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Abstract: Parameter inference in mathematical models of complex biological
systems, expressed as coupled ordinary differential equations (ODEs), is a chal-
lenging problem. These depend on kinetic parameters, which cannot all be mea-
sured and have to be ascertained a different way. However, the computational
costs associated with repeatedly solving the ODEs are often staggering, making
many techniques impractical. Therefore, aimed at reducing this cost, new con-
cepts using gradient matching have been proposed. This paper combines current
adaptive gradient matching approaches, using Gaussian processes, with a paral-
lel tempering scheme, in order to compare 2 different paradigms using the same
nonlinear regression method. We use 2 ODE systems to assess our technique,
showing an improvement over the recent method in Calderhead et al. (2008).

Keywords: Parameter inference; Ordinary differential equations; Adaptive gra-
dient matching; Gaussian processes; Parallel tempering.

1 Introduction

Ordinary differential equations (ODEs) have many applications in mod-
elling the behaviours of systems, from fluid mechanics to systems biology.
Often, there is enough knowledge of a system to model it through mathe-
matical equations, but there is intrinsic uncertainty in the kinetic parame-
ters governing these. Conventional methods involving Markov Chain Monte
Carlo (MCMC) tend to involve integrating the system of ODEs at each it-
erative step, to compare how well the sampled parameters match the data.
However, the computational cost can be overbearing, making these methods
impractical for larger systems, and more modern methods have sought an
alternative to the explicit solution. The work by Calderhead et al. (2008),
Campbell and Steele (2012) and Dondelinger et al. (2013), involves fitting
an interpolant to the data, then comparing the gradients from the inter-
polant to those from the ODEs (known as gradient matching). The original
method proposed by Calderhead et al. (2008) uses a methodological sim-
plification, which effectively ignores the posterior correlation between the
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ODE parameters and the Gaussian process (GP) hyperparameters in the
sampling scheme, whereas Dondelinger et al. (2013) sample all the param-
eters from the posterior distribution (adaptive gradient matching (AGM)).
Both Dondelinger et al. (2013) and Campbell and Steele (2012) temper
towards the posterior (8-tempering, Section 2.), but Campbell and Steele
(2012) differs with regards to the mismatch parameter (the difference be-
tween the gradients). Whereas Dondelinger et al. (2013) infer the mismatch
parameter, Campbell and Steele (2012) temper this mismatch towards zero
(y-tempering). Since this is gradual, it avoids convergence problems. We
combine both methods to create an adaptive gradient matching technique,
using Gaussian processes and parallel tempering (both the 5 and « variety).

2 Methodology

Consider a set of T arbitrary time points ¢; < ... < tp, and a set of
noisy observations Y = (y(t1),...,y(tr)), where y(t) = x(t) + €(t), N =
dim(x(t)), X = (x(t1),...,x(t7)). The signals of the system are described
by ordinary differential equations (ODEs), of the form

_ dx(t) _ : _
X dt - f(X(t), 93 t), X(tl) =X1 (1)

where 6 is a parameter vector of length p, and € ~ N(0,02I). Then,

PY|X,o HHPyn )|z (t) HHNyn Nan(t),on) (2)

Now let x,, and y, be T dimensional column vectors containing the n'”

row of X and Y. Following Calderhead et al. (2008), we place a GP prior
on X, p(X,|¢) = N(x,]0,Cy, ), where Cy, is a positive definite matrix of
covariance functions with hyperparamters ¢,,. As the derivative of a GP is
itself a GP, the conditional distribution for the state derivatives is

p(X'[x,¢) = N(m,,, K,) 3)
(analytical solutions to m,, and K,, in Dondelinger et al. (2013)). Assuming
additive Gaussian noise with state-specific variance 7,, from (1) we get

p(X,n|X703’Vn) = N(fn(x’a)vvn]:) (4)

Dondelinger et al. (2013) link the interpolant in (3) with the ODE model
in (4) using a products of experts approach, obtaining a joint distribution
for p(X’, X, 0, ¢p,~). This can then be marginalised over in closed form (see
Dondelinger et al. (2013) for details), to obtain p(X, 8, ¢,~).

Following Dondelinger et al. (2013), we sampled 8 and ¢ from the poste-
rior distribution with MCMC. However, we did not sample ~ directly, but
instead followed Campbell and Steele (2012) to set up a ladder of fixed
values associated with the “temperatures” of a parallel tempering scheme,
choosing a Logy( scale. For details see the online supplementary material at
http://www.stats.gla.ac.uk/~dhusmeier/MyPapers/IWSM2013Macd.pdf
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FIGURE 1. Parameter estimation accuracy of 6 over noise instantiations, for the
Fitz-Hugh Nagumo (left) and Lotka-Volterra (right) systems. Some outliers in the
plots have been removed for scalability. The dashed lines show zero difference.
Top Row: Boxplots, over the 10 datasets, of differences between the median of
sampled parameters and true values. The solid line splits the D-Model/C-Model
(left) from the T-Model (right). Bottom Row: Boxplots, over the 10 datasets, of
the differences in parameter estimation accuracy for the D-Model and T-Model.
The p-values for a paired t-test are shown above the corresponding boxplot.

3 Results

We tested our method on the Fitz-Hugh Nagumo (FitzHugh (1961) and
Nagumo et al. (1962)) and Lotka-Volterra (Lotka (1932)) ODE models.
For space restrictions, details of the equations and parameters have been
relegated to the online supplementary material.

We introduce the abridged notation used in this section: The method de-
scribed in Calderhead et al. (2008) shall be denoted, C-Model, the method
described in Dondelinger et al. (2013), D-Model, and the new combined
method proposed in this paper, T-Model. For each system, method and
added observational noise level, 10 datasets were generated. By averaging
over these, we are able to remove specific characteristics of a dataset and
observe more clearly our method’s performance. The median was used as
an estimator of the parameters and the true values were subtracted from
the sampled parameter estimates. The distributions (of estimate minus true
value) over the 10 datasets were compared.

The first row of FIGURE 1. shows the distribution of the estimate to the
true parameter for the D-Model, C-Model and T-Model (Logyp), for the
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FhN and LV systems. For zero noise, both the C-Model and T-Model have
boxplots centred very close to zero, displaying good performance. However,
when increasing the noise, the C-Model no longer has a distribution cen-
tred around zero (no part of the distribution for noise = 0.1 and only a
small part of the lower tail for noise = 0.5). For all noise instantiations, the
T-Model (and D-Model) has most of its mass centred around zero. There-
fore, if averaging over all datasets, for the T-Model, the true parameters
are close to the estimates i.e. this technique is unbiased. The second row
of FIGURE 1. allows us to check how robust our technique is. The plots
show the distributions of the differences between the absolute distance of
the estimator to the true parameter for the T-Model and D-Model. These
distributions are centred around zero, indicating that there is no notice-
able difference between the parameter estimation accuracy of these two
techniques. We can therefore see that our technique is robust to noise.

4 Conclusion

We have carried out a comparative evaluation of two schemes for adaptive
gradient matching: posterior inference vs. parallel tempering of the gradient
mismatch hyperparameter. The tempering scheme was originally proposed
in the context of splines-based regression, which we have adapted to non-
parametric Bayesian modelling, with Gaussian processes. An application
to data, generated from two different systems of ODEs, shows no signifi-
cant difference between the parallel tempering and posterior inference. We
found that both methods outperform a related method by Calderhead et
al. (2008), considered the current state of the art.
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