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A B S T R A C T

Head motion systematically distorts clinical and research MRI data. Motion artifacts have biased findings from
many structural and functional brain MRI studies. An effective way to remove motion artifacts is to exclude MRI
data frames affected by head motion. However, such post-hoc frame censoring can lead to data loss rates of 50%
or more in our pediatric patient cohorts. Hence, many scanner operators collect additional ‘buffer data’, an
expensive practice that, by itself, does not guarantee sufficient high-quality MRI data for a given participant.
Therefore, we developed an easy-to-setup, easy-to-use Framewise Integrated Real-time MRI Monitoring (FIRMM)
software suite that provides scanner operators with head motion analytics in real-time, allowing them to scan
each subject until the desired amount of low-movement data has been collected. Our analyses show that using
FIRMM to identify the ideal scan time for each person can reduce total brain MRI scan times and associated costs
by 50% or more.

1. Introduction

Head motion represents one of the greatest obstacles to collecting
quality brain MRIs in humans. Head motion distorts both structural (T1-
weighted, T2-weighted, etc.) and blood-oxygenation level dependent
(BOLD) functional MRI data (task-driven [fMRI], resting state functional
connectivity [rs-fcMRI]) (Power et al., 2012, 2013, 2015; Reuter et al.,
2015; Satterthwaite et al., 2012, 2013; Siegel et al., 2016; Siegel et al.,
2014; Van Dijk et al., 2012; Yan et al., 2013; Yendiki et al., 2014). It has
been shown that even sub-millimeter head movements (i.e., micro-
movements) systematically alter structural and functional MRI data
(Fair et al., 2012; Power et al., 2012; Satterthwaite et al., 2012; Van Dijk
et al., 2012; Yan et al., 2013). Hence, much effort has been devoted to
developing various effective post-acquisition methods for the removal of

head motion artifacts from BOLD data (Behzadi et al., 2007; Burgess
et al., 2016; Ciric et al., 2017; Di Martino et al., 2014; Griffanti et al.,
2014; Jo et al., 2013; Kundu et al., 2013; Muschelli et al., 2014; Patel
et al., 2014; Power, 2017; Power et al., 2012, 2013, 2015; Pruim et al.,
2015a; Pruim et al., 2015b; Salimi-Khorshidi et al., 2014; Satterthwaite
et al., 2012, 2013; Siegel et al., 2014; Van Dijk et al., 2012).

Head movement from one MRI data frame to the next, rather than
absolute movement away from the reference frame, accounts for the most
significant BOLD signal distortions (Ciric et al., 2017; Power et al., 2012;
Satterthwaite et al., 2012; Van Dijk et al., 2012). Motion related artifacts
are strongly correlated with measures of framewise displacement (FD),
which represent the sum of the absolute head movements in all six rigid
body directions from frame to frame. Recently, Ciric et al. directly
compared the 14 most commonly used motion removal methods (Ciric
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et al., 2017). Their benchmarking showed that post-hoc frame censoring
techniques which remove data frames with FD values above a certain
threshold are very effective for removing the residual relationship be-
tween motion and brain connectivity, as well as the distance dependence
of this artifact. However, frame-censoring BOLD data based on FD comes
at a steep price, because it necessarily involves data loss.

In our own pediatric patient cohorts, frame censoring excluded over
50% of rs-fcMRI data collected when using strict frame censoring criteria
(FD > 0.2 mm, Supplementary Fig. 1; e.g (Greene et al., 2016).). The
accuracy of MRI measures improves with longer data acquisition periods
(Laumann et al., 2015). Hence, a minimum number of data frames are
required to obtain reliable estimates (Dosenbach et al., 2010), leaving
investigators committed to frame-censoring with a difficult choice – lose
the participant completely or collect more data. This ‘overscanning,’
required to remove distance-dependent motion artifact while maintain-
ing sample sizes, has drastically increased the cost and duration of
brain MRIs.

Recently developed structural MRI sequences with so-called pro-
spective motion correction use a similar frame-censoring approach to
reduce the deleterious effects of head motion. These MRI sequences pair
each structural data acquisition with a fast, low resolution snap shot of
the whole brain (echo-planar image ¼ EPI), which is then used as a
marker or navigator for head motion (Alhamud et al., 2015, 2016; Ben-
ner et al., 2011; Brown et al., 2010; Frost et al., 2016; Kuperman et al.,
2011; Reuter et al., 2015; Stoeckel et al., 2014; Taylor et al., 2016; Tisdall
et al., 2012, 2016; White et al., 2010). These motion-correcting structural
sequences calculate relative motion between successive navigator images
and use this information to mark the linked structural data frames for
exclusion and reacquisition. In this manner, structural data frames are
censored, which also increases the duration and cost of structural MRIs.

For both structural and functional MRI, access to real-time informa-
tion about in-scanner head movement could greatly reduce the costs of
MRI by eliminating the need for overscanning. Real-time motion moni-
toring would allow scanner operators to continue each scan until the
desired number of low-movement data frames have been acquired
(scanning-to-criterion). Even for investigators who do not implement
frame censoring approaches, real-time motion monitoring would provide
immediate, valuable information about scan quality. For example, access
to accurate real-time FD data would enable scanner operators to inter-
vene early on, if subjects are moving too much.

On many MRI scanners, operators can view EPI data (e.g. BOLD) on
the console as they are being reconstructed. Unfortunately, the human
eye cannot reliably detect the minute head movements (0.2 mm summed
across all directions) that negatively affect MRI data. Thus, watching the
raw EPI images on the console as they are being acquired is inadequate
for making decisions about ongoing scans. Attempts have been made to
acquire real-time proxies for FD using expensive cameras and lasers (Van
Essen et al., 2013). Unfortunately, such proxies of head movement are
only poorly correlated with FD because they cannot distinguish move-
ments of the face and scalp from brain movement.

To simultaneously improve MRI data quality and reduce costs, we
developed the easy-to-use Framewise Integrated Real-time MRI Moni-
toring (FIRMM) software suite, which calculates and displays FD values
and summary motion statistics for brain MRI data in real time (Fig. 1,
Supplementary Mov. 1). We focused on functional MRI data to develop
and validate FIRMM, but it can be customized to monitor head motion
during specialized structural MRI sequences that utilize navigators for
motion correction.

Supplementary data related to this article can be found online at
http://dx.doi.org/10.1016/j.neuroimage.2017.08.025.

FIRMM's accuracy and cost savings were verified using several large
rs-fcMRI data sets from different patient and control cohorts (1134 total
scan sessions). First we characterized head movement (FD) for our
Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Dis-
order (ADHD), Family History of Alcoholism (FHA) and Control cohorts,
using an Offline, post-hoc processing stream (Fair et al., 2012). Next we

validated the accuracy of the FIRMM FD values by comparing them to
those derived from the Offline processing stream. We then calculated the
time savings generated when using FIRMM to scan to criterion. Finally,
we tested FIRMM's real-world utility and durability in a new cohort of 29
children and adolescents.

2. Materials and methods

2.1. FIRMM software suite

FIRMM is built using several software packages, each with a specific
purpose, to make installation and usage easier and more reliable.
Installation requires a Docker-capable Linux system. Operation on
Ubuntu 14.04 and CentOS 7 operating systems have both been tested and
work well. Installation is accomplished via a downloadable shell script
which retrieves and installs FIRMM's components. After installation
FIRMM is launched with a shell script tailored to use a pre-built Docker
image. FIRMM's components are the compiled MATLAB (R2016b) binary
backend which only requires an included MATLAB compiler runtime to
run, shell scripts for image processing, a Docker image containing image
processing software dependencies, and a Django web application front
end. The compiled MATLAB binary backendmonitors an incoming folder
waiting for a new subfolder that has the current date and contains images
created within the last few minutes. The backend does shell script image
processing only on new functional images. The required image process-
ing software is already installed and configured inside the Docker image.
Results are visually displayed in the Django web application frontend as
plots and tables in a Chromium web browser.

2.2. Real-time processing of DICOM images

As soon as each frame/volume of EPI (echo planar imaging) data is
acquired and reconstructed into DICOM format, it is transferred to a pre-
designated folder that the FIRMM software monitors for new images. On
Siemens scanners, rapid DICOM transfer can be achieved by selecting the
‘send IMA’ option in the ideacmdtool utility (requires ‘advanced user’
mode). On Siemens scanners one can also use an MS-DOS batch script to
add start ‘FIRMM’ and stop ‘FIRMM’ buttons to the scanner operating
system. This package is a standalone script that can be downloaded
with FIRMM.

FIRMM reads the DICOM headers and uses the header information to
enter data sequentially into a job queuing system. DICOMs are processed
in the temporal order they were acquired. FIRMM converts DICOMs into
4dfp format prior to any further processing. FIRMM realigns EPI data
using the 4dfp cross_realign3d_4dfp algorithm (Smyser et al., 2010). The
cross_realign3d_4dfp algorithm run by FIRMM has been optimized for
computational speed, thus frame-to-frame image intensity normalization
has been disabled and the realigned data are not written out, only the
alignment parameters. Alternative alignment algorithms operating on
NIfTI format data can also be utilized and will be made available in future
releases. The EPI images do not undergo pre-processing steps typically
utilized in offline data analyses. For EPI images with a spatial resolution
smaller than 4 mm3, data are down-sampled to 4 mm3 prior to realign-
ment to increase processing speed.

2.3. Estimation of head realignments

Each data frame (volume) is aligned to the first frame of the run
through a series of rigid body transforms, Ti, where i indexes the spatial
registration of frame i to a reference of frame 1, starting with the second
frame. Each transform is calculated by minimizing the registration error:

εi ¼ �
sI�iðTð x!ÞÞ�� I1ð x!Þ�2;

such that Ið x!Þ is the image intensity at locus x! and s is a scalar factor
that compensates for fluctuations in mean signal intensity, spatially
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Fig. 1. Framewise Integrated Real-time MRI Monitoring (FIRMM) graphical user interface. Sample data are from the Adolescent Brain Cognitive Development (ABCD) study and include
both task fMRI and resting state runs.
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averaged over the whole brain (angle brackets). Each transform is rep-
resented by a combination of rotations and displacements. Therefore,

Ti ¼
�
Ri

_di
0 1

�

with Ri representing the 3 � 3 matrix of rotations and _di representing the
3� 1 column vector of displacements. Ri consists of the three elementary
rotations at each of the three axes. Hence, Ri ¼ RiαRiβRiγ and

Riα ¼
2
4 1 1 0
0 cos αi �sin αi

0 sin αi cos αi

3
5

Riβ ¼
2
4 cos βi 0 sin βi

0 1 0
�sin βi 0 cos βi

3
5

Riγ ¼
2
4 cos γi �sin γi 0
sin γi cos γi 0
0 0 1

3
5

2.4. Computation of framewise displacement (FD)

Calculating head realignment parameters across frames starting with
the second frame generates six displacement vectors of head motion
(Power et al., 2012). We convert head motion to a scalar quantity with
the formula,
Displacementi ¼ jΔdixj þ

��Δdiy��þ jΔdizj þ jΔαij þ jΔβij þ jΔγij, where
Δdix ¼ dði�1Þx � dix, Δdiy ¼ dði�1Þy � diy , Δdiz ¼ dði�1Þz � diz , and so
forth. Rotational displacements are converted from degrees to millime-
ters by computing displacement on the surface of a sphere of radius
50 mm, which is approximately the mean distance from the cerebral
cortex to the center of the head for a healthy young adult. Since we
realign each data frame to the first frame, FD is calculated by subtracting
Displacementi�1 (for the previous frame) from Displacementi (for the cur-
rent frame).

2.5. Model for predicting framewise displacement (FD)

The head motion (FD) prediction algorithm is a linear model that
updates with each new data frame (y ¼ mx þ b), where y is the predicted
number of low-movement frames below a certain FD cutoff at the end of
the scan or experiment, x is the consecutive frame count, andm and b are
estimated for each participant in real time. A given frame is labeled as
usable if the relative object displacement is less than a given FD threshold
(in mm), using as reference the object's position in the previous frame.
The prediction algorithm is implemented in Python using the scikit-learn
package (http://scikit-learn.org). The prediction algorithm outputs are
displayed inside the ‘Predicted Duration to Scan Criteria’ box in FIRMM's
graphical user interface (GUI), as minutes until the user-specified data
criterion is reached. FIRMM users can select three FD thresholds (in mm)
and the desired amount of low-movement data (in min.) using a simple
settings file.

2.6. Visualization of framewise displacement (FD) in real time

FIRMM uses a GUI designed with Django (https://www.
djangoproject.com/) and Chart.js (http://www.chartjs.org/) to display
FD traces and summary counts of data quality in real time. FIRMM
continuously updates summary counts about the number of ‘high-quality’
low-movement frames already acquired (FD cutoff presets are 0.2 mm,
0.3 mm and 0.4 mm) in table format and as a color-coded bar graph. At
the end of each data acquisition epoch (run) the summary counts for that
run are displayed in a list that tabulates the summary head motion data

for each run separately and for the sum of all the data acquired thus far in
the active scanning session. FIRMM also displays predictions about how
much longer a given subject will likely have to be scanned until the preset
time-to-criterion (minutes of low-movement FD data) has been acquired.
There is also a graph of the actual amount of time (in min and s) one has
scanned ‘low-movement’ frames toward a preset criterion amount of
time. Users are able to customize the FD cutoffs and data amount crite-
rion by opening FIRMM in the settings mode (FIRMM -s). FIRMM can be
run in the help mode by typing FIRMM -h.

2.7. FIRMM monitoring: scanner requirements

FIRMM requires an MRI scanner enabled to rapidly reconstruct and
transfer BOLD images. FIRMM currently expects an EPI mosaic as pro-
vided by Siemens, but is customizable to work with non-mosaic formats
(i.e. GE and Philips). FIRMM monitoring was developed and tested on
Siemens 3T Tim Trio and Siemens 3T Prisma scanners at Washington
University School of Medicine (WUSM) and Oregon Health & Science
University (OHSU). Additional beta testing has been conducted as part of
the Adolescent Brain Cognitive Development (ABCD) project at several
MRI sites and is now being implemented as a core advancement for this
national study of 10,000 children who will be scanned biannually over
the next 10 years (http://www.ABCDstudy.org). FIRMM was expressly
designed to also be compatible with General Electric (GE) and Philips
MRI scanners and dedicated GE and Philips versions are under devel-
opment. On Siemens scanners FIRMM monitoring can utilize the ide-
acmdtool SendIMA option with buffering disabled. Alternatively, rapid
DICOM forwarding can also be built directly into Siemens sequences, or
an MS-DOS batch can be used to insert FIRMM ‘start’ and ‘stop’ buttons
into the operating system (stand-alone software that can be downloaded
with FIRMM).

2.8. FIRMM works with a wide range of sequences and EPI image types

Today's MRI data acquisition landscape is changing rapidly. With
multiband imaging, EPI data for sequences such as BOLD can now be
collected every few hundred milliseconds and at spatial resolutions as
low as 2 mm isotropic. While our estimations of FIRMM-driven time
savings and the initial live testing of FIRMM were conducted on single-
band EPI data with TRs of 2.0–2.5 s, we have since verified that
FIRMM works equally well with multiband EPI data acquired at spatial
resolutions as low as 2 mm isotropic and with TRs as short as 700 ms.

For BOLD data with high multiband factors, small voxel sizes and
short TRs, the rate-limiting step is image reconstruction from k-space
data, not FIRMM's FD calculations and predictions. While image recon-
struction can take longer for these types of acquisition parameters,
vendor software platforms are becoming faster. Siemens image recon-
struction as implemented in VE11B and VE11C is fast enough for FIRMM
FD calculations to keep up with the speed of data acquisition at TRs of
700 ms. In addition, we simulated even faster image acquisition rates
(TRs down to 500 ms) and FIRMM was still able to keep up and deliver
accurate real-time FD calculations.

In addition to providing real-time head motion information during
EPI imaging (rs-fcMRI, fMRI) at various resolutions and TRs, FIRMM can
also be used to calculate FD on the EPI motion marker or navigator im-
ages collected as part of novel motion-correcting structural sequences.
Such navigator images are similar enough to other EPI images that
FIRMM can monitor head motion as long as it receives the EPI navigator
images in real time. This use case is planned for development in a
later release.

2.9. FIRMM computer requirements

The only hardware requirement for running FIRMM is a Docker-
capable Linux computer networked to the computer running the scan-
ner operating system, which is already part of the typical setup for MRI
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scanners used in research. The FIRMM software is self-contained in a
Docker image and does not require licenses or the installation of other
software packages.

FIRMM has been most extensively used with a self-built computer
running Linux (Ubuntu 14.04 LTS) and the following hardware specifi-
cations: Intel Core i7 4790 K 4.0 GHz processor, 16 GB DDR3 memory,
Samsung 850 EVO 120 GB SSD and NVIDIA GTX 960 GPU.

2.10. FIRMM code availability

We are making the FIRMM software and manuals available on our
website (http://www.firmm.us) and on the Neuroimaging Informatics
Tools and Resources Clearinghouse (https://www.nitrc.org) (Luo et al.,
2009). Installation instructions for FIRMM can be found at: http://www.
firmm.us. Detailed documentation is included with the soft-
ware download.

2.11. Using FIRMM

We focused on making FIRMM as easy to launch as possible to
minimize the time interval between subject arrival and starting the first
run, which can reduce costs and increase the chance of getting through
the entire protocol for longer scanning sessions, especially in special
populations. In its current version, scanner operators open the FIRMM
monitoring GUI by typing ‘FIRMM’ into the command line.

To start monitoring head movement in real time the scanner operator
must open FIRMM and then click the ‘Start FIRMM’ button which will
begin monitoring the backend JSON file for updates.

Once launched, FIRMM requires no additional inputs because it
automatically detects the active MRI scanning session folder and moni-
tors for new incoming EPI acquisitions, separating images into distinct
runs. Should the scanner operator forget to launch FIRMM at the
beginning of the scanning session, he or she can launch FIRMM at any
point during the study and FIRMM will process all EPI images associated
with the current session in the correct order until it catches up to ongoing
image acquisition.

FIRMM automatically saves a log file for each run during a scanning
session. Shutting down FIRMM only requires closing the FIRMM GUI
window. All synced dicoms are automatically deleted from the host
computer after 48 h.

2.12. FIRMM outputs

FIRMM saves a temporary processing folder per study using the
DICOM header information. In that folder, FIRMM saves the head motion
parameters and FD values associated with each data frame. FIRMM also
generates and saves a JSON file of the full information displayed in the
GUI at the conclusion of the scanning session. By loading the JSONs of
completed scans, users are able to recreate the final FIRMM display of
previous scan session. For each scanning session FIRMM also writes out a
simple text log (.csv) containing each data frame's FD value and the six
underlying motion parameters. FIRMM users interested in using FIRMM's
motion numbers for data processing and denoising can either import
them from the log files, or from the JSON files using the JQ command-
line JSON processor (https://stedolan.github.io/jq/).

2.13. Future upgrades to FIRMM

As noted above, the current version of FIRMM is part of the standard
acquisition protocol for the 21-site ABCD study that will collect MRI data
(structural, task fMRI, and rs-fcMRI) from 10,000 children biannually
over the span of 10 years, starting at the age of 9. We expect the ABCD
study to provide a great deal of valuable feedback to further improve
FIRMM's utility. ABCD functional (fMRI, rs-fcMRI) and structural (mo-
tion-correcting T1, motion-correcting T2) data should allow us to further

improve the accuracy of our head motion prediction algorithm in the age
range under investigation.

FIRMM upgrades already under development are aimed at making it
even easier to use and to broaden its capabilities. Hence, we are currently
testing a version of FIRMM with interactive graphics that would further
simplify its use by allowing the selection and deselection of specific in-
dividual scans for inclusion in the actual and predicted amount of low-
movement data.

Planned future versions of FIRMM should also allow users to display
DVAR (D for derivative of timeseries, VAR for RMS variance across
voxels) as an additional EPI data quality metric. DVAR measures how
much the whole brain signal intensity varies from each data frame to the
next, independent of the source of signal change. DVAR traces are very
sensitive to frame-to-frame head motion but in principle can also detect
EPI signal aberrancies from sources other than head motion (Power et al.,
2015; Smyser et al., 2010).

In addition to the 4dfp alignment algorithm currently implemented
by FIRMM, future versions will allow scanner operators to choose be-
tween similar, but slightly different, EPI image registration methods for
calculating FD (FSL, AFNI, SPM).

Options for feeding information about head motion back to the sub-
ject, post-run and/or in real time are undergoing testing. Those feedback
approaches most effective at reducing head motion will also be built into
future versions of FIRMM.

2.14. Validation data sets

For this study, extant rs-fcMRI data (Table 1) from a total of 1134
scanning sessions of children, teens, and young adults (447 female scans)
with a mean age of 12.4 years (range ¼ 7.2–19.6 years), were utilized to
compare FIRMM's FD calculations to standard offline methods (WashU
4dfp (Power et al., 2012, 2015)) and to estimate the scanning cost re-
ductions had FIRMM been available at the time of scanning. These data
came from two different data sets that were pooled for the purpose of this
study. The same data were also used to validate FIRMM's head motion
prediction algorithm. These data included cohorts with attention deficit
hyperactivity disorder (ADHD: 425 scanning sessions, 140 female), autism
spectrum disorder (ASD: 84 scanning sessions, 17 female), a family history
of alcoholism (FHA: 304 scanning sessions, 141 female) and age-matched
neurotypical controls (Controls: 321 scanning sessions, 149 female).

The Human Investigation Review Board at OHSU (datasets 1, 2)
approved the research. Written informed consent was obtained from
respective parents and verbal or written assent was obtained from child
participants.

2.14.1. ADHD, ASD, neurotypical controls (dataset 1)
The ADHD and ASD cohorts, alongside age-matched neurotypical

controls, were recruited as part of two ongoing longitudinal studies in the
Fair and Nigg laboratories. For neurotypical and ADHD participants,
children were recruited from families who volunteered in response to
mass mailings in the community. Their diagnostic grouping was carefully
evaluated in best-estimate, multi-stage case finding procedure. Children
were excluded if they did not meet criteria for ADHD or non-ADHD
groups. Exclusion criteria were tic disorder, psychotic disorder, bipolar

Table 1
Validation Data Demographics.

Cohort Number of subjects Female Age range (yrs)

Control 321 149 7.5–19.0
FHA 304 141 11.9–19.6
ADHD 425 140 7.4–15.7
ASD 84 17 7.2–17.8

All 1134 447 7.2–19.6
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disorder, autism spectrum disorder, conduct disorder, major depressive
disorder, intellectual disability, neurological illness, chronic medical
problems, sensorimotor disability, significant head trauma (with loss of
consciousness); or if they were taking psychotropic medications other
than psychostimulants. Children were also excluded if they had contra-
indications to MRI. Only right-handed children were included in the
study. Children prescribed psychostimulant medications were scanned
after a minimum washout period of five half-lives (i.e. 24–48 h
depending on the preparation).

For ASD participants, diagnosis was determined by a multi-
disciplinary clinical team that utilized the ADOS (Lord et al., 2000). All
children also met ASD criteria on the ADI-R (Lord et al., 1994), using
DSM-IV criteria. Children with ASD were also assessed for ADHD by the
same research methods noted above. As above, children with ASD who
were taking psychostimulant medications were allowed in but were
washed out for a minimum of 24–48 h (depending on formulation) or at
least 7 half-lives of the formulation (i.e. the period of time it takes the
body to metabolize/excrete half of the dose of the medication) prior to
neuroimaging. Children taking non-stimulant psychoactive medications
(e.g. tricyclic antidepressants, SSRIs, MAO inhibitors, or antipsychotic
medication and atomoxetine) were excluded from the study.

2.14.2. Family history of alcoholism, neurotypical controls (dataset 2)
Participants, ages 10–16 years, were recruited from the local com-

munity. Family history of alcoholism (FHA) positive youthwere part of an
ongoing longitudinal study in the Nagel laboratory and matched for de-
mographic characteristics to family history negative participants (neu-
rotypical controls). To determine eligibility, structured interviews were
conducted by telephone with the youth and one of their parents [Struc-
tured Clinical Interview (Brown et al., 1994);]. Exclusionary criteria
included: lack of information on family history, family history of psychotic
disorders (i.e. schizophrenia or bipolar I), diagnosis of a DSM-IV psychi-
atric disorder [Diagnostic Interview Schedule for Children, Predictive
Scales (Lucas et al., 2001)], significant lifetime alcohol or substance use
(>10 lifetime alcoholic drinks or > 2 drinks on any single occasion, > 5
uses of marijuana, > 4 cigarettes per day, any other drug use) [Customary
Drinking andDrug Use Record (Brown et al., 1998);], neurological illness,
significant head trauma (loss of consciousness > 2 min), serious medical
conditions, intellectual disability or learning disability, prenatal exposure
to drugs or alcohol, left-handedness [Edinburgh Handedness Inventory
(Oldfield, 1971);], premature birth (<36 weeks), MRI contraindications,
and pregnancy or possible pregnancy.

2.15. FIRMM usage testing

After applying FIRMM to the 1134 extant scans (data sets 1, 2), we
tested FIRMM's utility for scanner operators in a new cohort of 29 chil-
dren (FIRMM testing dataset 3: 11 female, mean age ¼ 11.5 years, age
range ¼ 5.9–15.9 years). The Washington University (WU) Human
Research Protection Office approved the research. Written informed
consent was obtained from respective parents and verbal or written
assent was obtained from child participants.

A total of 29 children between the ages of 5–16 years old were
recruited from the local community and underwent rs-fcMRI scanning for
a study that provided access to FIRMM to the scanner operators
(Table 2).Children were excluded for any contraindications toMRI. Being
left-handed was not an exclusion criterion. All participants were native
English speakers.

2.16. Validation and FIRMM usage testing data acquisition parameters

Dataset 1 and 2 participants were scanned on a Siemens Tim Trio 3.0 T
Magnetom Tim Trio system (Siemens Medical Solutions, Erlangen, Ger-
many) with a 12-channel head coil, located at OHSU's Advanced Imaging
Research Center. A high-resolution T1-weighted MPRAGE sequence was
acquired (resolution ¼ 1 � 1 � 1.1 mm). BOLD-weighted functional im-
ages were collected (along the anterior–posterior commissure) using T2*-
weighted echo planar imaging (TR ¼ 2500 ms, TE ¼ 30 ms, flip
angle ¼ 90�, FOV ¼ 240 mm2, 36 slices covering the entire brain, slice
thickness ¼ 3.8 mm, resolution ¼ 3.75 � 3.75 � 3.8 mm). Three runs of
5min of resting state BOLDdatawere acquired, duringwhich participants
were instructed to stay still and fixate on a white crosshair in the center of
a black screen projected from the head of the scanner and viewed with a
mirror mounted on a 12-channel head coil.

Dataset 3 participants were scanned on a Siemens Tim Trio 3.0 T Mag-
netom system (Siemens Medical Solutions, Erlangen, Germany) with a 12-
channel head coil, located at WU's East Building Imaging Center. A high-
resolution T1-weighted MPRAGE sequence was acquired
(resolution ¼ 1 � 1 � 1 mm). Functional images were acquired using a
BOLD contrast-sensitive echo-planar sequence (TE ¼ 27 ms, flip
angle¼ 90�, in-plane resolution 4� 4mm; volumeTR¼ 2.5 s).Whole-brain
coverage was obtained with 32 contiguous interleaved 4 mm axial slices.
Participants completed up to seven 6.8min BOLD runs. During two of seven
runs participants were in the resting state, which consisted of viewing a
centrally presentedwhite crosshair (subtending<1� visual angle) on a black
background. During the other five runs participants watched brief movies
and/or received visual feedback about their head motion.

2.17. Analyses comparing FIRMM and offline FD values

For all 1134 scan sessions FD values were calculated using FIRMM
(see sections 2.2, 2.3, 2.4) as well as using a previously published Offline
method (Power et al., 2012, 2015). The differences between the FIRMM
and Offline FD values are 1) that the FIRMM FD values are calculated on
the ‘raw’ BOLD images, prior to de-banding and slice-time-correction,
and 2) that the FIRMM FD values are computed from BOLD image
alignments relative to the first data frame instead of the run's middle
frame (Offline). All other steps such as the estimation of head realign-
ment (section 2.3) and the formula for calculating FD (section 2.4) are the
same for the FIRMM and Offline methods.

For both FD calculation methods (FIRMM, Offline) the number of
usable low movement frames were calculated for three commonly used
stringent thresholds (FD < 0.2 mm, FD < 0.3 mm, FD < 0.4 mm). For the
whole sample of 1134 scans the correlation in the percentage of usable
low movement frames between FIRMM and Offline was calculated for
each frame censoring threshold (Fig. 3, Supplementary Fig. 2.

2.18. Analyses estimating time savings generated by FIRMM

To estimate how much scan time could have been saved by using
FIRMM to scan until each subject had acquired the desired number of
frames below the FD cutoff (scanning-to-criterion), we generated low
movement data (FD < 0.2 mm) accumulation plots for all 1134 scan
session. These plots show the accumulation of low movement data (min.,
y-axis) relative to the time spent scanning (min.; x-axis) (Fig. 5a). We
then generated low movement data accumulation plots for each of our
cohorts (ASD, ADHD, FHA, Control) (Fig. 5b). In these plots the area
under the curve represents the relative scan time savings (percent) when
scanning-to-criterion instead of scanning all participants for 20 min. For
those scan sessions with <20 min of collected data, we linearly extrap-
olated the accumulation of usable frames from the existing data (Fig. 5b).
We also used the 1134 individual lowmovement data accumulation plots
to calculate the time difference in time-to-criterion between the FIRMM
and Offline methods (Supplementary Fig. 4).

Table 2
FIRMM Testing Data Demographics.

Number of subjects Female Age range (yrs)

29 11 5.9–15.9
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3. Results

3.1. Head motion is greatest in young children, neuropsychiatric patients

MRI scans in demographic groups with very high head motion could
potentially benefit greatly from utilizing FIRMM analytics. Therefore, we
examined the effects of age, gender and different neuropsychiatric con-
ditions on deleterious head motion in our set of 1134 scan sessions from
subjects 7–19 years old (Fig. 2). Consistent with previous research (Fair
et al., 2012; Power et al., 2012; Satterthwaite et al., 2012), a multivariate

linear regression analysis (GLM: age, cohort, gender) showed that mean
FD values were significantly greater at younger ages (effect of age,
F ¼ 46.9, p < 0.00001). Patient and at-risk cohorts also had overall
greater FD values than controls (effect of cohort, F ¼ 17.8, p < 0.00001).
In addition, males had significantly greater FD values than females (effect
of gender, F ¼ 4.8, p < 0.03) (Fig. 2b). These patterns held true when we
conducted the same analyses using the percentage of low movement
frames (FD < 0.2 mm, FD < 0.3 mm, FD < 0.4 mm) instead of mean FD
(Supplementary Fig. 1).

Fig. 2. Effects of age, diagnosis and gender on head motion. The mean FD values (y-axis; Offline) for 1134 MRI scan participants are shown relative to participants' ages (x-axis). Within all
cohorts there is massive inter-individual variance in head motion. (a) Shows the participants labeled by diagnoses (Controls, Family History of Alcoholism (Brown et al., 1989), Attention
Deficit Hyperactivity Disorder (ADHD-200-Consortium) and Autism Spectrum Disorder [ASD]). (b) Shows the same data labeled by gender. At the top and to the right of each plot the
histograms for each cohort are shown. Lines represent LOWESS with span of 0.5.

Fig. 3. Comparison of FD values generated by FIRMM (red) and Offline approach (blue). FD data shown are from 1134 children and adolescents. (a) Shows the percentage of low
movement data (FD < 0.2) for each participant included (y-axis), sorted by the mean percentage of low-movement frames across both methods for each participant (x-axis). (b) Shows the
correlation (r ¼ 0.98; linear fit and fit equation shown in green; identity line shown in black) between estimates of low-movement data as calculated by FIRMM (x-axis) and the standard
offline post-hoc approach (y-axis).
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3.2. Demographics are poor predictor of in-scanner head motion

If the inter-individual variance in FD within demographic groups
were low, one could attempt to optimize MRI scan durations by simply
using different run lengths for different demographic groups. Yet, our
analyses showed the variance of mean FD values across subjects to be
very high in all cohorts ranging from ~0.1 to 2.0 mm across the entire
sample. Some very young patients (<8 years old) had almost no head
motion (mean FD ~ 0.1 mm), while some typically developing

adolescents had very high head motion (mean FD > 0.4 mm). Even
though the GLM analysis showed that age, diagnosis and gender signif-
icantly affected mean FD values, these factors explained only 12% of the
variance (R2 ¼ 0.12) across subjects. The high degree of inter-individual
variance in FD across all cohorts shows that demographic criteria are
insufficient predictors of how much data must be acquired for a given
participant in order to retain a minimum number of low-movement data
frames (Supplementary Fig. 1).

Fig. 4. Distance-dependent artifact removal when frame-censoring using Offline and FIRMM FD values. The analysis was implemented as originally published by (Power et al., 2012) using
all possible functional connections for a canonical set of 264 regions of interest (Power et al., 2011). The y-axis shows the difference in correlation strength for all functional connections
when comparing the frame censored data with the original data (censored – uncensored). Connection lengths (rms distance in mm) are plotted on the x-axis. Within each cohort data were
averaged across scanning sessions, prior to plotting. (a) Shows the effects of frame censoring (FD < 0.2 mm) when using the Offline FD numbers. (b) Shows the effects of frame censoring
(FD < 0.2 mm) when using the FIRMM FD numbers.
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3.3. FIRMM's real-time FD calculations are accurate

FIRMM's FD calculations are not only fast, but also accurate when
compared to a commonly utilized Offline, post-hoc processing stream
(Fig. 3) (Power et al., 2012, 2015; Siegel et al., 2014). To test the accu-
racy of FIRMM's FD calculations, we combined FD data from 1134 scan
sessions from subjects across several pediatric patient or at-risk cohorts
and age-matched controls between the ages of 7–19 years old (see Fig. 2).
Across all subjects, the FD values calculated by FIRMM in real time
strongly correlated with the post-hoc FD numbers generated by the
Offline processing approach (Power et al., 2012, 2015)) with an r-value
of 0.98. The correlation (r) between Offline processing and FIRMM in the
percentage of low-movement frames with FD < 0.2 mm was also 0.98
(Fig. 3). This strong correlation between FIRMM and Offline processing
in the percentage of usable low-movement frames was independent of
the censoring threshold. At FD thresholds of 0.3 mm and 0.4 mm the
correlation between FIRMM and Offline processing in the percentage of
usable frames was 0.99 (Supplementary Fig. 2).

For scanning sessions with extremely high total movement (<25%
low movement frames) FIRMM scored a slightly higher percentage of
frames as low movement, while the opposite effect was noted for scan
sessions with extremely low movement (>75% low movement frames;
see Supplementary Figs. 3,4). Given that the correspondence between the
FIRMM and Offline FD calculations is almost perfect, but not quite, we
investigated whether one set of FD-values might be superior at removing
distance-dependent head motion artifacts. The original analysis that
revealed distance-dependent head motion artifacts plotted the pre/post
frame-censoring changes in functional connectivity (Δr) against
connection lengths (mm) (Power et al., 2012). Repeating the original
distance-dependent artifact analysis with both the Offline and FIRMM FD
numbers (FD < 0.2 mm) showed the same linear relationship between
censoring-driven changes in connection strength (Δr) and connection
length for both of them (Fig. 4).

3.4. Using FIRMM to scan until data criterion is reached reduces scan
times

Extremely rigorous frame-censoring discards all data frames with an

FD value > 0.2 mm (Greene et al., 2016). In order to obtain a reasonably
stable estimate of a single subject's functional connectivity matrix, many
research groups, including ours, have been requiring at least 5 min of
low-movement data per subject as our data criterion. If we apply this
criterion to our entire sample of 1134 scan sessions, we find that col-
lecting 20 min of rs-fcMRI data would have given us at least 5 min of
low-movement (FD < 0.2 mm) data in 91% of participants (Fig. 5).
However, for 76% of the participants we could have already stopped
scanning after 10 min or less. For an additional 10% of the participants,
we could have stopped data acquisition between 10 and 15 min. Another
5% of participants reached data criterion between 15 and 20 min
of scanning.

Thus, if we had used FIRMM to scan each participant until they
reached the data criterion (5 min. FD < 0.2 mm), we could have reduced
the total rs-fcMRI scan time and associated costs for this sample by 57%.
We could have saved ~217 h of scan time for the rs-fcMRI data alone.
Even if we conservatively estimate total hourly MRI scanning charges at
$600/hr (MRI scanner usage fees, scanner operator(s) salaries and ben-
efits, study participant payments), scanning-to-criterion with FIRMM
could have reduced rs-fcMRI data acquisition costs by ~ $130,000 (see
Supplementary Discussion).

Recent research suggests that significantly more than 5 min of rs-
fcMRI data are needed for precision functional mapping of individual
brains (Gordon et al., 2017a, b; Laumann et al., 2015, 2016). Increasing
the rs-fcMRI criterion beyond 5 min (FD < 0.2 mm), would greatly in-
crease MRI scanning costs and with it the potential cost savings from
scanning-to-criterion with FIRMM.

FIRMM users scanning-to-criterion can export FIRMM's motion
numbers for post-hoc data denoising, including frame censoring. For
FIRMM users who would rather process and denoise their data using the
motion values automatically generated by an offline data analysis
package, precise congruence between the FIRMM and other FD values is
important. Therefore, we quantified the divergence in required scan
times between our FIRMM and Offline methods for a range of criterion
times (Supplementary Fig. 4). For each FIRMM low movement criterion
time, we calculated how long subjects would have had to be scanned so
that 95% of them also reached the same low-movement criterion time
with the Offline method. Consistent with Fig. 3 and prior work (Power,

Fig. 5. Accumulation of low movement data (FD < 0.2 mm; FIRMM FD values). (a) This plot shows the accumulation of low movement data (min. FD < 0.2; y-axis) relative to the time
spent scanning (min.; x-axis) for sample individuals from each of our cohorts. For standardization, we chose to display the accumulation plot for those participants at the 50th percentile of
usable data after 15 min of scanning, for each cohort. (b) Shows the percentage of participants that have reached the chosen data criterion of at least 5 min of data with FD < 0.2 mm for
each of our cohorts as well as the total sample (black). In this plot the area under the curve represents the relative scan time savings when scanning-to-criterion instead of scanning all
participants for 20 min. Time savings would have been 57% for the entire sample (black), 63% for controls (green), 64% for FHA (purple), 51% for ADHD (blue) and 46% for ASD (orange).
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2017) these analyses showed that the Offline processing slightly un-
derestimates motion for lower-movement scans, so that relatively
low-movement scans that meet the FIRMM data criterion will also meet
the same criterion for the Offline FD values (Supplementary Fig. 4a and
b). For the highest movement subjects this effect was reversed in that the
Offline processing slightly overestimated head motion compared to
FIRMM. Since the extremely high movement scans retained in our data
are typically excluded from published data sets, even without frame
censoring, and should ideally be stopped early based on FIRMM's
real-time information, the slight divergence between FIRMM and Offline
numbers for the very highest movement scans does not pose a prac-
tical problem.

3.5. Linear accumulation of low movement data allows prediction of time
to criterion

To further improve FIRMM's utility for reducing scan times and costs
we built an algorithm that accurately predicts the required scan time
until the low movement data criterion will be reached.

When creating this prediction algorithm, we started by visualizing the
effects of time spent in the MRI scanner on head motion (Fig. 6a–c).

Fig. 6a shows the concatenated mean FD traces for all scanning sessions
that included at least 3 � 5 min rs-fcMRI runs. A few observations are
noteworthy. First, in the higher moving clinical cohorts, mean FD values
increased with time in scanner (Fig. 6a). There also appears to be a small
“reset” in mean FD such that head movement is lower for the start of the
next run relative to the end of the prior session. In contrast, for the lower
moving control cohort, mean FD increased only minimally over time. The
percentage of low movement frames (FD < 0.2 mm) for the entire cohort
is shown in Fig. 6b, which indicates that the percentage of lowmovement
frames (FD < 0.2 mm) across each cohort declined only minimally with
time spent in the scanner. Fig. 6b suggests that the accumulation of low
movement frames over time should be relatively linear, which is verified
by the low-movement frame accumulation plot in Fig. 6c. The same ob-
servations hold true when analyzing median FD values instead of mean
FD (Supplementary Fig. 4). Given these findings, we chose a basic linear
model to make real-time predictions about how long each participant
would need to be scanned in order to reach the data criterion specified by
the FIRMM user (Fig. 6d). Using this model, we showed that after 100
data frames have been acquired, FIRMM makes accurate predictions
about howmuch longer a participant must remain in the scanner in order
to reach a certain number of low movement data frames (Fig. 6e).

Fig. 6. Linear accumulation of low-movement data allows accurate prediction of time-to-criterion. (a) Shows the mean FD (FIRMM processing) for each cohort (FHA excluded because only
8 min of data were collected for most subjects) and the sample as a whole (black line) as a function of the time participants have already spent in the scanner. (b) Shows the % of data
frames with FD < 0.2 at every time point in the scan for each of the cohorts. (c) Shows the relationship between the time scanned (x-axis) and the mean amount of low movement data
(FD < 0.2) accumulated for each cohort (actual data shown with solid lines; linear fits shown with dashed lines). (d) Shows the FD trace for a single individual participant (black line) and
compares it to the predictions FIRMM made at different points during the experiment (colored traces). (e) Shows FIRMM's prediction error (in minutes; thick line) and actual data
accumulation (thin black line) across the length of the scan (x-axis) for the same subject as in (d). (f) Shows FIRMM's average prediction error (%) over time (x-axis) for each cohort and the
entire group (solid lines), while the dashed lines indicate ± 1 standard deviation.
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FIRMM's continuously updating prediction algorithm displays an esti-
mate of how much longer it will take to reach the pre-specified low
movement data criterion (see Fig. 1). This feature is particularly helpful
for very high head motion individuals, since it helps scanner operators
estimate whether or not they will be able to collect the required amount
of low-movement data during the allotted scanner time. Fig. 6f illustrates
the robustness of the linear prediction algorithm.

3.6. Using FIRMM monitoring for the early termination of scans in very
high movement subjects reduces aggregate scan time

FIRMM can generate additional scan time savings by allowing scan-
ner operators to terminate scans early for those participants with
extremely low likelihoods of ever reaching the data criterion. For
example, in the ADHD cohort 40 out of 425 participants had provided

only 2.5 min (60 frames) of usable, low-movement data after 15 min of
scanning (Supplementary Fig. 1). For these high head motion subjects,
even another 5 min of scanning would likely not have brought them to
criterion and we could have stopped data collection after only 3 instead
of 4 runs. Using FIRMM's linear prediction module, we could have
terminated rs-fcMRI scanning for some participants even earlier. In this
manner, FIRMM allows MRI scanner operators to quickly move to the
next MRI sequence in the study protocol or to simply terminate the entire
experiment, thus saving the participant and operator valuable time.

3.7. FIRMM alerts scanner operators to unexpected changes in head
motion

Testing the real-world utility of FIRMM in a new cohort of 29 children
revealed additional benefits. For example, a fairly sudden and significant

Fig. 7. Sample FIRMM FD traces. For the MRI scans shown here, access to FIRMM's real-time FD traces enabled scanner operators to intervene and improve MRI data quality. (a) Shows the
FIRMM trace for a child who fell asleep towards the end of the scanning session. (b) Shows the FIRMM trace for a child who had much greater head movement for run #4.
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reduction in one participant's FD values towards the end of a scanning
session alerted the scanner operators to check on the participant who was
found to have fallen asleep (Fig. 7a). FIRMM also allows experimenters to
quickly test how different scanning conditions affect head movement in a
given participant. In one participant (Fig. 7b) who underwent seven
BOLD runs under slightly different conditions, it was immediately
evident that one of the conditions (run #4) greatly increased head
movement, while all other experimental conditions were well tolerated.

Other usage cases provided by beta testing centers included using
FIRMM to provide specific post-run feedback about head motion to
motivate participants. This usage included sharing the percentage of low-
movement data frames over the speaker system or displaying the FIRMM
GUI on the participant's screen in the scanner room for feedback and
training purposes.

4. Discussion

Brain MRI will continue to grow in importance for medical di-
agnostics and human neuroscience because of its versatility and favor-
able safety profile. Frame-to-frame head motion is one of the biggest
problems for all brain MRI sequences, clinical or research. Current so-
lutions for dealing with excessive head motion and distance-dependent
artifact carry additional risks (sedation) and costs (sedation, post-hoc
frame censoring). In order to improve medical care, we must improve
our ability to obtain usable brain MRIs without sedation. To speed up the
advance of human systems neuroscience we must simultaneously
improve brain MRI quality while reducing its costs. By enabling
scanning-to-criterion and real-time interventions to prevent head mo-
tion, FIRMM represents an initial step towards acquiring higher-quality
brain MRIs at lower costs.

Previously, motion estimates for brain MRIs were typically analyzed
offline, either after data collection was completed for a given subject, or
more commonly in large batches after data collection for the whole
cohort had been completed. Postponing head motion analyses until after
data collection is expensive and risky, especially when scanning a pre-
viously unstudied patient population and after making changes to the
data collection protocol or personnel. Researchers and clinicians need to
know if a given patient or cohort has higher than expected movement
before it is too late to intervene.

Our analyses of head motion in 1134 scanning sessions from children,
adolescents and young adults show that the FIRMM-driven time savings,
when scanning-to-criterion, ranged from 46 to 64% depending on the
cohort. While these cost-savings are specific to frame-censoring, FIRMM's
benefits are not limited to the frame-censoring of functional or structural
MRI data. Using FIRMM will reduce acquisition costs even if the post-
acquisition processing to reduce motion distortions does not involve a
frame-censoring step (e.g. acompcor, ICA-FIX, ICA-AROMA) (Behzadi
et al., 2007; Griffanti et al., 2014; Muschelli et al., 2014; Pruim et al.,
2015a). FIRMM's head motion prediction algorithm can save time and
cost by allowing researchers to terminate scans early for those partici-
pants who are extremely unlikely to provide usable data in the available
time period. Scanner operators can then decide whether to rebook that
participant for a longer time slot or whether to forego further attempts at
MRI scanning. While scanning-to-criterion and early termination of
extremely high movement scans will generate important cost reductions,
preventing head motion from distorting MRI data in the first place is
always preferable.

FIRMM's real-time information about head motion can be used to
prevent head motion in two different ways: 1) By influencing the
behavior of MRI scanner operators and 2) by influencing MRI scanning
participant behavior. Scanner operators monitoring the FIRMM window
for any sudden or unusual changes in head movement are able to inter-
rupt such scans to investigate if the subject has started moving more
because they have grown uncomfortable and whether a bathroom break,
blanket, repositioning or other intervention could make them feel more
comfortable.

FIRMM information can also be used to improve the participants'
motivation and ability to hold still. Simply informing scan subjects that
their head motion will be monitored in real time might reduce motion in
some participants. In addition, post-run feedback about motion on the
preceding run might lead to further head movement reductions. Such
post-run feedback can be transmitted verbally or by visually displaying
aspects of the FIRMM output to the participant after each run. Finally,
FIRMM can be used to provide real-time visual feedback about head
motion in order to reduce participant motion. Real-time head motion
feedback might alter functional MRI measures, but will not affect the
underlying signal for structural MRIs with motion correction (navigator
images). While all of the validations presented here relied on functional
MRI data, FIRMM is customizable to operate on the EPI navigator images
imbedded within motion-tracking structural MRI sequences.

While it is generally agreed upon that FD accurately estimates head
motion during scan acquisition, slightly different methods for calculating
FD are currently in use. We compared the calculation of FD currently
implemented in FIRMM with the Offline method previously used in our
laboratories. FD values generated by FIRMM differ from the Offline
values in two ways: 1) FIRMM aligns all EPI images to the first frame of
the run instead of the middle one, and 2) FIRMM operates on the raw
images prior to debanding and slice-time-correction. Both of these pro-
cessing changes should in principle be advantageous. We showed that the
first frame of a run, on average, has slightly lower head motion (Fig. 6a),
which slightly decreases the likelihood that the reference frame might
become contaminated by head motion. In addition, Jonathan Power has
argued that FD numbers need to be calculated on raw BOLD data (prior to
debanding, slice-time correction), because temporal interpolation could
dampen apparent head motion (Power, 2017). Thus, FIRMM's method of
calculating FD values might in principle be preferable over our previous
Offline approach.

Our comparisons between the FIRMM and Offline FD values showed
that they are highly congruent (r ¼ 0.98). We also compared the FIRMM
and Offline FD values in their effectiveness for removing distance-
dependent artifacts by repeating the original analysis used to first
describe distance-dependent head motion artifact (Power et al., 2012)
with our 1134 scan sessions. Frame-censoring based on the FIRMM and
Offline FD values seemed to remove distance dependent artifact to an
equal degree (Fig. 4). Therefore, it seems reasonable and possibly more
technically accurate to utilize FD values calculated prior to debanding
and slice-time correction.

Given that several other methods for calculating FD are currently in
use (AFNI, FSL, SPM, etc.), we are planning on adding real-time versions
of all commonly used FD calculation methods to future versions of
FIRMM. In addition, we plan on benchmarking all of the real-time FD
calculation methods against each other and their respective offline ver-
sions. Thus, future FIRMM updates will enable using one's real-time FD
calculation method of choice.

While frames with high FD values introduce some of the most sig-
nificant artifacts into MRI data, removing them might not get rid of all
distortions. It has been proposed that very large head movements can
also distort subsequent data frames. Therefore, some research groups
remove one or more additional frames following high movement frames,
while others do not. At the moment FIRMM is able to perform analyses on
the number of frames below a certain FD cutoff, but it cannot yet process
more complex contingencies, such as removing n frames following a head
movement of a certain magnitude. Thus, we are planning on releasing
future versions of FIRMM that will allow scanner operators to input more
complex frame censoring algorithms. Other factors such as chest move-
ments, for example, can distort the magnetic field (B0) and induce arti-
facts. Therefore, future versions of FIRMM will also track DVARs, a
measure of how much the whole brain signal intensity varies from each
data frame to the next that is sensitive to other sources of artifact besides
head motion.

In summary, we contend that MRI sequences of the future should
always be coupled to a real-time quality control display for the scanner
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operator and include the option of feeding back information about data
quality to the participant.
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