). Note
that we obtain similar results using Spearman rank correlations:
ρHCPPC1 ;MSCPC1

¼ 0:89, ρHCPPC2 ;MSCPC2
¼ 0:47, and ρHCPPC4 ;MSCPC3

¼ 0:86.

Also similar to the HCP dataset, we observed a clear dependence of the
PCs on the γ parameter. In Fig. S9 we show this dependence by projecting
the PCs back into the fγ;ωg parameter space.

Next, we performed a series of analyses to characterize intra-subject
variability in community structure. As noted earlier, this process entailed
constructing multi-layer networks for the six MSC subjects with greater
than 300 frames of low-motion data in each of their ten scan sessions. In
these multi-layer networks, layers corresponded to functional connec-
tivity estimated for single sessions. We aggregated these patterns of intra-
subject variability with the previously obtained patterns of inter-subject
variability and performed a joint PCA, the results of which we visualized
in two-dimensions in a low-dimensional space defined using the first two
principal components. If the patterns of community variability observed
within subjects were similar to those observed between subjects, then we
would expect these projected intra- and inter-subject variability patterns
to overlap in this low-dimensional space. However, we found that this
was not the case. In Fig. 7g and h, we show two-dimensional histograms
for patterns of inter-subject and intra-subject community variability,
respectively. Alhough similar, we find that when we perform an element-
wise subtraction of the distributions, there remain distinct portions of
parameter space occupied by one or the other modality of variability,
suggesting that inter- and intra-subject variability patterns are distinct
from one another. One possible explanation is that the day-to-day vari-
ability in subject-level communities is driven by personalized factors

Fig. 6. Correlation of community
structure with measures of task per-
formance. (a) For each PC, we studied
the sub-sample of partitions corre-
sponding to the 1% largest PC co-
efficients. (b) For each subsample, we
calculated the Pearson correlation coef-
ficient between subjects’ community
entropy scores and four measures of in-
scanner performance on cognitively
demanding tasks: working memory
(WM), relational (REL), social (SOC),
and language (LANG), in the HCP ter-
minology. In panels (c,e,g,i), we show
the brain-behavior z-scored correlation
coefficients for the first four PCs associ-
ated with performance on the WM task,
plotted on the cortical surface (permu-
tation test in which behavioral measures
were randomly and uniformly shuffled).
In panels (d,f,h,j), we show the mean
brain-behavior correlation coefficients
for the first four PCs, z-scored within
each cognitive system. Larger z-scores
indicate that the average correlation
over all brain areas in a given system is
greater than expected in random sys-
tems of the same size. Here, as an
example, we show correlations for the
WM task. Results for other tasks are
included in the Supplementary Mate-
rials. Note that the dotted lines in panels
(d), (f), (h), and (j) correspond to z ¼
�2.
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such as sleep duration, sleep quality, affective state, or level of arousal
(Betzel et al., 2017; Shine et al., 2016a), whereas inter-subject commu-
nity variability may be driven by temporally stable anatomical factors.

These findings consider the modes of inter-subject variability re-
ported in the HCP data and reproduce them in an independently acquired
dataset. Our results also build upon recent work characterizing intra-
subject variability in functional network organization (Gratton et al.,
2018; Gordon et al., 2017b), confirming that the patterns by which
community structure varies within individuals is largely distinct from
inter-subject patterns of variation. These observations suggest that the
detected modes are not easily dismissed as artifacts of a particular
acquisition strategy, scanner, or processing pipeline. Rather, these results
suggest that communities reconfigure across individuals and datasets in a
robust, general, and multi-scale manner (Betzel and Bassett, 2017),
motivating the exploration of techniques designed to detect communities
at different organizational levels.

3. Discussion

In this paper we adapted the popular multi-layer modularity maxi-
mization framework so that each layer represented the functional con-
nectivity network of a single subject or scan session. This conceptual
alteration facilitated unambiguous comparisons of community structure
across subjects and time, permitted the straightforward calculation of
consensus communities, and helped us to localize patterns of inter- and
intra-subject variability. These advances made it possible for us to detect
robust “modes” or (brain patterns) of inter-subject variation in

community structure, which we showed were distinct from intra-subject
variability. In summary, our findings offer new insight into the multi-
scale community structure of functional brain networks and how that
structure varies across different putative cognitive systems. The meth-
odological advances presented here enable future studies to investigate
variation in community structure across subjects from different clinical
cohorts, behavioral states, and (as has already been investigated) time
points.

3.1. Advantages over current methodology

Here we propose an extension of multi-layer modularity maximiza-
tion for studying how community structure varies across subjects. Our
approach, which has been suggested before but never realized (Khamb-
hati et al., 2017; Vaiana and Muldoon, 2018a), offers distinct advantages
over existing methods. First, because community assignments are
determined simultaneously for all subjects and because community la-
bels are preserved across layers, we avoid the use of heuristics for map-
ping community assignments from one subject to another. This approach
facilitates straightforward comparisons of community structure across
individuals and allows us to easily obtain consensus communities (Lan-
cichinetti and Fortunato, 2012). Whereas recent work has focused on
generating subject-specific community or system assignments by
matching to predefined systems (Gordon et al., 2017a; Kong et al., 2018)
using statistical models based on shared covariance structure (Chandra
et al., 2018), our approach is grounded in methodology from network
science, beginning with the representation of FC as a fully-weighted and

Fig. 7. Summary and analysis of the
Midnight Scan Club dataset. In panels
(a)–(c), we show surface maps depicting
the first three components generated
from PCA analysis of the Midnight Scan
Club (MSC) dataset. These principal
components correspond, broadly, to the
components detected in the HCP dataset.
We compare the two datasets by aver-
aging principal components within brain
systems and computing system-average
correlations. The results are shown in
panels (d)–(f). The size of dots is pro-
portional to the number of nodes
assigned to each system. We perform a
similar analysis of intra-subject vari-
ability, in which we characterize varia-
tion in community structure within
subjects across scan sessions. To visu-
alize these results, we project within-
and between-subject community entropy
scores into the two-dimensional space
defined using the first two dimensions of
a joint PCA. In panel g, we show the
distribution of inter-subject patterns.
Panel h shows the same for intra-subject
patterns, and panel i shows the differ-
ence between the two.
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signed graph, and ending with the application of modularity maximiza-
tion to detect community structure (Newman and Girvan, 2004; New-
man, 2012; Fortunato, 2010).

Our use of the multi-layer modularity maximization approach for
community detection is not without precedent. Past studies have lever-
aged this same technique to uncover the evolving community structure in
time-varying FC (Bassett et al., 2011; Braun et al., 2015; Betzel et al.,
2017; Shine et al., 2016b; Gerraty et al., 2018; Vatansever et al., 2015;
Bola and Sabel, 2015), across tasks (Cole et al., 2014), and motor be-
haviors (Wymbs et al., 2012). In recasting single-subject FC matrices as
individual layers and moving the problem of community detection from
the level of single subjects to that of the cohort, we highlight the flexi-
bility and generalizability of the multi-layer modularity maximization
framework. It is not difficult to imagine further extensions of these
methods in which network layers correspond to different connection
modalities, such as structural connectivity or gene coexpression, for
example (Battiston et al., 2017; Bentley et al., 2016).

3.2. Multi-scale community structure and modes of variability

In this study we characterized how communities varied across in-
dividuals and time. We found that patterns of variability could be
decomposed into a series of “modes,” stereotypical and orthogonal pat-
terns of community variability whose expression was correlated with
different numbers and sizes of communities. This observation is in line
with the hypothesis that brain networks, both structural and functional,
exhibit community structure that spans multiple organizational scales,
ranging from coarse divisions into a few large communities (e.g. the di-
vision of the resting brain into task-positive and task-negative networks
(Golland et al., 2008)) to much finer divisions reflecting increased
functional specialization (Rosenthal et al., 2016). The multi-scale and
hierarchical structure of communities has a strong theoretical basis: this
type of organization facilitates separation of dynamic timescales (Pan
and Sinha, 2009), efficient spatial embedding (Bassett et al., 2010),
evolutionary adaptability (Kirschner and Gerhart, 1998), and robustness
to perturbations (Simon, 1991). There is also considerable empirical
evidence demonstrating that brain networks exhibit multiscale modular
structure (Meunier et al., 2010; Doucet et al., 2011; Ferrarini et al., 2009)
that reconfigures adaptively to support goal-directed cognitive processes
(Bola and Sabel, 2015) and during passive viewing of naturalistic movies
(Kim et al., 2017).

Here, we interpret these modes of variation as evidence of multi-scale
topology. An alternative interpretation is that variation in community
size and number reflect distinct dynamic regimes. Due to the mechanics
of modularity maximization (Newman and Girvan, 2004) and the use of
Pearson correlation coefficeints to define connection weights (Smith
et al., 2011), the smallest communities reflect collections of nodes that
are extremely strongly connected to one another across time (by defini-
tion). Large communities, on the other hand, are more diffuse and
composed of areas whose activity is correlated with one another, albeit
more weakly (Traag et al., 2011). Whereas the strongest correlations are
also least variable across time (Shen et al., 2015; Betzel et al., 2016;
Thompson and Fransson, 2015), weaker time-averaged correlations can
occur for multiple reasons, e.g. transient periods of strong coupling
interspersed with periods of decoupling. Thus, the variation in commu-
nity structure across topological scales is inextricably linked to variation
in network structure across time (Lurie et al., 2018). Future work could
be fruitfully directed towards an investigation into the relationship of
time and topology in greater detail.

3.3. Implications for analysis of inter-subject community variability

The observation that communities vary across subjects along distinct
modes has important implications for future work. Generally, these types
of studies calculate community structure at a single scale. That is, single-
layer modularity maximization is performed with the structural

resolution parameter set uniformly across subjects to a particular value
(although this is not always the case (Akiki and Abdallah, 2018; Akiki
et al., 2018)). Then, variability in the detected communities is associated
with some clinical score or behavioral measure. While this approach has
oftentimes proven fruitful, our findings suggest that it is also limiting.
Studies that focus exclusively on inter-subject variability at a single scale
will fail to characterize variability in communities at other scales. Here,
we demonstrated that patterns of brain-behavior correlations depend on
the scale at which communities are detected. It follows, then, that any
single-scale analysis of the association between community structure and
clinical or behavioral measures will result in only one correlation pattern,
failing to fully characterize brain-behavior associations at other scales.

Notably, our observations do not detract from these past efforts.
Rather, they suggest the possibility that past studies have only scratched
the surface in terms of characterizing inter-subject variability in com-
munity structure, and that there likely exists a wealth of unexplored
brain-behavior associations. This notion dovetails nicely with the mis-
sions of recent data-collection and data-sharing projects in the MRI
community that have made large-scale datasets and statistical maps
freely available to any researcher (Poldrack et al., 2013; Gorgolewski
et al., 2015; Satterthwaite et al., 2014). These datasets, some of which
have already been studied through the lens of community structure
(Baum et al., 2017; Betzel et al., 2017), in principle could be reanalyzed
in future studies with an increased focus on characterizing multi-scale
patterns of variability.

Our findings suggest that it is important to consider a range of to-
pological scales in any analysis of brain network community structure.
From a practical standpoint, however, this can prove challenging.
Repeatedly optimizingmodularity while varying γ and ω incurs a massive
computational burden, especially as the number of nodes in a network or
subjects in a cohort increases (Fortunato, 2010). In turn, this computa-
tional burden limits the utility of our approach. Fortunately, under some
contexts this burden can be lessened. Our findings suggest that much of
the inter-subject variation in community structure occurs as a function of
γ and that while ω may change the baseline magnitude of intersubject
variability, the overall pattern, i.e. the brain regions that vary in com-
munity assignments across subjects, tends to stay the same. This obser-
vation suggests that it may be more important to explore variation as a
function of γ rather than variation as a function of ω. Additionally, new
software packages such as CHAMP (https://github.com/wweir827/ch
amp) (Weir et al., 2017) show promise in reducing the size of the
parameter space to be explored. In summary, although the approach used
here has some computational limits, these limits can be partially cir-
cumvented, making multi-subject modularity maximization a viable tool
for studying inter-subject variation in community structure even in large
cohorts.

Here we use the multi-scale, multi-subject modularity maximization
approach to detect different patterns of community variability and to
show that those patterns, which are sensitive to community detection
parameters, correspond to different associations of community structure
with measures of behavior. In doing so we focused on associations at the
level of brain regions. In general, however, there are other possible
strategies for linking community structure to behavioral measures.
Another possible approach involves assessing the relationship between
inter-subject similarity matrices – one that measures the similarity of
subjects’ partitions to one another and one that measures the similarity of
their behavioral profiles. We could then ask whether the elements of
these matrices are correlated with one another, which would suggest that
the geometry of behavior is represented in subjects’ community struc-
tures (analogous, in someways, to the popular representational similarity
analysis framework (Kriegeskorte et al., 2008)). We note that the
behavioral similarity matrix could be replaced by matrices that encode
inter-subject similarity along other dimensions, including genes (Betzel
et al., 2019; Hawrylycz et al., 2012), structural connectivity (Hagmann
et al., 2008), white-matter microstructure (Yeatman et al., 2012), or
morphometric data (He et al., 2007). We also note that here we did not
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pursue this alternative strategy, but that it could be explored in future
work.

Finally, while our findings show that brain-behavior correlations are
sensitive to user-defined parameters, we intentionally do not interpret
the correlation patterns in detail. Rather, our aimwas simply to show that
these patterns can be manipulated to some extent by a user’s decision to
select particular combinations of community detection parameters. In
future work, more focused analysis should investigate the behavioral and
cognitive consequences of the findings reported here.

3.4. Limitations

Here, we extended the modularity maximization approach to be
compatible with multi-subject cohorts. Although this approach has clear
advantages, it also suffers from some limitations. First, as with single-
layer and other multi-layer formulations of modularity maximization,
the composition of detected communities depends on the free parame-
ters, γ and ω. In our application we aimed to explore the space defined by
these parameters. In fact, our findings suggest that this exploration may
be necessary, as brain-behavior correlations vary across parameter space.
Nonetheless, it may be advantageous in some applications to focus on a
particular region of parameter space. In general, choosing the “correct”
values of γ and ω is difficult, although many heuristics exist. These
include, for example, selecting the parameter values that result in
consistently similar partitions (Betzel et al., 2017) or identifying parti-
tions that maximally differ from an appropriate null model (Jeub et al.,
2018; Aldecoa and Marín, 2011). Finally, it is also worth noting that the
modularity maximization framework could be extended much further
than we did here. For instance, we fixed the values of γ and ω to be
uniform across all layers. It would be interesting and potentially infor-
mative to devise heuristics for determining the values of these parame-
ters in a meaningful and subject-specific way, allowing for finer control
over the character of detected communities.

Although modularity maximization facilitates our multi-subject
analysis, it also serves to limit the scope of our findings. Modularity
maximization implicitly assumes that a network’s community structure is
uniformly assortative. This means that the communities detected using
this method will be internally dense and externally sparse. While assor-
tative communities are well-suited for segregated information process-
ing, networks can exhibit more general classes of community structure,
including core-periphery and disassortative organization (Newman,
2012; Peel et al., 2018). These communities emphasize integrative in-
formation processing and cross-community interactions. Modularity
maximization, however, will fail to detect communities of this type.
Other methods, such as stochastic blockmodels (Karrer and Newman,
2011), can detect more general classes of communities. Future work
could build on recent applications of blockmodeling to brain network
data (Betzel et al., 2018; Betzel et al., 2018) while taking advantage of
multi-layer formulations to study multi-subject cohorts (Stanley et al.,
2016; Paul and Chen, 2016; Han et al., 2015). In addition, the modularity
maximization framework is subject to so-called resolution limits (Vaiana
and Muldoon, 2018b; Fortunato and Barthelemy, 2007) that, for a given
set of parameters, fγ;ωg, render it incapable of resolving communities
below some characteristic size. This limitation, in addition to the afore-
mentioned assumptions about partition composition, motivates the
continued exploration of alternative community detection methods.

Another potential limitation concerns the procedure for associating
variability at the community level with cognitive measures. Here, we
assessed that relationship using community variability measures derived
from many distinct partitions. Although this approach enabled us to
uncover brainwide patterns of correlations, it comes with the statistical
cost of multiple comparisons. A potential strategy for mitigating this issue
is to generate for each mode of variability (PC) a single representative
consensus partition (Lancichinetti and Fortunato, 2012). Rather than
computing and averaging multiple correlations, generating a consensus
partition would allow for the computation of one correlation pattern.

Although appealing, the consensus partition strategy has some down-
sides. In particular, the effectiveness of consensus partitions is limited
when they are not representative of the partitions they are intended to
represent. In the present study, the principal components identify parti-
tions with correlated patterns of intersubject variability but whose
baseline or mean intersubject variability may vary considerably. This
feature of the data exists because each principal component is restricted
to a narrow range of γ values, ensuring similar numbers of communities
within a given layer, but spans orders of magnitude in terms of ω. Future
work could focus on more principled statistical frameworks for dealing
with the large numbers of partitions generated by the multi-layer
modularity maximization framework.

An additional limitation concerns the manner in which brain network
nodes (parcels) are defined. Here, we imposed an identical parcellation
across all individuals, which implicitly assumes that brain areas’ loca-
tions are consistent across subjects. Recent studies, however, have shown
that areas vary in their locations across individuals (Bijsterbosch et al.,
2018). Consequently, it remains a possibility that inter-subject commu-
nity variability could be explained by systematic differences in the lo-
cations of brain areas. Here, we use group-defined parcels as this
approach remains the field standard. Future work should investigate
these issues more directly, for example, by exploring the effect of
subject-specific parcellations on inter-subject community variability
(Gordon et al., 2017b; Laumann et al., 2015; Kong et al., 2018; Gratton
et al., 2018).

Another limitation is related the use of the a priori system labels
(Gordon et al., 2014). Among these systems is a group labeled “None,”
which collects brain regions with no clear modular assignment, charac-
terized by poor signal-to-noise ratio, and located in areas of the brain
susceptible to artifact and dropout. Here, because we use a data-driven
approach to assign nodes to modules and because we tried to avoid
manual interventions, nodes with the “None” label were always grouped
into communities, although usually not collectively. Rather, the “None”
system was broken up and incorporated into distinct communities across
the brain. Here, we did not assess the effect of excluding “None” nodes
from our analysis. Future work could investigate their impact in greater
detail.

A final consideration concerns the scalability of the multi-layer
approach. Here, we studied cohorts that included (at most) 80 subjects
and connectivity data from 333 brain areas. The flattened modularity
tensor associated with these data had dimensions 26640� 26640 (333�
80). The Louvain algorithm used to maximize Qðγ;ωÞ was quite fast,
which enabled us to sample community structure from many points in
the γ;ω parameter space. However, for much larger matrices, corre-
sponding to greater numbers of subjects or finer parcellations, it becomes
more difficult to efficiently sample such large numbers of parameters. In
such cases, one may wish to consider principled methods for constructing
sparse representations of the full data matrices, or for efficiently clus-
tering large networks (Clauset et al., 2004; Capocci et al., 2005).

4. Conclusion

Here, we studied inter-subject variability in community structure by
extending the well-known modularity maximization framework to mul-
tiple subjects. We find, surprisingly, that communities vary across in-
dividuals along distinct “modes” and that these modes correspond to
different organizational scales, ranging from a few large communities to
many small communities. Interestingly, when we compare the variation
of community structure with different measures of cognitive perfor-
mance, we find that the correlation patterns are scale-dependent. This
observation demonstrates that analyses which calculate brain-behavior
correlations based on community structure detected at a single organi-
zational scale may fail to uncover interesting and behaviorally relevant
associations. Finally, using a second dataset, we reproduce our previously
observed modes of inter-subject community variability, and also show
that communities vary within subjects but along different dimensions.
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5. Materials and methods

5.1. Datasets

We analyzed functional connectivity data from two independent
datasets processed using different pipelines.

5.1.1. Human Connectome Project
We analyzed data from the Human Connectome Project (HCP), a

multi-site consortia that collected extensive MRI, behavioral, and de-
mographic data from a large cohort of subjects (>1000) (Van Essen et al.,
2013). As part of the HCP protocol, subjects underwent two separate
resting state scans. All functional connectivity data analyzed in this
report came from these scans and was part of the HCP S1200 release (Van
Essen et al., 2013). Only subjects that completed both resting-state scans
were considered. We utilized a cortical parcellation that maximizes the
similarity of functional connectivity within each parcel (N ¼ 333 parcels)
(Gordon et al., 2014).

We preprocessed resting-state data using the following pipeline. Our
analyses were based on the ICA-FIX resting-state data provided by the
Human Connectome Project, which used ICA to remove nuisance and
motion signals (Glasser et al., 2013). We removed the mean global signal
and bandpass filtered the time series from 0.009 to 0.08 Hz. To reduce
artifacts related to in-scanner head motion, frames with greater than
0.2 mm of frame-wise displacement or a derivative root mean square
above 75 were removed (Power et al., 2012). Subjects whose scans
resulted in fewer than 50% of the total frames left were not considered
further; a total of 827 subjects met this criteria for all resting-state scans.

For all scans, the MSMAII registration was used, and the mean time
series of vertices on the cortical surface (fsL32K) in each of the N ¼ 333
parcels was calculated (Gordon et al., 2014). We used this particular
parcellation as it has high functional connectivity homogeneity within
each parcel and the number of nodes is consistent with other analyses.
The functional connectivity matrix for each subject was calculated as the
pairwise Pearson correlation coefficient (subsequently Fisher z-trans-
formed) between times series of all nodes. Both left-right and right-left
phase encoding directions scans were used, and the mean functional
connectivity matrix across the four resting-state scans was calculated.

In-scanner head motion is known to induce spurious correlations in
resting state FC (Power et al., 2012). To reduce the impact of headmotion
on detected communities, we focused our analyses onto smaller, more
exclusive subsets of subjects. Specifically, we divided the full HCP dataset
into smaller discovery and validation datasets comprising 80 subjects
each. We chose this number of subjects to ensure that dataset size was
comparable to what is reported in the typical fMRI study. The test cohort
included the 1st, 3rd, 5th … and 159th subjects, in ascending order of
mean framewise displacement. The validation cohort was defined as the
2nd, 4th, 6th, …160th subjects, ordered according to the same criterion.
Note, because this procedure generated datasets with low head motion, it
is possible that related subjects appear together in the same cohort.

We also analyzed HCP behavioral data. For the Working Memory
task, our measure of task performance was given by the mean accuracy
across all conditions (WM_Task_Acc). For the Relational task, our mea-
sure of task performance was given by the mean accuracy across all
conditions (Relational_Task_Acc). For the Language task, our measure of
task performance was given by the highest level reached in either the
Language or Math conditions (maximum of Language_Task_Stor-
y_Avg_Difficulty_Level and Language_Task_Math_Avg_Difficulty_Level).
For the Social task, our measure of task performance was given by the
mean across the random and theory of mind conditions (mean of
Social_Task_TOM_Perc_TOM and Social_Task_Random_Perc_Random).

5.1.2. Midnight Scan Club
Data were collected from ten healthy, right-handed, young adult

subjects (5 females; age: 24–34). One of the subjects is an author (NUFD),
and the remaining subjects were recruited from the Washington

University community. Informed consent was obtained from all partici-
pants. The study was approved by the Washington University School of
Medicine Human Studies Committee and Institutional Review Board.
This dataset was previously reported in (Gordon et al., 2017a; Gratton
et al., 2018) and is publicly available at https://openneuro.org/datasets
/ds000224/versions/00002. Imaging for each subject was performed on
a Siemens TRIO 3T MRI scanner over the course of 12 sessions conducted
on separate days, each beginning at midnight. In total, four T1-weighted
images, four T2-weighted images, and 5 h of resting-state BOLD fMRI
were collected from each subject. For further details regarding data
acquisition parameters, see (Gordon et al., 2017a).

MRI data were preprocessed and sampled to the surface as described
in (Gordon et al., 2017a) and with shared code available at https://gith
ub.com/MidnightScanClub. The steps are summarized briefly below. The
high-resolution structural MRI data were averaged together, and the
average T1 images were used to generate hand-edited cortical surfaces
using Freesurfer (Dale et al., 1999). The resulting surfaces were regis-
tered into fs_LR_32k surface space as described in (Glasser et al., 2013).
Separately, an average native T1-to-Talaraich (Talairach and Tournoux,
1988) volumetric atlas transform was calculated. That transform was
applied to the fs_LR_32k surfaces to put them into Talaraich volumetric
space.

All fMRI data first underwent pre-processing (in the volume) to cor-
rect for artifacts and align data, including slice-timing correction, frame-
to-frame alignment to correct for motion, and intensity normalization to
mode 1000. Functional data were then registered to the T2 image, which
was registered to the high-resolution T1 anatomical image, which in turn
had been previously registered to the template space. Finally, functional
data underwent distortion correction (Gordon et al., 2017a). Registra-
tion, atlas transformation, resampling to 3mm isotropic resolution, and
distortion correction were all combined and applied in a single trans-
formation step (Smith et al., 2004). Subsequent steps were all completed
on the atlas transformed and resampled data.

Processing steps specific to functional connectivity were undertaken
to reduce the influence of artifacts on functional network data. These
steps are described in detail in (Power et al., 2014), and include (1)
demeaning and de-trending of the data, (2) nuisance regression of signals
fromwhite matter, cerebrospinal fluid, and the global signal, (3) removal
of high motion frames (with framewise displacement (FD)> 0:2 mm; see
(Gordon et al., 2017a)) and their interpolation using power-spectral
matched data, and (4) bandpass filtering (0.009 Hz–0.08 Hz). After this
volumetric pre-processing, functional data were sampled to the cortical
surface and combined with volumetric subcortical and cerebellar data
into the CIFTI data format using the Connectome Workbench (Marcus
et al., 2011). Finally, data were smoothed (Gaussian kernel, σ ¼ 2:55
mm) with 2-D geodesic smoothing on the surface and 3-D Euclidean
smoothing for subcortical volumetric data.

5.2. Modularity maximization

A critical step in any modularity analysis is to determine the com-
munity assignments of brain areas. Because real-world networks are too
complex to identify communities from visual inspection alone, their
nodes’ community assignments must be determined algorithmically
through a process known as community detection (Fortunato, 2010).
There are many different ways to define a network’s communities and
equally many algorithms for detecting them. Of these, modularity
maximization is likely the most popular (Newman and Girvan, 2004).

Intuitively, modularity maximization operates according to a simple
principle: communities correspond to groups of nodes that are more
strongly connected to one another than would be expected by chance
alone. The detection of these communities, in practice, is accomplished
by optimizing a modularity objective function:

Q ¼
X

ij

Bijδ
�
σiσj

�
: (1)
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In this expression, Bij ¼ Wij � Pij, where Wij and Pij are the observed
and expected weight of the connection between nodes i and j. The full
matrix, B ¼ fBijg, is referred to as the modularity matrix whose elements
encode the difference between observed and expected connection
weights. The variable σi 2 f1;…;Kg indicates to which of the K com-
munities node i is assigned. The Kronecker delta function, δðx;yÞ, takes on
a value of 1 when x ¼ y and 0 when x 6¼ y. Finally, Q is the modularity
quality function to be maximized. Effectively, Q is the sum over within-
community elements of the modularity matrix. In general, larger values
of Q are taken to indicate higher quality partitions and correspond to
internally dense and externally sparse communities.

The modularity function suffers from a “resolution limit,” meaning
that communities below a characteristic scale are undetectable (For-
tunato and Barthelemy, 2007). To circumvent this issue, some applica-
tions introduce a tunable structural resolution parameter, γ, which scales
the relative importance of the null connectivity model:

QðγÞ ¼
X

ij

�
Wij � γPij

�
δ
�
σiσj

�
: (2)

The effect of this parameterization is that optimizing QðγÞ for large
values of γ results in the detection of many small communities, whereas
optimizing QðγÞ for small values of γ results in a few large communities.

The modularity function has been expanded further so that it is
compatible with multi-layer networks composed of distinct layers cor-
responding to different connection modalities (e.g., structural and func-
tional connectivity) or estimates of network structure at different time
points (Mucha et al., 2010). In the multi-layer analog of the modularity
function, nodes are linked to themselves across layers by an inter-layer
coupling parameter, ω. This parameter determines the similarity of
communities detected across layers, with larger values of ω resulting in
increased homogeneity of communities across layers. The multi-layer
expression for modularity is given by:

Qðγ;ωÞ ¼
X

ijsr

��
Wijs � γPijs

�
δsr þ ωδðijÞ�δ�σisσjr

�
: (3)

The multi-layer, multi-scale modularity, Qðγ;ωÞ, operates on the same
principle as the single-layer version. Communities are defined by placing
stronger-than-expected connections within communities. The main dif-
ference between the single- and multi-layer modularity functions is that,
by adding interlayer connections of weight ω, it can be advantageous
from the perspective of optimizing Qðγ;ωÞ to assign nodes in different
layers to the same community.

5.3. Multi-layer, multi-subject modularity

Our approach builds directly upon the canonical multi-layer modu-
larity framework. It differs in two important ways, the first is conceptual
while the second is methodological. Conceptually, rather than letting
layers represent different connection modalities (Bentley et al., 2016;
Battiston et al., 2017), frequency bands (De Domenico et al., 2016;
Brookes et al., 2016), or network estimates at different time points
(Bassett et al., 2011), we let layers represent functional connectivity
matrices corresponding to single subjects. Effectively, this choice allows
us to obtain estimates of community assignments simultaneously for all
subjects. Importantly, this approach also preserves community labels
across subjects (provided ω > 0), making the process of comparing
communities across subjects trivially easy. Methodologically, our
approach differs from the general case in that we let Pijs ¼ 1 for all i; j; s.
This choice is in line with best practices for modularity maximization
when the networks correspond to correlation matrices (Bazzi et al., 2016;
Traag et al., 2011; MacMahon and Garlaschelli, 2013). In our past work
we have shown that this decision results in communities with broadly
recognizable topographic features (Betzel et al., 2016; Betzel and Bassett,
2018).

As with the canonical version of multi-layer modularity

maximization, the multi-subject version depends upon two free param-
eters, γ and ω. The value of γ determines the scale of detected commu-
nities, as reflected in their number and size. As before, smaller values of γ
result in a few large communities while larger values result in many small
communities. Similarly, the value of ω emphasizes the consistency of
communities across individuals. Larger values of ω emphasize network
features and communities that are common across subjects, whereas
small values of ω emphasize the uniqueness of individuals’ community
structures. The parameter space defined by γ and ω contains partitions of
the network into communities ranging from single nodes to the whole
network, that are entirely unique to individuals or perfectly consistent
across individuals. Note, that while ω influences the consistency of
communities across subjects, it is implemented globally and its influence
is exerted over all subjects equally.

5.3.1. Sampling multi-scale, multi-consistency community structure
Although many studies fix the values of γ and ω in order to focus on

partitions of networks into roughly the same number of communities
across subjects, we aimed to explore the full range of partitions, both in
terms of community size but also in terms of the consistency of com-
munity structure across individuals. In general, however, the relevant
ranges of γ and ω are unknown ahead of time. In our application, we are
interested in characterizing variability in community structure across
individuals, and therefore wish to avoid extreme partitions; that is,
combinations of γ and ω that result in:

1. Singleton communities (each node is its own community),
2. Whole-network partitions (all nodes are assigned to the same

community),
3. Partitions that are identical across all subjects, or
4. Partitions that are maximally dissimilar across all subjects.

To sample community structure, we employed a novel two-stage
procedure. The first stage allowed us to bi-partition the parameter
space defined by γ and ω into two sub-spaces, one where the above-
defined criteria were true and another where the above-defined criteria
were false. In the second stage we sampled parameter pairs from within
this sub-space to generate a distribution of possible partitions that
spanned all organizational scales and levels of consistency.

The first stage is initialized with the user defining the boundaries of a
rectangular parameter space, forcing γ and ω to fall within ½γmin; γmax� and
½ωmin;ωmax�, respectively. Here, we set γmin ¼minijsWijs, γmax ¼maxijsWijs,
ωmin ¼ 0; and ωmax ¼ 1. Next, we sampled parameter pairs uniformly and
at random from within this sub-space. To identify regions of this sub-
space in which the above-defined four criteria hold, we optimized
Qðγ;ωÞ for each pair of parameter samples using a generalization of the
so-called Louvain algorithm (Jutla et al., 2011; Vincent et al., 2008). This
optimization resulted in a multi-layer partition for which we computed
the mean number of communities per layer and the mean consistency of
communities across layers (see the next section). Intuitively, if the
average number of communities was fewer than 2 or greater than N, or
the mean consistency of communities was equal to 0 (maximal incon-
sistency) or 1 (maximal consistency), we considered the corresponding
point in parameter space to be “bad,“, as it would have failed to satisfy at
least one of the four criteria. Parameter values that satisfy these criteria,
on the other hand, are considered “good”.

Next, we calculate the local homogeneity of parameter space by
calculating the entropy of each sampled point’s 25 nearest neighbors.
Points with non-zero values of entropy exhibit inhomoegeneities and
correspond to regions of parameter space where at least one of the four
criteria is sometimes not satisfied. We identified all such points and
constructed around them the unique non-convex polygon. Intuitively,
partitions corresponding to parameter pairs that fall within this polygon
are likely to satisfy all four criteria; points located outside this polygon
are unlikely to satisfy all four criteria. We repeated this procedure five
times (a total of 5000 samples), each time refining our definition of the
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boundary between “good” and “bad” regions of parameter space.
At this point our procedure moved onto the second stage. In this stage,

we sampled 40000 partitions from within the “good” region. Values of γ
were sampled uniformly, while values of ω were sampled from an
exponential distribution, so that small values of ω are sampled more
frequently than large values. For each pair of parameter values we
optimized Qðγ;ωÞ, resulting in 40000 multi-layer partitions. These par-
titions formed the basis for all subsequent analyses.

5.4. Consensus communities and community entropy

Optimizing the multi-layer, multi-scale modularity expression returns
σ ¼ fσisg, whose elements encode the community assignment of node i in
subject s. From this two-dimensional matrix we can calculate several
useful statistics that would not have been accessible using the traditional
single-layer approach. First, we can obtain a consensus partition, or a
group-representative set of communities. Whereas past studies have
relied on iterative clustering with an arbitrary threshold to obtain
consensus communities (Lancichinetti and Fortunato, 2012), the
multi-layer ensemble makes their estimation straightforward. The
consensus assignment of node i is given as:

σc
i ¼ modesðσisÞ : (4)

Next, we can also calculate the variability of community assignments
across subjects for a given node. Let piðkÞ equal the fraction of all subjects
whose node i is assigned to community k. The variability of this node’s
assignment can be characterized with the entropy:

hi ¼ �
XK

k¼1

piðkÞlog2ðpiðkÞÞ : (5)

We can standardize this entropy to the range ½0; 1� by dividing by
log2ðKÞ.

The measure hi reveals the extent to which a node’s community
assignment was consistent or variable across a cohort of subjects. To
extend this measure to the level of single subjects, we calculated a new
measure, hir . Consider subject r and node i that is assigned to community
σir . We can quantify the average dissimilarity of its community assign-
ment to that of all other subjects by calculating:

hir ¼ 1
T � 1

X

s6¼r

½1� δðσirσisÞ� (6)

where T is the total number of subjects in the cohort and δðx; yÞ is the
Kronecker delta function, which is equal to 1 when x ¼ y and 0 other-
wise. Effectively, this summation reveals the dissimilarity of the com-
munity assignment of subject r with respect to that of the rest of the
cohort. Whereas hi measures the variability of node i’s assignment across
the entire cohort of subjects, hir measures the variability of that node’s
assignment from the perspective of subject r and with respect to the rest
of the cohort.

5.5. Principal component analysis

The entropy vector describes the variability of each brain areas’
community assignment across subjects. These vectors, in general, may
depend on where in the fγ;ωg parameter space those communities were
sampled. We wished to assess whether certain patterns of inter-
individual community variability appeared more frequently than others
and whether these patterns were localized to specific regions of param-
eter space.

To address this question, we subjected the column-normalized (zero
mean, unit variance) matrix of entropy scores to a principal component
analysis via singular value decomposition (SVD). Let H 2 ½N�Nreps� be
the matrix of nodes’ entropy scores across all repetitions of the Louvain
algorithm. In the case of HCP and MSC data with the Gordon atlas, this

matrix has dimensions ½333 � 40000�. Singular value decomposition
factorizes H into left and right singular vectors, U 2 ½N�N� and
V 2 ½Nreps �N� and a set of singular values, Σ 2 ½N � Nreps�, satisfying the
relationship:

H ¼ UΣV⊺ : (7)

The principal component scores and coefficients are given by the
columns of U, which are by definition orthogonal to one another, and the
rows of V, respectively. The squared diagonal elements of Σ give the
percent variance accounted for by principal components. We interpret
the columns of U as modes of inter-individual community variation, or
dominant brain-wide patterns of entropy scores.

In the case of the MSC dataset, we performed SVD on the inter-
individual entropy matrix, which was calculated given communities
estimated using a multi-layer network whose layers represented session-
averaged FC for each of the 10 subjects. We then extracted the first three
principal component scores, Uinter ¼ ½Uð:;1ÞUð:;2Þ;Uð:;3Þ�, which defined a
low-dimensional space of inter-subject community variability.

In addition to calculating inter-individual communities, we also
applied modularity maximization to six different multi-layer networks
where each layer represented FC for a given subject on a given scan
session. Analogously to our calculation of inter-subject community
variability, we computed inter-session community variability for each
subject, and subsequently calculated each subject’s matrix of column
normalized entropy scores, Hsubject. These, along with the patterns of
inter-subject variability, we included in a joint PCA and used to generate
panels g, h, and i of Fig. 7.

Data availability statement

Data were provided in part by the Human Connectome Project, WU-
Minn Consortium (Principal Investigators: David Van Essen and Kamil
Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers
that support the NIH Blueprint for Neuroscience Research; and by the
McDonnell Center for Systems Neuroscience at Washington University.

Author contributions

This study was designed, carried out, and written by RFB. DSB
secured funding for the work. MAB processed and provided HCPMRI and
behavioral data. EMG, CG, NUFD processed and provided MSCMRI data.
All authors contributed to the direction of the research and edited the
paper.

Acknowledgements

RFB, MB, and DSB would like to acknowledge support from the John
D. and Catherine T. MacArthur Foundation, the Alfred P. Sloan Foun-
dation, the ISI Foundation, the Paul Allen Foundation, the Army Research
Laboratory (W911NF-10-2-0022), the Army Research Office (Bassett-
W911NF-14-1-0679, Grafton-W911NF-16-1-0474, DCIST- W911NF-17-
2-0181), the Office of Naval Research, the National Institute of Mental
Health (2-R01-DC-009209-11, R01-MH112847, R01-MH107235, R21-M
MH-106799), the National Institute of Child Health and Human Devel-
opment (1R01HD086888-01), National Institute of Neurological Disor-
ders and Stroke (R01-NS099348-01), and the National Science
Foundation (BCS-1441502, BCS-1430087, NSF PHY-1554488 and BCS-
1631550). The content is solely the responsibility of the authors and does
not necessarily represent the official views of any of the funding agencies.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2019.07.003.

R.F. Betzel et al. NeuroImage 202 (2019) 115990

14

https://doi.org/10.1016/j.neuroimage.2019.07.003
https://doi.org/10.1016/j.neuroimage.2019.07.003


References

Akiki, Teddy J, Abdallah, Chadi G, 2018. Determining the Hierarchical Architecture of
the Human Brain Using Subject-Level Clustering of Functional Networks. bioRxiv,
p. 350462.

Akiki, Teddy J, Averill, Christopher L, Wrocklage, Kristen M, Scott, J Cobb,
Averill, Lynnette A, Schweinsburg, Brian, Alexander-Bloch, Aaron, Martini, Brenda,
Southwick, Steven M, Krystal, John H, et al., 2018. Default mode network
abnormalities in posttraumatic stress disorder: a novel network-restricted topology
approach. Neuroimage 176, 489–498.

Aldecoa, Rodrigo, Marín, Ignacio, 2011. Deciphering network community structure by
surprise. PLoS One 6, e24195.

Alexander-Bloch, Aaron F., Gogtay, Nitin, Meunier, David, Birn, Rasmus, Clasen, Liv,
Lalonde, Francois, Lenroot, Rhoshel, Giedd, Jay, Bullmore, Edward T., 2010.
Disrupted modularity and local connectivity of brain functional networks in
childhood-onset schizophrenia. Front. Syst. Neurosci. 4, 147.

Bassett, D.S., Greenfield, D.L., Meyer-Lindenberg, A., Weinberger, D.R., Moore, S.W.,
Bullmore, E.T., 2010. Efficient physical embedding of topologically complex
information processing networks in brains and computer circuits. PLoS Comput. Biol.
6, e1000748.

Bassett, Danielle S., Wymbs, Nicholas F., Porter, Mason A., Mucha, Peter J., Carlson, Jean
M., Grafton, Scott T., 2011. Dynamic reconfiguration of human brain networks
during learning. Proc. Natl. Acad. Sci. Unit. States Am. 108, 7641–7646.

Battiston, Federico, Guillon, Jeremy, Chavez, Mario, Latora, Vito, De Vico
Fallani, Fabrizio, 2017. Multiplex Core-Periphery Organization of the Human
Connectome arXiv preprint arXiv:1801.01913.

Baum, Graham L., Ciric, Rastko, Roalf, David R., Betzel, Richard F., Moore, Tyler M.,
Shinohara, Russell T., Kahn, Ari E., Vandekar, Simon N., Rupert, Petra E.,
Quarmley, Megan, et al., 2017. Modular segregation of structural brain networks
supports the development of executive function in youth. Curr. Biol. 27, 1561–1572.

Bazzi, Marya, Porter, Mason A., Williams, Stacy, McDonald, Mark, Fenn, Daniel J.,
Howison, Sam D., 2016. Community detection in temporal multilayer networks, with
an application to correlation networks. Multiscale Model. Simul. 14, 1–41.

Bellec, Pierre, Rosa-Neto, Pedro, Lyttelton, Oliver C., Benali, Habib, Evans, Alan C., 2010.
Multi-level bootstrap analysis of stable clusters in resting-state fmri. Neuroimage 51,
1126–1139.

Bentley, Barry, Branicky, Robyn, Barnes, Christopher L., Chew, Yee Lian, Yemini, Eviatar,
Bullmore, Edward T., V�ertes, Petra E., Schafer, William R., 2016. The multilayer
connectome of caenorhabditis elegans. PLoS Comput. Biol. 12, e1005283.

Bertolero, Maxwell A., Yeo, BT Thomas, Esposito, Mark D?, 2015. The modular and
integrative functional architecture of the human brain. Proc. Natl. Acad. Sci. Unit.
States Am. 112, E6798–E6807.

Bertolero, M., Yeo, B.T.T., Esposito, M.D., 2017. The diverse club. Nat. Commun. 8, 1277.
Betzel, Richard F., Bassett, Danielle S., 2017. Multi-scale brain networks. Neuroimage

160, 73–83.
Betzel, Richard F., Bassett, Danielle S., 2018. Specificity and robustness of long-distance

connections in weighted, interareal connectomes. Proc. Natl. Acad. Sci. Unit. States
Am. 201720186.

Betzel, Richard F., Bertolero, Maxwell A., Bassett, Danielle S., 2018. Non-assortative
Community Structure in Resting and Task-Evoked Functional Brain Networks. ”
bioRxiv, p. 355016.

Betzel, Richard F., Fukushima, Makoto, Ye, He, Zuo, Xi-Nian, Sporns, Olaf, 2016.
Dynamic fluctuations coincide with periods of high and low modularity in resting-
state functional brain networks. Neuroimage 127, 287–297.

Betzel, Richard F., Medaglia, John D., Bassett, Danielle S., 2018. Diversity of meso-scale
architecture in human and non-human connectomes. Nat. Commun. 9, 346.

Betzel, Richard F., Medaglia, John D., Papadopoulos, Lia, Baum, Graham L., Gur, Ruben,
Gur, Raquel, Roalf, David, Satterthwaite, Theodore D., Bassett, Danielle S., 2017b.
The modular organization of human anatomical brain networks: accounting for the
cost of wiring. Network Neuroscience 1, 42–68.

Betzel, Richard F., Medaglia, John D., Kahn, Ari E., Soer, Jonathan, Schonhaut, Daniel R,
Bassett, Danielle S., 2019. Structural, geometric and genetic factors predict
interregional brain connectivity patterns probed by electrocorticography. Nature
Biomedical Engineering. https://doi.org/10.1038/s41551-019-0404-5.

Betzel, Richard F., Satterthwaite, Theodore D., Gold, Joshua I., Bassett, Danielle S.,
2017a. Positive affect, surprise, and fatigue are correlates of network flexibility. Sci.
Rep. 7, 520.

Bijsterbosch, Janine Diane, Woolrich, Mark W., Glasser, Matthew F., Robinson, Emma C.,
Beckmann, Christian F., Van Essen, David C., Harrison, Samuel J., Smith, Stephen M.,
2018. The relationship between spatial configuration and functional connectivity of
brain regions. Elife 7, e32992.

Bola, Michał, Sabel, Bernhard A., 2015. Dynamic reorganization of brain functional
networks during cognition. Neuroimage 114, 398–413.

Braun, Urs Braun, Sch€afer, Axel, Walter, Henrik, Erk, Susanne, Romanczuk-Seiferth, Nina,
Haddad, Leila, I Schweiger, Janina, Grimm, Oliver, Heinz, Andreas, Tost, Heike,
et al., 2015. Dynamic reconfiguration of frontal brain networks during executive
cognition in humans. Proc. Natl. Acad. Sci. Unit. States Am. 112, 11678–11683.

Brookes, Matthew J., Tewarie, Prejaas K., Hunt, Benjamin AE., Robson, Sian E., E
Gascoyne, Lauren, Liddle, Elizabeth B, Liddle, Peter F., Morris, Peter G., 2016.
A multi-layer network approach to meg connectivity analysis. Neuroimage 132,
425–438.

Bullmore, Ed, Sporns, Olaf, 2009. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat. Rev. Neurosci. 10, 186.

Capocci, Andrea, Servedio, Vito D.P., Guido, Caldarelli, Colaiori, Francesca, 2005.
Detecting communities in large networks. Phys. Stat. Mech. Appl. 352, 669–676.

Chan, Micaela Y., Park, Denise C., Savalia, Neil K., Petersen, Steven E., Wig, Gagan S.,
2014. Decreased segregation of brain systems across the healthy adult lifespan. Proc.
Natl. Acad. Sci. Unit. States Am. 111, E4997–E5006.

Chandra, Sripada, Angstadt, Mike, Rutherford, Saige, Kessler, Daniel, Kim, Yura,
Yee, Mike, Levina, Liza, 2018. Fundamental Units of Inter-individual Variation in
Resting State Connectomes. ” bioRxiv, p. 326082.

Clauset, Aaron, Newman, Mark EJ., Moore, Cristopher, 2004. Finding community
structure in very large networks. Phys. Rev. 70, 066111.

Cole, Michael W, Bassett, Danielle S, Power, Jonathan D, Braver, Todd S, Petersen, Steven
E, 2014. Intrinsic and task-evoked network architectures of the human brain. Neuron
83, 238–251.

Crossley, Nicolas A., Mechelli, Andrea, V�ertes, Petra E., Winton-Brown, Toby T.,
Patel, Ameera X., Ginestet, Cedric E., McGuire, Philip, Bullmore, Edward T., 2013.
Cognitive relevance of the community structure of the human brain functional
coactivation network. Proc. Natl. Acad. Sci. Unit. States Am. 110, 11583–11588.

Dale, Anders M., Fischl, Bruce, Sereno, Martin I., 1999. Cortical surface-based analysis: I.
segmentation and surface reconstruction. Neuroimage 9, 179–194.

De Domenico, Manlio, Sasai, Shuntaro, Arenas, Alex, 2016. Mapping multiplex hubs in
human functional brain networks. Front. Neurosci. 10, 326.

de Haan, Willem, van der Flier, Wiesje M., Koene, T., Smits, Lieke L, Scheltens, Philip,
Stam, Cornelis J, 2012. “Disrupted modular brain dynamics reflect cognitive
dysfunction in alzheimer’s disease. Neuroimage 59, 3085–3093.

Doucet, Ga€elle, Naveau, Mika€el, Petit, Laurent, Delcroix, Nicolas, Zago, Laure,
Crivello, Fabrice, Jobard, Gael, Tzourio-Mazoyer, Nathalie, Mazoyer, Bernard,
Mellet, Emmanuel, et al., 2011. Brain activity at rest: a multiscale hierarchical
functional organization. J. Neurophysiol. 105, 2753–2763.

Ferrarini, Luca, Veer, Ilya M., Baerends, Evelinda, van Tol, Marie-Jose, Renken, Remco J.,
Nic, J.A., van der Wee, Veltman, Dirk J., Andre Aleman, Zitman, Frans G.,
Penninx, Brenda W.J.H., et al., 2009. Hierarchical functional modularity in the
resting-state human brain. Hum. Brain Mapp. 30, 2220–2231.

Fortunato, Santo, 2010. Community detection in graphs. Phys. Rep. 486, 75–174.
Fortunato, Santo, Barthelemy, Marc, 2007. Resolution limit in community detection.

Proc. Natl. Acad. Sci. Unit. States Am. 104, 36–41.
Geerligs, Linda, Renken, Remco J., Saliasi, Emi, Maurits, Natasha M., Lorist, Monicque M.,

2014. A brain-wide study of age-related changes in functional connectivity. Cerebr.
Cortex 25, 1987–1999.

Gerraty, Raphael T., Davidow, Juliet Y., Foerde, Karin, Galvan, Adriana, Bassett, Danielle
S., Shohamy, Daphna Shohamy, 2018. Dynamic flexibility in striatal-cortical circuits
supports reinforcement learning. J. Neurosci. 38 (10), 2442–2453.

Glasser, Matthew F., Sotiropoulos, Stamatios N., Wilson, J Anthony, Coalson, Timothy S.,
Fischl, Bruce, Andersson, Jesper L., Xu, Junqian, Jbabdi, Saad, Webster, Matthew,
Polimeni, Jonathan R., et al., 2013. The minimal preprocessing pipelines for the
human connectome project. Neuroimage 80, 105–124.

Golland, Yulia, Golland, Polina, Bentin, Shlomo, Malach, Rafael, 2008. Data-driven
clustering reveals a fundamental subdivision of the human cortex into two global
systems. Neuropsychologia 46, 540–553.

Gordon, Evan M., Laumann, Timothy O., Adeyemo, Babatunde, Huckins, Jeremy F.,
Kelley, William M., Petersen, Steven E., 2014. Generation and evaluation of a cortical
area parcellation from resting-state correlations. Cerebr. Cortex 26, 288–303.

Gordon, Evan M., Laumann, Timothy O., Adeyemo, Babatunde, Petersen, Steven E.,
2017a. Individual variability of the system-level organization of the human brain.
Cerebr. Cortex 27, 386–399.

Gordon, Evan M., Laumann, Timothy O., Gilmore, Adrian W., Newbold, Dillan J.,
Greene, Deanna J., Berg, Jeffrey J., Ortega, Mario, Hoyt-Drazen, Catherine,
Gratton, Caterina, Sun, Haoxin, et al., 2017b. Precision functional mapping of
individual human brains. Neuron 95, 791–807.

Gorgolewski, Krzysztof J., Varoquaux, Gael, Rivera, Gabriel, Schwarz, Yannick,
Ghosh, Satrajit S., Maumet, Camille, V Sochat, Vanessa, Nichols, Thomas E.,
Poldrack, Russell A., Poline, Jean-Baptiste, et al., 2015. Neurovault. org: a web-based
repository for collecting and sharing unthresholded statistical maps of the human
brain. Front. Neuroinf. 9, 8.

Gratton, Caterina, Laumann, Timothy O., Nielsen, Ashley N., Greene, Deanna J.,
Gordon, Evan M., Gilmore, Adrian W., Nelson, Steven M., Coalson, Rebecca S.,
Snyder, Abraham Z., Schlaggar, Bradley L., et al., 2018. Functional brain networks
are dominated by stable group and individual factors, not cognitive or daily variation.
Neuron 98, 439–452.

Gu, Shi, Satterthwaite, Theodore D., Medaglia, John D., Yang, Muzhi, Gur, Raquel E.,
Gur, Ruben C., Bassett, Danielle S., 2015. Emergence of system roles in normative
neurodevelopment. Proc. Natl. Acad. Sci. Unit. States Am. 112, 13681–13686.

Hagmann, Patric, Cammoun, Leila, Gigandet, Xavier, Meuli, Reto, Honey, Christopher J.,
Wedeen, Van J., Sporns, Olaf, 2008. Mapping the structural core of human cerebral
cortex. PLoS Biol. 6, e159.

Han, Qiuyi, Xu, Kevin, Airoldi, Edoardo, 2015. Consistent estimation of dynamic and
multi-layer block models. In: International Conference On Machine Learning,
pp. 1511–1520.

Hawrylycz, Michael J., Lein, Ed S., Guillozet-Bongaarts, Angela L., Shen, Elaine H.,
Ng, Lydia, Miller, Jeremy A., Van De Lagemaat, Louie N., Smith, Kimberly A.,
Ebbert, Amanda, Riley, Zackery L., et al., 2012. An anatomically comprehensive atlas
of the adult human brain transcriptome. Nature 489, 391.

He, Yong, Chen, Zhang J., Evans, Alan C., 2007. Small-world anatomical networks in the
human brain revealed by cortical thickness from mri. Cerebr. Cortex 17, 2407–2419.

Jeub, Lucas GS., Sporns, Olaf, Fortunato, Santo, 2018. Multiresolution consensus
clustering in networks. Sci. Rep. 8, 3259.

Jutla, Inderjit S., Jeub, Lucas GS., Mucha, Peter J., 2011. A Generalized Louvain Method
for Community Detection Implemented in Matlab. URL. http://netwiki.amath
.unc.edu/GenLouvain.

R.F. Betzel et al. NeuroImage 202 (2019) 115990

15

http://refhub.elsevier.com/S1053-8119(19)30565-8/sref50
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref50
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref50
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref51
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref51
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref51
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref51
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref51
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref51
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref81
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref81
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref1
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref1
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref1
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref1
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref2
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref2
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref2
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref2
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref29
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref29
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref29
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref29
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref3
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref3
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref3
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref4
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref4
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref4
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref4
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref4
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref5
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref5
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref5
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref5
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref6
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref6
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref6
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref6
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref7
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref7
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref7
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref7
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref8
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref8
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref8
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref8
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref65
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref15
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref15
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref15
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref16
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref16
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref16
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref9
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref9
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref9
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref11
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref11
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref11
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref11
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref10
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref10
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref14
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref14
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref14
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref14
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref14
https://doi.org/10.1038/s41551-019-0404-5
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref13
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref13
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref13
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref17
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref17
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref17
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref17
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref18
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref18
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref18
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref19
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref19
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref19
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref19
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref19
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref19
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref20
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref20
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref20
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref20
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref20
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref21
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref21
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref22
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref22
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref22
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref102
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref102
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref102
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref102
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref23
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref23
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref23
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref24
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref24
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref25
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref25
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref25
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref25
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref26
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref26
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref26
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref26
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref26
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref26
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref27
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref27
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref27
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref30
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref30
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref31
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref31
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref31
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref31
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref32
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref32
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref32
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref32
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref32
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref32
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref32
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref33
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref33
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref33
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref33
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref33
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref34
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref34
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref35
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref35
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref35
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref36
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref36
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref36
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref36
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref37
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref37
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref37
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref37
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref38
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref38
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref38
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref38
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref38
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref39
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref39
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref39
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref39
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref40
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref40
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref40
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref40
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref41
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref41
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref41
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref41
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref42
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref42
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref42
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref42
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref42
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref43
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref43
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref43
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref43
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref43
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref44
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref44
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref44
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref44
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref44
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref44
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref45
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref45
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref45
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref45
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref46
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref46
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref46
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref47
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref47
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref47
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref47
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref48
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref48
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref48
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref48
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref49
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref49
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref49
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref53
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref53
http://netwiki.amath.unc.edu/GenLouvain
http://netwiki.amath.unc.edu/GenLouvain


Karrer, Brian, Newman, Mark EJ., 2011. Stochastic blockmodels and community structure
in networks. Phys. Rev. 83, 016107.

Khambhati, Ankit N., Sizemore, Ann E., Betzel, Richard F., Bassett, Danielle S., 2017.
Modeling and Interpreting Mesoscale Network Dynamics. ” Neuroimage.

Kheirkhahzadeh, Masoumeh, Lancichinetti, Andrea, Rosvall, Martin, 2016. Efficient
community detection of network flows for varying markov times and bipartite
networks. Phys. Rev. 93, 032309.

Kim, DoHyun, Kay, Kendrick, Shulman, Gordon L., Corbetta, Maurizio, 2017. A new
modular brain organization of the bold signal during natural vision. Cerebr. Cortex
28, 3065–3081.

Kirschner, Marc, Gerhart, John, 1998. Evolvability. Proc. Natl. Acad. Sci. Unit. States Am.
95, 8420–8427.

Kong, Ru, Li, Jingwei, Orban, Csaba, Sabuncu, Mert R., Liu, Hesheng,
Schaefer, Alexander, Sun, Nanbo, Zuo, Xi-Nian, Holmes, Avram J., Eickhoff, Simon
B., et al., 2018. Spatial Topography of Individual-specific Cortical Networks Predicts
Human Cognition, Personality, and Emotion. Cerebral Cortex.

Kriegeskorte, Nikolaus, Mur, Marieke, Bandettini, Peter A., 2008. Representational
similarity analysis-connecting the branches of systems neuroscience. Front. Syst.
Neurosci. 2, 4.

Lancichinetti, Andrea, Fortunato, Santo, 2012. Consensus clustering in complex networks.
Sci. Rep. 2, 336.

Laumann, Timothy O., Gordon, Evan M., Adeyemo, Babatunde, Snyder, Abraham Z., Sung
Jun Joo, Chen, Mei-Yen, Gilmore, Adrian W., McDermott, Kathleen B., Nelson, Steven
M., Dosenbach, Nico UF., et al., 2015. Functional system and areal organization of a
highly sampled individual human brain. Neuron 87, 657–670.

Lurie, Daniel, Kessler, Daniel, Bassett, Danielle, Betzel, Richard F., Breakspear, Michael,
Keilholz, Shella, Kucyi, Aaron, Liegeois, RaphaŁel, Lindquist, Martin A.,
McIntosh, Anthony Randal, et al., 2018. On the Nature of Resting Fmri and Time-
Varying Functional Connectivity. psyarxiv.

MacMahon, Mel, Garlaschelli, Diego, 2013. Community Detection for Correlation
Matrices arXiv preprint arXiv:1311.1924.

Marcus, Daniel, Harwell, John, Olsen, Timothy, Hodge, Michael, Glasser, Matthew,
Prior, Fred, Jenkinson, Mark, Laumann, Timothy, Curtiss, Sandra, Van Essen, David,
2011. Informatics and data mining tools and strategies for the human connectome
project. Front. Neuroinf. 5, 4.

Meunier, David, Lambiotte, Renaud, Bullmore, Edward T., 2010. Modular and
hierarchically modular organization of brain networks. Front. Neurosci. 4, 200.

Mucha, Peter J., Richardson, Thomas, Macon, Kevin, Porter, Mason A., Onnela, Jukka-
Pekka, 2010. Community structure in time-dependent, multiscale, and multiplex
networks. science 328, 876–878.

Newman, Mark EJ., 2012. Communities, modules and large-scale structure in networks.
Nat. Phys. 8, 25.

Newman, Mark EJ., Girvan, Michelle, 2004. Finding and evaluating community structure
in networks. Phys. Rev. 69, 026113.

Pan, Raj Kumar, Sinha, Sitabhra, 2009. Modularity produces small-world networks with
dynamical time-scale separation. EPL (Europhysics Letters) 85, 68006.

Paul, S., Chen, Y., 2016. Consistent community detection in multi-relational data through
restricted multi-layer stochastic blockmodel. Electronic Journal of Statistics 10,
3807–3870.

Peel, Leto, Delvenne, Jean-Charles, Lambiotte, Renaud, 2018. Multiscale mixing patterns
in networks. Proc. Natl. Acad. Sci. Unit. States Am. 115, 4057–4062.

Poldrack, Russell A., M Barch, Deanna, Mitchell, Jason, Wager, Tor, Wagner, Anthony D.,
Devlin, Joseph T., Cumba, Chad, Koyejo, Oluwasanmi, Milham, Michael, 2013.
Toward open sharing of task-based fmri data: the openfmri project. Front. Neuroinf.
7, 12.

Poldrack, Russell A., Laumann, Timothy O., Koyejo, Oluwasanmi, Gregory, Brenda,
Hover, Ashleigh, Chen, Mei-Yen, Gorgolewski, Krzysztof J., Luci, Jeffrey, Joo, Sung
Jun, Boyd, Ryan L., et al., 2015. Long-term neural and physiological phenotyping of a
single human. Nat. Commun. 6, 8885.

Power, Jonathan D., Cohen, Alexander L., Nelson, Steven M., Gagan, S Wig, Barnes, Kelly
Anne, Church, Jessica A., Vogel, Alecia C., Laumann, Timothy O., Miezin, Fran M.,
Schlaggar, Bradley L., et al., 2011. Functional network organization of the human
brain. Neuron 72, 665–678.

Power, Jonathan D., Barnes, Kelly A., Snyder, Abraham Z., Schlaggar, Bradley L.,
Petersen, Steven E., 2012. Spurious but systematic correlations in functional
connectivity mri networks arise from subject motion. Neuroimage 59, 2142–2154.

Power, Jonathan D., Mitra, Anish, Laumann, Timothy O., Snyder, Abraham Z.,
Schlaggar, Bradley L, Petersen, Steven E., 2014. Methods to detect, characterize, and
remove motion artifact in resting state fmri. Neuroimage 84, 320–341.

Reichardt, J€org, Bornholdt, Stefan, 2006. Statistical mechanics of community detection.
Phys. Rev. 74, 016110.

Rosenthal, Gideon, Sporns, Olaf, Avidan, Galia, 2016. Stimulus dependent dynamic
reorganization of the human face processing network. Cerebr. Cortex 27, 4823–4834.

Rosvall, Martin, Bergstrom, Carl T., 2008. Maps of random walks on complex networks
reveal community structure. Proc. Natl. Acad. Sci. Unit. States Am. 105, 1118–1123.

Satterthwaite, Theodore D., Elliott, Mark A., Ruparel, Kosha, James, Loughead,
Prabhakaran, Karthik, E Calkins, Monica, Ryan, Hopson, Jackson, Chad, Keefe, Jack,
Riley, Marisa, et al., 2014. Neuroimaging of the philadelphia neurodevelopmental
cohort. Neuroimage 86, 544–553.

Schaefer, Alexander, Kong, Ru, Evan M Gordon, Timothy O Laumann, Zuo, Xi-Nian,
Avram J Holmes, Simon B Eickhoff, Yeo, B.T., 2017. Local-global parcellation of the
human cerebral cortex from intrinsic functional connectivity mri. Cerebr. Cortex
1–20.

Shine, James M., Koyejo, Oluwasanmi, Poldrack, Russell A., 2016. Temporal metastates
are associated with differential patterns of time-resolved connectivity, network
topology, and attention. Proc. Natl. Acad. Sci. Unit. States Am. 113, 9888–9891.

Shen, K., Bezgin, G., Everling, S., McIntosh, A.R., Hutchison, M.R., 2015. Network
structure shapes spontaneous functional connectivity dynamics. J. Neurosci. 35,
5579–5588.

Shine, James M., Bissett, Patrick G., Bell, Peter T., Koyejo, Oluwasanmi, Balsters, Joshua
H., Gorgolewski, Krzysztof J., Moodie, Craig A., Poldrack, Russell A., 2016. The
dynamics of functional brain networks: integrated network states during cognitive
task performance. Neuron 92, 544–554.

Simon, Herbert A., 1991. The architecture of complexity. In: In Facets Of Systems Science.
Springer, pp. 457–476.

Smith, Stephen M., Jenkinson, Mark, Woolrich, Mark W., Beckmann, Christian F.,
Behrens, Timothy EJ., Johansen-Berg, Heidi, Bannister, Peter R., De Luca, Marilena,
Drobnjak, Ivana, Flitney, David E., et al., 2004. Advances in functional and structural
mr image analysis and implementation as fsl. Neuroimage 23, S208–S219.

Smith, Stephen M., Miller, Karla L., Salimi-Khorshidi, Gholamreza, Webster, Matthew,
Beckmann, Christian F., Nichols, Thomas E., Ramsey, Joseph D., Woolrich, Mark W.,
2011. Network modelling methods for fmri. Neuroimage 54, 875–891.

Sporns, Olaf, Betzel, Richard F., 2016. Modular brain networks. Annu. Rev. Psychol. 67,
613–640.

Stanley, Natalie, Shai, Saray, Taylor, Dane, Mucha, Peter J., 2016. Clustering network
layers with the strata multilayer stochastic block model. IEEE transactions on
network science and engineering 3, 95–105.

Talairach, J., Tournoux, Jean Talairach and Pierre Tournoux, 1988. Co-planar Stereotaxic
Atlas of the Human Brain: 3-dimensional Proportional System: an Approach to
Cerebral Imaging. Thieme Classics.

Thompson, William H., Fransson, Peter, 2015. “The mean–variance relationship reveals
two possible strategies for dynamic brain connectivity analysis in fmri. Front. Hum.
Neurosci. 9, 398.

Traag, Vincent A., Van Dooren, Paul, Nesterov, Yurii, 2011. Narrow scope for resolution-
limit-free community detection. Phys. Rev. 84, 016114.

Vaiana, Michael, Muldoon, Sarah Feldt, 2018. Multilayer brain networks. J. Nonlinear
Sci. 1–23.

Vaiana, Michael, Muldoon, Sarah, 2018. Resolution Limits for Detecting Community
Changes in Multilayer Networks arXiv preprint arXiv:1803.03597.

Van Essen, David C., Smith, Stephen M., M Barch, Deanna, Behrens, Timothy EJ.,
Yacoub, Essa, Ugurbil, Kamil, HCP Consortium, Wu-Minn, et al., 2013. The Wu-minn
human connectome project: an overview. Neuroimage 80, 62–79.

Vatansever, Deniz, Menon, David K., Manktelow, Anne E., Sahakian, Barbara J.,
Stamatakis, Emmanuel A., 2015. Default mode dynamics for global functional
integration. J. Neurosci. 35, 15254–15262.

Vincent, D Blondel, Guillaume, Jean-Loup, Lambiotte, Renaud, Lefebvre, Etienne, 2008.
Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. vol.
2008, P10008.

Weir, William, Scott, Emmons, Gibson, Ryan, Taylor, Dane, Mucha, Peter, 2017. Post-
processing partitions to identify domains of modularity optimization. Algorithms 10,
93.

Wymbs, Nicholas F., Bassett, Danielle S., Mucha, Peter J., Porter, Mason A., Grafton, Scott
T., 2012. Differential recruitment of the sensorimotor putamen and frontoparietal
cortex during motor chunking in humans. Neuron 74, 936–946.

Yeatman, Jason D., Dougherty, Robert F., Myall, Nathaniel J., Wandell, Brian A.,
Feldman, Heidi M., 2012. Tract profiles of white matter properties: automating fiber-
tract quantification. PLoS One 7, e49790.

Yeo, BT Thomas, Krienen, Fenna M., Jorge, Sepulcre, Sabuncu, Mert R., Lashkari, Danial,
Hollinshead, Marisa, Roffman, Joshua L., Smoller, Jordan W., Z€ollei, Lilla,
Polimeni, Jonathan R., et al., 2011. The organization of the human cerebral cortex
estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165.

R.F. Betzel et al. NeuroImage 202 (2019) 115990

16

http://refhub.elsevier.com/S1053-8119(19)30565-8/sref55
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref55
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref57
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref57
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref58
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref58
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref58
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref59
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref59
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref59
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref59
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref60
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref60
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref60
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref61
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref61
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref61
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref61
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref62
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref62
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref62
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref63
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref63
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref64
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref64
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref64
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref64
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref64
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref28
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref28
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref28
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref28
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref66
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref66
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref67
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref67
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref67
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref67
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref68
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref68
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref69
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref69
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref69
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref69
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref70
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref70
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref71
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref71
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref72
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref72
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref73
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref73
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref73
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref73
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref74
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref74
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref74
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref75
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref75
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref75
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref75
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref76
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref76
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref76
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref76
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref77
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref77
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref77
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref77
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref77
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref78
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref78
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref78
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref78
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref79
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref79
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref79
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref79
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref80
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref80
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref80
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref82
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref82
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref82
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref83
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref83
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref83
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref84
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref84
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref84
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref84
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref84
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref85
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref85
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref85
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref85
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref85
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref86
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref86
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref86
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref86
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref56
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref56
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref56
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref56
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref87
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref87
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref87
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref87
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref87
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref88
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref88
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref88
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref89
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref89
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref89
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref89
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref89
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref90
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref90
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref90
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref90
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref91
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref91
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref91
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref92
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref92
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref92
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref92
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref52
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref52
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref52
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref93
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref93
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref93
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref93
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref94
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref94
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref95
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref95
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref95
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref96
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref96
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref97
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref97
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref97
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref97
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref98
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref98
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref98
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref98
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref99
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref99
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref99
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref100
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref100
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref100
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref101
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref101
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref101
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref101
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref103
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref103
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref103
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref104
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref104
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref104
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref104
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref104
http://refhub.elsevier.com/S1053-8119(19)30565-8/sref104

	The community structure of functional brain networks exhibits scale-specific patterns of inter- and intra-subject variability
	Authors

	The community structure of functional brain networks exhibits scale-specific patterns of inter- and intra-subject variability
	1. Introduction
	2. Results
	2.1. Detecting multi-layer, multi-subject community structure in the HCP dataset
	2.1.1. Basic analysis
	2.1.2. Principal component analysis and modes of inter-subject variation
	2.1.3. Brain-behavior correlations are scale dependent

	2.2. Detecting multi-layer, multi-subject community structure in the Midnight Scan Club dataset

	3. Discussion
	3.1. Advantages over current methodology
	3.2. Multi-scale community structure and modes of variability
	3.3. Implications for analysis of inter-subject community variability
	3.4. Limitations

	4. Conclusion
	5. Materials and methods
	5.1. Datasets
	5.1.1. Human Connectome Project
	5.1.2. Midnight Scan Club

	5.2. Modularity maximization
	5.3. Multi-layer, multi-subject modularity
	5.3.1. Sampling multi-scale, multi-consistency community structure

	5.4. Consensus communities and community entropy
	5.5. Principal component analysis

	Data availability statement
	Author contributions
	Acknowledgements
	Appendix A. Supplementary data
	References


