
 

 

 

 

 

 

 

 

 

 

 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

• This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

• A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

• This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

• The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

• When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



A Machine Learning Approach to

Reconstructing Signalling Pathways and

Interaction Networks in Biology

Frank Dondelinger

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute for Adaptive and Neural Computation

School of Informatics

University of Edinburgh

2013





Abstract
In this doctoral thesis, I present my research into applying machine learning techniques

for reconstructing species interaction networks in ecology, reconstructing molecular

signalling pathways and gene regulatory networks in systems biology, and inferring

parameters in ordinary differential equation (ODE) models of signalling pathways.

Together, the methods I have developed for these applications demonstrate the useful-

ness of machine learning for reconstructing networks and inferring network parameters

from data.

The thesis consists of three parts. The first part is a detailed comparison of applying

static Bayesian networks, relevance vector machines, and linear regression with L1

regularisation (LASSO) to the problem of reconstructing species interaction networks

from species absence/presence data in ecology (Faisal et al., 2010). I describe how I

generated data from a stochastic population model to test the different methods and

how the simulation study led us to introduce spatial autocorrelation as an important

covariate. I also show how we used the results of the simulation study to apply the

methods to presence/absence data of bird species from the European Bird Atlas.

The second part of the thesis describes a time-varying, non-homogeneous dynamic

Bayesian network model for reconstructing signalling pathways and gene regulatory

networks, based on Lèbre et al. (2010). I show how my work has extended this model

to incorporate different types of hierarchical Bayesian information sharing priors and

different coupling strategies among nodes in the network. The introduction of these

priors reduces the inference uncertainty by putting a penalty on the number of structure

changes among network segments separated by inferred changepoints (Dondelinger

et al., 2010; Husmeier et al., 2010; Dondelinger et al., 2012b). Using both synthetic

and real data, I demonstrate that using information sharing priors leads to a better re-

construction accuracy of the underlying gene regulatory networks, and I compare the

different priors and coupling strategies. I show the results of applying the model to

gene expression datasets from Drosophila melanogaster and Arabidopsis thaliana, as

well as to a synthetic biology gene expression dataset from Saccharomyces cerevisiae.

In each case, the underlying network is time-varying; for Drosophila melanogaster, as

a consequence of measuring gene expression during different developmental stages;

for Arabidopsis thaliana, as a consequence of measuring gene expression for circa-

dian clock genes under different conditions; and for the synthetic biology dataset, as

a consequence of changing the growth environment. I show that in addition to infer-

ring sensible network structures, the model also successfully predicts the locations of
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changepoints.

The third and final part of this thesis is concerned with parameter inference in

ODE models of biological systems. This problem is of interest to systems biology

researchers, as kinetic reaction parameters can often not be measured, or can only be

estimated imprecisely from experimental data. Due to the cost of numerically solving

the ODE system after each parameter adaptation, this is a computationally challenging

problem. Gradient matching techniques circumvent this problem by directly fitting the

derivatives of the ODE to the slope of an interpolant. I present an inference procedure

for a model using nonparametric Bayesian statistics with Gaussian processes, based

on Calderhead et al. (2008). I show that the new inference procedure improves on

the original formulation in Calderhead et al. (2008) and I present the result of apply-

ing it to ODE models of predator-prey interactions, a circadian clock gene, a signal

transduction pathway, and the JAK/STAT pathway.

The material within this thesis is partly based on my published papers and book

chapters:

• Chapter 2, on reconstructing ecological networks, is based on Faisal et al. (2010).

• Chapters 3 and 4, on reconstructing signalling pathways and gene regulatory

networks with information sharing, are based on Dondelinger et al. (2010), Hus-

meier et al. (2010), Dondelinger et al. (2012a), Lèbre et al. (2012) and Don-

delinger et al. (2012b).

• Chapter 5, on inferring parameters in ODE models of biological systems, is

partly based on Dondelinger et al. (2012c).

• Appendix C is based on Dondelinger et al. (2011).

• Appendix E is based on part of Lin et al. (2010).
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Chapter 1

Introduction and Background

1.1 Introduction

Networks are ubiquitous in many fields, ranging from engineering over social sciences

to biology. In biology, we encounter networks at different levels; most prominently

in the form of signalling pathways and gene regulation networks in molecular cell

biology, and in the form of food webs and species interaction networks in ecology. In

both subfields, trying to construct and analyse networks based on the available data

is an active and important area of research. In many cases, knowing the structure

and parameters of the network can lead to a better understanding of the system that

the network is modelling. In molecular systems biology, this can help identify key

factors in genetic diseases, which can lead to the development of better, targeted drugs

or treatments (Emilsson et al., 2008). In ecology, it can give an indication of which

species are essential to the survival of an ecosystem, and how much environmental

strain the system can take before it collapses (Ings et al., 2009).

In systems biology, networks help in understanding gene regulation and molecular

signalling at the cell level. The process of gene regulation is quite well understood:

Important proteins called transcription factors will bind to the DNA at specific binding

sites, and will expedite or inhibit the transcription of a nearby gene into mRNA. This

gene will then be translated into a protein, with the protein going on to fulfil its func-

tions in the cell, which might involve acting as a transcription factor to another gene.

This process of a transcription factor activating or inhibiting the transcription of a gene

is one aspect of gene regulation. Other aspects involve the phosphorylation of proteins,

which can enable or disable their activity as a transcription factors or signal carriers,

or the methylation of certain sites of the DNA, which can prevent transcription from
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2 Chapter 1. Introduction and Background

taking place.

Molecular signalling is the most important mode of communication within and be-

tween cells. Receptor-activated signalling, perhaps the most well-known type of sig-

nalling, starts when an outside signalling molecule called a ligand binds to a receptor

protein at the cell surface. This exposes a binding site on the part of the receptor that

is on the inside of the cell. Special messenger proteins (also called signalling proteins)

then bind to the receptor and propagate the signal to the intended destination inside the

cell. Often, a signalling protein will pass the signal onto another signalling protein,

a process which can be repeated to lead to a so-called signalling cascade. Feed-back

loops are also possible, whereby the signal can be fed back to an earlier part of the

signalling cascade. The ultimate destination of the signal could be a protein in the cell,

or a even a transcription factor regulating a gene, thereby linking signalling pathways

to gene regulatory networks.

In ecology, networks usually take the form of food webs, where a link between

two species indicates that one species is a food source for the other. Such food webs

can be arbitrarily complex, with many layers, interdependencies, and even feedback

loops, belying the simplified concept of a food chain. The dynamics of food webs

have been studied extensively (Cohen et al., 1994; Dunne et al., 2002; Lande et al.,

2003). In Chapter 2, I have considered food webs, but I have also introduced the more

general concept of a species interaction network. In a species interaction network,

a link between two species indicates that the presence of one species influences the

presence of the other, which could be through a predator-prey interaction, mutualism,

or competition for a common food source.

Given the overwhelming importance of networks in these fields, it is crucial that we

develop efficient tools for inferring the networks and analysing them. Generally, we

will not be able to observe the interactions in the network directly; in systems biology,

many of the processes involved in gene regulation and signalling take place at time and

size scales that make observation difficult and often impossible. In ecology, the cost

and effort involved in collecting direct observations of species interactions is often

prohibitive. This explains the importance of network reconstruction techniques that

rely only on data that can be easily observed, such as gene expression data or species

presence/absence.

In systems biology, machine learning approaches have been heavily used to re-

construct networks from data, mostly based on microarray data (e.g. Werhli et al.,

2006; Tenenhaus et al., 2010; Logsdon et al., 2012), but more recently data from Next-
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Generation Sequencing (NGS) has also become available (Werner, 2010). The sudden

availability of very high-dimensional data, as well as the need to analyse and integrate

datasets of different types and provenance (Yeung et al., 2011), has made sophisticated

machine learning techniques essential for learning networks in a principled way. Re-

gression methods (Rogers and Girolami, 2005; van Someren et al., 2006) and Bayesian

networks (Friedman et al., 2000; Perrin et al., 2003; Husmeier and McGuire, 2003)

have both been applied with great success in this area.

Rather surprisingly, machine learning approaches have been neglected in ecology,

where it is common practice to construct models by hand and then analyse them to see

if they conform to the data (Memmott, 1999; Vázquez and Simberloff, 2002; Blüthgen

et al., 2006). While this works well for small systems with only a few species, it

becomes hard to do once the complexity of the system increases.

On the systems biology side, there currently exists a split between regression and

graphical models for network inference (e.g. Rogers and Girolami, 2005; van Someren

et al., 2006; Fröhlich et al., 2011), and mechanistic methods that model the dynamics

of the system as coupled differential equations (e.g. Ashyraliyev et al., 2009; Pokhilko

et al., 2010). One can come up with convincing arguments for either approach, and in

fact I would argue that they should complement each other. The main goal of my thesis

is to present new methods that solve some of the outstanding problems of current tech-

niques in network structure and parameter inference. In doing this, I have contributed

new computational tools that will help scientists to reconstruct biological networks. In

the rest of this chapter, I will present a brief review of this field, before moving on to

describe my contributions in subsequent chapters.

1.2 Types of Biological Networks

Networks are a useful tool for analysing relationships in biology. Their structure re-

veals which entities interact, and if the dynamics are known, they can provide a useful

model for testing hypotheses. In this thesis, I will mainly focus on gene networks and

signalling pathways in the cell and species networks in ecology, although I will briefly

outline some additional examples of networks in biology below.
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1.2.1 Gene Regulatory Networks

The central dogma of molecular biology states that genes in DNA are transcribed into

mRNA, which is then translated into proteins that do most of the work inside the cell.

However, not all genes in the DNA are turned into mRNA (or ’expressed’) all the time,

nor at the same rate. The process of controlling which genes are expressed and how

much of each gene is turned into mRNA is called gene regulation.

Gene are mostly regulated by other genes (or rather, the proteins that are coded

for by other genes). This is because some proteins function as transcription factors,

binding to the DNA and facilitating (or in some cases, inhibiting) the transcription

of a nearby gene. Because of this mechanism, when we speak of a gene regulatory

network, we usually mean a network whose nodes consist of genes, and where the

edges indicate that the expression level of one gene will regulate the expression of

another gene (either up or down, depending on the type of edge).

Gene regulation can be a bit more complicate than this, because it can also depend

on post-transcriptional modifications of the mRNA and post-translational modifica-

tions of the proteins. In post-transcriptional regulation, a protein controls the transla-

tion rate of another protein by binding to the mRNA strand and interfering with the

translation process. Post-translational regulation only involves proteins: After a pro-

tein has been translated from mRNA, it may be in an inactive state which does not

allow it to function as a transcription factor. The protein can then be modified by

other proteins to activate it (for example via phosphorylation). These processes are

abstracted away in many network inference methods, but they may be important.

More details on gene regulatory networks can be found in Chapters 3 and 4.

1.2.2 Ecological Networks

In ecology, there are different kinds of networks that one may consider. The most

common kind is a so-called food web. In a food web, the relationship between different

species in the network is expressed in terms of predator-prey behaviour: a directed edge

between species 1 and species 2 means that species 1 preys on species 2.

Antagonistic predator-prey interaction is not the only kind of relationship that can

exist between species. Another possible type of interaction is mutualism, where two

(or more) species benefit in some way from each other’s presence. The most common

example is symbiosis, such as the cleaner fish that benefit other fish by feeding on their

dead skin.
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Another type of interaction that is worth mentioning is competition for common

resources. Here, the relationship between two species depends on some shared re-

source (usually food or living space) which means that one species can only thrive at

the expense of another.

What all these interactions have in common is that they influence the population of

the species that are involved. This shows the similarity between ecological networks

and gene regulation networks. Positive interactions (mutualism in ecology, transcrip-

tion factor binding in gene regulation) increase the population or concentration, while

negative interactions (predator-prey and competition in ecology, inhibitory genes in

gene regulation) decrease it.

More details on ecological networks can be found in Chapter 2.

1.2.3 Other Types

Although gene and ecological networks are the main focus of this thesis, it is worth

mentioning that these are not the only important types of networks in biology. Other

types of networks exist and can be studied. These include:

Protein interaction networks: Gene regulation networks study interactions that are

mediated via transcription, and can be found by looking at mRNA expression levels

in the cell. But not all protein interactions lead to a change in expression levels. Sig-

nalling pathways can be seen as a type of protein interaction network, in which the

main activity is the propagation of a signal from the receptors at the cell surface to

proteins inside the cell, usually leading to a change of their activation state. Tech-

niques like co-immunoprecipitation, yeast-2-hybrid and others can be used to detect

protein-protein interactions directly. Some of these methods are noisy and expensive,

so computational statistics and machine learning can still be helpful in constructing

protein interaction networks.

Reaction networks: Technically, a reaction network is any network describing how

different substrates and products are linked by chemical reactions. In systems biology,

the term is most frequently used in relation to metabolic networks (or metabolic path-

ways) that describe the workings of the cell at the chemical level. Metabolic networks

include gene regulatory and protein-protein interactions, but also show metabolites that

may play a vital role in the cell.

Cell networks: Most cells communicate by releasing molecules, such as hormones,

that are caught by the receptors of other cells. Outside the cells, this kind of signaling
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is usually undirected, affecting all cells in the immediate vicinity. A more interesting

kind of cell network is the network of neurons in the brain. These communicate with

other neurons via synapses, where the electric signal of one neuron is passed to its

neighbours. Networks of neurons are thought to hold the answers to many of our key

questions about the working of the brain and the nervous system.

1.3 Network Models and Inference

Network reconstruction methods can be broadly grouped into three categories: Meth-

ods that use relevance scores or regression to determine weights for the edges in the

network, probabilistic methods that try to calculate the posterior probability of edges

either directly or by sampling networks from a distribution, and mechanistic methods

that model the relationship between species as a dynamical system and try to estimate

the parameters of the system.

1.3.1 Relevance Networks and Regression Methods

Relevance Networks Relevance networks (Butte and Kohane, 2000) are a relatively

simple graphical network model, based on calculating an association score between

pairs of nodes. A link between two nodes is added to the network if their score is higher

than a certain threshold, indicating that there is a significant association between the

nodes. Butte and Kohane suggest using a permutation test to set the threshold (Butte

and Kohane, 2003). Scores could be based on correlation coefficients, or on mutual

information. More sophisticated pair-wise association scores are also possible; for

example, a non-linear correlation measure has recently been proposed in the form of

the maximal information coefficient (MIC) (Reshef et al., 2011), which is calculated

by finding a grid partition of the data that leads to the highest mutual information.

Regardless of the score that is used, one major drawback of using the relevance

network approach is that due to the pairwise approach, it cannot easily distinguish

between direct interactions of nodes, and indirect interactions (via a third node).

Gaussian Graphical Models (GGMs) Gaussian Graphical Models (also called Con-

ditional Independence Graphs) are one alternative model that can be used to deal with

this problem. GGMs are undirected graphical networks, where we assume that the vari-

ables in the network have a multivariate Gaussian distribution. One can then construct
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a network by calculating the partial correlation coefficient between each pair of nodes

in the network, and adding an edge between them if their coefficient is significantly

different from zero. The use of partial correlation coefficients highlights the difference

between this approach and relevance networks. Unlike correlation coefficients, they

describe the correlation between two nodes conditioned on the rest of the nodes. This

means that only direct interactions between two nodes lead to an edge between them.

The straight-forward GGM construction algorithm as described in Whittaker (1990)

works by taking advantage of the fact that the matrix Π of partial correlation coeffi-

cients is related to the inverse of the matrix P of correlation coefficients. This means

you can calculate Π by taking:

Ω = P−1 = (ωi j) (1.1)

and

πi j =−
ωi j√
ωiiω j j

(1.2)

There are some drawbacks with this simple method, which have been resolved in

Schäfer and Strimmer (2005b), as will be explained in Chapter 2. More recently, Do-

bra and Lenkoski (2011) have proposed an extension of GGMs in the form of Copula

Gaussian graphical models, which relaxes the multivariate Gaussian assumption by us-

ing a Gaussian copula to describe the dependence patterns between the observed vari-

ables. However, inference in this model has to be done via a Gibbs sampler, making it

more computationally demanding than the method of Schäfer and Strimmer (2005b).

Another method that promises to relax the Gaussian assumption is Forest Density Esti-

mation (Liu et al., 2010), where finding the graphical model is reduced to the problem

of finding a maximum weight spanning forest. However, while the authors demon-

strate that this model is efficient for network inference in high dimensional data, the

caveat that the resulting graph has to be a forest (i.e., having at most one path between

each pair of vertices) seems quite restrictive.

Linear Regression (Unpenalised) If we assume that one can approximate a gene

regulatory network by a linear system, then it makes sense to apply linear regression

to determine the gene interactions.

Classic linear regression takes a data set of vectors xi and response variables yi

where each xi = (xi1, ...,xip) and the goal is to produce a weight vector w that we can



8 Chapter 1. Introduction and Background

use to predict a value for yi. Assuming the data has been standardised, that means we

want to find:

ỹi = ∑
j

w jxi j (1.3)

such that

∑
i
(yi− ỹi)

2 (1.4)

is minimised. This is called an ordinary least squares (OLS) estimate, and equation

1.4 is called the residual squared error.

Gardner et al. (2003) used unpenalised regression to infer a subnetwork of the SOS

pathway in E. coli. To deal with underdetermination, they imposed a fan-in restriction

on the network, so that each gene could only have a fixed number of regulators k. They

could then apply the regression for each set of k regulators and choose the set that

presented the best fit.

Regularised Linear Regression The problem with the OLS estimate in equation

1.4 is that it has a large variance, and it is hard to interpret which of the predictors

(variables in x) have the strongest effect. An alternative way of restricting the search

space and dealing with these problems is to add a regularisation term (also sometimes

called a penalisation term). The common L2 regularisation takes the form:

w = argmin{∑
i
(yi−∑

j
w jxi j)

2 +λ∑
j

w2
j} (1.5)

where λ determines a bound on the norm of the weights. This is also known as

ridge regression. A further advantage of regularisation is that is can help with under-

determination in the case where the number of variables p is larger than the number of

data point n. It achieves this by reducing the number of parameters that have to be esti-

mated. However, L1-regularised regression only shrinks weights, without setting them

to zero. This means that no genes will be completely ruled out as regulators. For that

reason, it can be preferable to use L1 penalisation or lasso. LASSO (although usually

not capitalised) stands for ”Least Absolute Shrinkage and Selection Operator”, and

was first described in Tibshirani (1996). The lasso promises to introduce sparsity by

both shrinking the weights and setting some of them to zero, until only the significant

ones are left.
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Mathematically, the lasso estimate is defined as:

w = argmin{∑
i
(yi−∑

j
w jxi j)

2} with the constraint that ∑
j
|w j| ≤ t (1.6)

where t is a hyperparameter that defines how much shrinkage is applied to the

weights. Smaller values of t result in more shrinkage. More details about the lasso

can be found in Chapter 2. L1-penalisation using the lasso is a very active research

topic, and many variants have been developed, including the group lasso for select-

ing grouped variables (Yuan and Lin, 2005) and the elastic net, combining L1 and

L2 penalties (Zou and Hastie, 2005). Perhaps most relevant for network inference

is the graphical lasso, which applies an L1 penalty to the inverse covariance matrix

of a Gaussian graphical model in order to infer a sparse undirected graphical model

(Meinshausen and Bühlmann, 2006; Friedman et al., 2008).

Relevance Vector Machine Another approach for producing sparser networks with

fewer regulators is the relevance vector machine, also known as sparse Bayesian re-

gression (SBR). It is based on the idea of building a sparse regression method similar

to a support vector machine, but using a probabilistic model rather than the pre-defined

kernel function. This is slower than the SVM approach in general, because it is trained

by maximising a marginal likelihood function. However, Tipping and Faul (2003)

showed that the run time of the relevance vector machine can be reduced to manage-

able levels.

See Chapter 2 for the details about the relevance vector machine, as well as a

comparison with the lasso.

1.3.2 Probabilistic Methods

Nested Effect Models NEMs are a model for determining the relationship between

important regulating genes. In a standard NEM, we try to find the network of regulating

genes (called S-genes for signalling genes) by looking at the effect that knocking out

each of these genes has on the expression levels of the genes that they regulate (called

E-genes for effect reporting genes).

This means that we need two sets of parameters for a NEM: A network hypothesis

Φ, that describes the relationship between the S-genes, and a model Θ for the regula-

tion of the E-genes, where θi = j if E-gene i is regulated by S-gene j. We assume that
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an E-gene can only be regulated by one S-gene and use model averaging to account for

all possibilities. Using Bayes’ theorem, the score for a network hypothesis given data

D is:

P(Φ|D) =
P(D|Φ)P(Φ)

P(D)
(1.7)

If we assume that the observations of each E-gene, the parameters θi and the knock-out

experiments are independent, then the likelihood P(D|Φ) for a dataset consisting of m

E-genes and n S-genes decomposes as:

P(D|Φ) =
m

∏
i=1

n

∑
j=1

n

∏
k=1

P(Dik|Φ,θi = j)P(θi = j|Φ) (1.8)

where P(Dik|Φ,θi = j) is the likelihood of the effect observed at E-gene i when knock-

ing out S-gene k and P(θi = j|Φ) is the prior probability of E-gene i being regulated

by S-gene j. More details can be found in Markowetz et al. (2005) and Fröhlich et al.

(2008). I applied NEMs to a case-study on Pectobacterium atrosepticum, which can

be found in Appendix E, and has also been published in Lin et al. (2010).

Static Bayesian Networks Bayesian networks are a graphical model for represent-

ing the relationship between a set of variables. Each variable is a node in the network,

and the nodes are linked up by directed links. Often, these links can be interpreted as

representing causality, i.e. if A→ B then A causes B1. By looking at the structure of

the network, we can determine which variables are independent of each other (using,

e.g. the Bayes’ Ball algorithm, Shachter, 1998). Each node is associated with a con-

ditional probability table, which gives the probability of the node taking a particular

value, given the values of its parents. Because all Bayesian networks are defined to be

acyclic directed graphs, we can decompose the joint probability distribution using the

conditional probabilities:

P(X1...XM) =
M

∏
i

P(Xm|Πm) (1.9)

where X1...XM are the nodes in the networks, and Πm denotes the parents of node

Xm.

Pearl (1985) was the first to use the term Bayesian networks. They have frequently

been used to successfully model regulatory networks (Friedman et al., 2000; Murphy

and Mian, 1999).
1Although not every Bayesian network presents a causal ordering; see Pearl (2000) for more on

causality.
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Many training algorithms exist for constructing Bayesian networks from data and

setting their parameters (Heckerman et al., 1995b). Using the data D, we want to find

the posterior distribution P(M |D), where M ranges over network structures. Heck-

erman and Geiger (1994) showed that when using a linear Gaussian model with a

Normal-Wishart distribution, we can derive a a closed form solution for the posterior

probability. They called this the BGe (Bayesian Gaussian likelihood equivalent) score.

Once we have determined the posterior probabilities of the edges in the network, we

can use them to determine how strong the interactions are between the nodes.

Bayesian networks can be learned using Markov Chain Monte Carlo (MCMC)

methods which aim to sample from the posterior distribution over network models.

This is done by constructing a Markov chain of network models, where the acceptance

probability of each new model ensures that we end up sampling from the right distri-

bution. The disadvantage of this method is that we may need to generate a very long

Markov chain to make sure that it has converged to a stationary solution. Alternatives

to MCMC include maximum likelihood or greedy search strategies; however these

will not sample from the posterior distribution of networks, and hence will only give

an incomplete picture of the true distribution.

Structure learning for Bayesian networks is explained in more detail in Chapters 2,

3 and 4.

Dynamic Bayesian Networks (DBNs) A dynamic Bayesian network is a standard

Bayesian network that unfolds in time. Each time step contains the same number of

nodes. Usually, the parent of a node is either a node from the same time-step, or a

node from the time-step immediately preceding it2. Thus each time step creates a new

layer, with connections only to the previous layer. It is easy to see that if the network at

a given time-step satisfies the properties of a Bayesian network, so does the unfolded

network over all time steps. Hence dynamic Bayesian networks are just a special case

of standard Bayesian networks. Figure 1.1 shows an illustration.

Learning the structure of dynamic Bayesian networks is similar to learning a static

Bayesian network, but we can take advantage of the special form that the dynamic

networks take. As Friedman et al. (1998) point out, a dynamic Bayesian network

can be decomposed into an initial network for time-step 0 (what they call, somewhat

misleadingly, the prior network), and a transition network that shows the links between

2This assumption can be relaxed to include nodes that are more than one time-step away. However,
crucially for the DAG assumption in Bayesian networks, there are no backward links.
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Figure 1.1: Graphical representation of a Dynamic Bayesian Network. (a) shows the

static network. Note that this is not a Bayesian network due to the self-loop on x3. (b)

shows the corresponding dynamic Bayesian network for the first three time steps.

step i and step i+ 13. We can then score each of these networks independently, and

search for the network with the highest score. They show how to do this with complete

data using the BIC score (Schwarz, 1978) and the BDe (Bayesian Dirichlet equivalent)

score (Heckerman et al., 1995a), and with incomplete data using the Structural EM

algorithm (Friedman et al., 1998). For some formulations of DBNs, exact sampling of

network structures and parameters from the posterior via MCMC is also possible; for

more in this, see Chapters 3 and 4.

Dynamic Bayesian networks have the advantage that they can be cyclical over

time4, as Figure 1.1 shows, making it possible to model feedback loops and other fea-

tures that the standard Bayesian network cannot easily capture. For a detailed overview

of DBN approaches for inferring gene regulatory networks, see Murphy and Mian

(1999).

It turns out that DBNs are a very general class of graphical model, and as such, have

received a lot of attention of the past decade. Apart from extensions to heterogeneous

networks that can change in time (e.g. Robinson and Hartemink, 2009, 2010; Grzegor-

czyk and Husmeier, 2009, 2011; Lèbre, 2007), which I will describe in more detail in

Chapters 3 and 4, there have also been extensions to continuous-time DBNs (Nodel-

man et al., 2002), on-line learning of DBNs (Cho et al., 2009) and even non-parametric

3This assumes that the network is homogeneous, i.e. it has the same structure at each time step. I
will talk about the heterogeneous case in Chapters 3 and 4.

4This is not the same as having a cycle in the network, since two nodes representing the same entity
at different time steps are considered different nodes.
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approaches such as the infinite DBN (Doshi-Velez et al., 2011). State space models (a

special case of DBN), have also been applied for network inference (e.g. Beal et al.,

2005; Rau et al., 2010); here the relationships between observed variables and hidden

states of the system are modelled over time using the state and dynamic equations.

Even inference of DBNs from steady-state data has been considered (Lähdesmäki and

Shmulevich, 2008). Apart from heterogeneous DBNs, what is perhaps most relevant

for the inference of biological networks is the ongoing effort to model interventions and

perturbations within the DBN framework, exemplified by Fröhlich et al. (2011). The

dynamic nested effects models (dynoNEMs) described in Fröhlich et al. (2011) make

the link between DBNs and NEMs, by describing a model that is split into signalling

(S) and effect-reporting (E) genes, as in a NEM, but models observations over time like

a DBN. Interventions are integral to this model due to the requirement of introducing

perturbations that affect the E-genes. The obvious drawback of this approach is that it

requires one perturbation per S-gene, while only producing a network that includes the

S-genes. While the work presented in this thesis focuses on non-interventional data, I

will sketch some ideas for including interventions in a DBN model in Chapter 6.

1.3.3 Mechanistic Models

By mechanistic models, I refer to methods that model the mechanisms and behaviour

of a dynamical system using differential equations. Mechanistic should not be equated

with deterministic, as these equations could be stochastic in nature. Systems of differ-

ential equations are very useful because they can describe the dynamics of a system

in great detail. Once we know the dynamics, we can usually deduce the relationships

between entities in the system, which is why these models are relevant for network

reconstruction.

Ordinary Differential Equations A system of ordinary differential equations (ODEs)

models the change in the variables, x, via the derivatives ẋ with respect to time:

ẋ(t) = f (x, t|θθθ) (1.10)

where θ contains the parameters of the system. As long as f is continuously differ-

entiable, we can solve the system (1.10) given an initial value x(0) (this is called the

initial value problem).

One way to do parameter estimation in ODE systems is by fitting the data to the



14 Chapter 1. Introduction and Background

output of the system. This requires that we solve the initial value problem. Most ODE

systems cannot be solved analytically and have to be integrated numerically, using for

example the popular Runge-Kutta algorithm. However, these numerical integrations

are just approximations, and also slow down the model fitting process since they have

to be recalculated each time the parameters change.

An alternative is given by collocation methods which approximate x by a basis

function expansion x̂ such that:

x̂i(t) =
Ki

∑
k

cikφik(t) = c′iφφφi(t) (1.11)

where Ki is the number of basis functions in vector φφφ and ci is the vector of weights

given to the basis functions. Varah (1982) used the collocation method for parame-

ter estimation in a two-step procedure, by first estimating x̂ using data smoothing, and

then measuring the fit of the gradient dx̂
dt to f (x, t|θθθ). This means that you can avoid the

numerical integration, making this a very fast procedure. Others have used different

smoothers, including nonparametric estimators (Brunel, 2008) and a local polynomial

smoother (Liang and Wu, 2008). However, two-step methods generally require full ob-

servation of the system, and the solution is very dependent on how well the smoothing

step performs, because the smoothing does not take the ODE dynamics into account.

Ramsay et al. (2007) proposed an improved estimation technique that uses a pa-

rameter cascade in which nuisance parameters c are implicit functions of the structural

parameters θθθ, σσσ, and the structural parameters are a function of the smoothing param-

eters λλλ. They then use three fitting criteria, the outer fitting criterion F(λλλ), an inner

fitting criterion J(c|θθθ,σσσ,λλλ) that is optimised with respect to c alone, and a data fitting

criterion H(θθθ,σσσ|λλλ) that is optimised with respect to the structural parameters. The

smoothness parameter λλλ is increased iteratively until it becomes too large. This model

effectively couples the smoothing step and the ODE parameter fitting step, making

sure that smoothing takes the ODE dynamics into account and vice-versa.

Ramsay et al. use spline bases as smoothers. A recent NIPS paper (Calderhead

et al., 2008) uses Gaussian processes to model the data, which has the advantage that

the gradients ẋ can be integrated out. However, I will show in Chapter 5 that the

inference procedure as described in Calderhead et al. (2008) amounts to a return to the

two-step procedure, in a situation where an adaptive approach that couples smoothing

and parameter inference would be more methodologically consistent.

Another recent approach is the functional tempering of Campbell and Steele (2012).
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This again uses splines for the smoothing, in an adaptive procedure that has a vector

of regularization parameters which penalize the mismatch between the gradients of

the smoother and of the ODE system. They then use population MCMC, where tem-

pering is done towards the data rather than towards the prior, by using a sequence of

gradually increasing regularisation parameters and thus forcing the gradients to agree.

However, this approach has the potential drawback that the flexibility of the smoother

is unchanged by the ODE dynamics and is only defined by the spline basis.

So far I have only presented methods for parameter inference in existing ODE mod-

els. It is not unreasonable to wonder about the case where the structure of the ODEs is

unknown. Is it possible to do the equivalent of network inference for mechanistic mod-

els? Recent research has shown that model selection in ODEs is feasible (Vyshemirsky

and Girolami, 2008; Toni et al., 2009), but this requires the models to be enumerated

in advance, and the number of models must be reasonably small make the comparison

feasible. Inferring general ODE models from data is still outside the capability of our

current toolset. Some progress has been made by using simple (usually linear) para-

metric forms of the ODE system and learning the network structure by learning the

parameters (Gardner et al., 2003; Bansal et al., 2006; Bonneau et al., 2006).

Another promising research direction is the use of ODEs as a tool for guiding

more general network inference. In Li et al. (2011), the authors employ a gradient ap-

proximation as substitute for the gene expression level in a dynamic Bayesian network

framework for learning gene regulatory networks. Unfortunately, it is not clear that this

use of a gradient approximation actually improves network inference (see Oates et al.,

2012b). More promising are the methods described in Äijö and Lähdesmäki (2009)

and Oates et al. (2012a). In Äijö and Lähdesmäki (2009), a linear ODE model for gene

transcription and regulation is combined with a Gaussian process for capturing the un-

known, possibly non-linear regulation function. In Oates et al. (2012a), ODEs of the

Michaelis-Menten type are used to model non-linear interactions in protein signalling

networks. This formulation allows for network inference from steady-state data using

RJMCMC.

Stochastic Differential Equations Ordinary differential equations are completely

deterministic, which means that they assume that you can completely specify the be-

haviour of the system. Stochastic differential equations (SDEs) relax this assumption

by introducing a stochastic process (or several) into the differential equation. A simple

example of an SDE system is a diffusion process:
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ẋ(t) = Fx(t)+Bz(t) (1.12)

where z(t) is a stochastic process (usually a white noise process). F encodes the

drift and B is the diffusion matrix. SDEs are harder to solve numerically than ODEs,

but it is still possible to do parameter inference (see e.g. Hurn and Lindsay, 1999).

Golightly and Wilkinson (2005) have used SDEs to infer the rate constants for

biochemical reactions, using a Gibbs sampler to do the inference. Archambeau et al.

(2007) developed a Gaussian process approximation for the posterior of an SDE. While

I have not dealt explicitly with SDE models in this thesis, the ODE parameter inference

method described in Chapter 5 could be adapted for use with SDE systems. I will

sketch an idea for this in Chapter 6. To my knowledge there has been no exploration

as of yet into the use of SDEs for network inference, although this would no doubt be

a fascinating research area.

1.4 Thesis Structure

The remainder of the thesis is organised as follows:

• Chapter 2 describes an application of established network reconstruction meth-

ods from systems biology to simulated and real-world presence/absence data

from ecology, which includes a comparison among methods. This chapter is

based on our published work in Faisal et al. (2010).

• Chapters 3 and 4 deal with inference of gene regulatory networks in DBNs with

time-varying structure using time series gene expression data. In Chapter 3 I

describe two types of priors for information sharing among network segments

with structure changes: a global information sharing prior and a sequential in-

formation sharing prior, and I compare the two on simulated and real-world gene

expression data. This work has been published in Dondelinger et al. (2010) and

in Dondelinger et al. (2012a). In Chapter 4, I revisit the sequential information

sharing model from the previous chapter, and describe different functional forms

and models for the priors. I then present an in-depth comparison and analysis

of the properties of these priors and their hyperparameters on simulated data,

as well as an application to real-world gene expression data from systems and

synthetic biology. This work has been published in Husmeier et al. (2010) and

Dondelinger et al. (2012b).
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• Chapter 5 describes adaptive gradient matching, a reformulation of the ODE

parameter inference model in Calderhead et al. (2008) that allows for adaptive

feedback between smoothing and parameter fitting. Using a number of model

ODE systems, I compare adaptive gradient matching to the method in Calder-

head et al. (2008) and to parameter inference using the explicit solution of the

ODEs, both in terms of accuracy and in terms of computational cost. I then de-

scribe the application of the new method to a realistic model of the JAK/STAT

pathway.

• Finally, Chapter 6 sums up the main results of this thesis and describes promising

directions for future work.





Chapter 2

Inferring species interaction networks

from species abundance data

Note: This chapter describes a collaborative ecology project that I was involved in,

and it is largely based on my co-authored paper “Inferring species interaction networks

from species abundance data: A comparative evaluation of various statistical and ma-

chine learning methods”, published in Ecological Informatics (Faisal et al., 2010). I

have included major parts of this paper as verbatim copies in the present chapter. The

results using the stochastic food web simulation model were obtained by myself, and

the results using the European Bird Atlas data were obtained by my co-author Ali

Faisal. We jointly contributed to the discussions on how to perform the real-world data

analysis, including discussing the most appropriate choice of method and interpreting

the findings. I have explicitly pointed out Ali Faisal’s contributions in the text.

2.1 Motivation

Darwin’s description of a tangled bank describes the everyday complexity of ecol-

ogy that we overlook at our peril. Tampering with the population of one species can

cause surprising and dramatic changes in the populations of others (Cohen et al., 1994;

Henneman and Memmott, 2001). Altering pressures to which ecosystems are exposed

can drive them to alternative states (Beisner et al., 2003) or catastrophic failure (Sin-

clair and Byrom, 2006). Understanding and predicting how ecosystems will respond

to change requires untangling the tangled bank and is of enormous importance dur-

ing a period of rapid global change. Yet such a task can seem impossible given the

enormous complexity of ecological systems and the excruciating fieldwork needed to

19
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quantify even the simplest of foodwebs (Memmott et al., 2000; Ings et al., 2009).

Currently, most work on ecological networks has focused on quantifying food webs

and pollination networks by direct observation of interactions among individuals. This

approach has provided important insight into the structure and stability of some types

of ecological networks, and has also had some limited success in predicting the con-

sequences of anthropogenic changes in managed ecosystems. However, the predictive

ability of these types of networks is limited by their assumption that other types of in-

teraction, such as competition or mutuality relationships, are unimportant, when these

have recently been identified as perhaps overwhelming (Werner and Peacor, 2003;

Schmitz et al., 2004). Recognising this importance, some recent attempts have been

made to include such non-trophic interactions within food web models (e.g. van Veen

et al., 2009) but traditional field observations are unable to quantify the strength of

these interactions and new methods are required to allow ecological interaction net-

works to expand beyond the current food web paradigm.

There has recently been a surge of interest in elucidating and modelling the struc-

ture of biological networks. A variety of summary statistics for characterising the

global properties of networks have been derived, like the degree distribution (Albert

and Barabási, 2002), clustering coefficient (Watts and Strogatz, 1998) and average path

length (Valiente, 2002). This has been augmented by local characterisations in terms

of over-represented network motifs (Milo et al., 2002), and measures of specialisation

based on information theory (Blüthgen et al., 2006).

The formation and evolution of a network can then be simulated from a mathe-

matical model, like the simple preferential attachment model of Barabási et al. (1999),

or more realistic models of basic biological processes (de Silva and Stumpf, 2005).

The summary statistics obtained from the ensemble of simulated networks can then

be compared with those obtained from the real networks, and the discrepancy pro-

vides a measure of how accurately the mathematical model captures the true network

formation processes.

A critical assumption of the approach delineated above is that the true network is

known. In molecular systems biology, the structure of protein interaction networks

is commonly obtained from yeast two-hybrid assays. It is well known that these ex-

periments are noisy, that they are susceptible to large proportions of both false pos-

itives and false negatives, and that the networks extracted from different assays can

differ substantially (e.g. Tong et al. 2002). In ecology, establishing the structure of

a species interaction network typically requires minute observations and detailed field
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work. For instance, the information theoretic summary statistics proposed in Blüthgen

et al. (2006) were applied to the plant-pollinator interaction networks obtained in the

studies of Memmott (1999) and Vázquez and Simberloff (2002). These studies entailed

detailed observations of how often a particular plant was visited by a particular polli-

nator, for all pollinators and plants in turn. This process is laborious and error-prone.

More importantly, it is restricted to specific kinds of interactions. The interactions be-

tween pollinators and their host plants are amenable to direct observation. However,

other types of species interactions, like competition for resources, are not, and might

not even be clearly defined from the outset. Our work therefore aims to adapt a novel

type of methodology that has recently been explored in molecular systems biology: to

infer the network structure directly from the data. To reword this: rather than taking

an “existing” network structure and analysing it in terms of summary statistics, we

assume that the interaction network is unknown, and we aim to reconstruct it in silico

from the species abundance counts.

Information about ecological interactions should be evident in a range of ecological

data that are currently available. For example, time-series of the populations of multi-

ple species present in a study site should allow identification of important interactions,

and similarly the spatial patterns of coincidence of species should contain information

about the interactions among these species, potentially at a range of scales. What is

needed is a statistical tool capable of recovering networks structure from these types

of data sets. Recently, the challenge of identifying regulation networks and signalling

pathways from post-genomic data has resulted in the development of a number of

statistical and machine learning methods for the recovery of network structure. Exam-

ples are the reconstruction of transcriptional regulatory networks from gene expression

data (Friedman et al., 2000), the inference of signal transduction pathways from pro-

tein concentrations (Sachs et al., 2005), and the identification of neural information

flow operating in the brains of songbirds (Smith et al., 2006). This development has

potentially given ecologists a new set of tools for network recovery, if the methods can

be applied to typical ecological data sets.

Our aim is to compare different models for recovering ecological interaction net-

works, similarly to the approach of Tirelli et al. (2009) for modelling presence/absence

data of Salmo marmoratus. Here, we introduce and seek to test the suitability of four

statistical / machine learning methods for the identification of network structure on

ecological data: Graphical Gaussian models (GGMs), L1-regularised linear regres-

sion with the least absolute shrinkage and selection operator (LASSO), the relevance



22 Chapter 2. Inferring species interaction networks from species abundance data

vector machine (or sparse Bayesian regression, SBR), and Bayesian networks. We

extend these methods by including explanatory variables to model the effect of spa-

tial autocorrelation and the impact of bio-climate variables. We first test the success

of these methods for recovering the structure of simulated food webs, where the true

structure is known precisely. We then use the methods to identify the large-scale in-

teractions among 39 species of European warblers (families Phylloscopidae, Cettiidae,

Acrocephalidae and Sylviidae), a subset of the European breeding bird data set (Hage-

meijer and Blair, 1997) covering Europe west of 30◦E and including all probable and

confirmed breeding records. These data have been augmented by two bio-climate co-

variates, related to temperature and water availability. Our work has been motivated

by preliminary explorations described in the MSc dissertations Faisal (2008) and Don-

delinger (2008). However, for the present work, the methodology has been consid-

erably expanded, new methodological concepts have been included, different ways of

result and network integration have been explored, and all simulations have been rerun.

2.2 Material and Methods

2.2.1 Statistical and Machine Learning Methods for Network Re-

construction

In the most general case, our aim in describing an ecological network is to model all

the interactions between and among species and their environment. It is convenient

to think of this network as a ’graph’ (e.g. Fig. 2.7), describing species as the ’nodes’

within the graph, and interactions as the links or ’edges’ that join the nodes. To iden-

tify and infer these graphs we selected four widely used methods for network recov-

ery in postgenomic data analysis: Graphical Gaussian Models (Schäfer and Strim-

mer, 2005a,b), LASSO regression (Tibshirani, 1996; van Someren et al., 2006), the

relevance vector machine (Tipping and Faul, 2003; Rogers and Girolami, 2005) and

Bayesian Networks (Friedman et al., 2000; Werhli and Husmeier, 2007). All four

methods have previously been used to recover gene regulation network structures and

there is no a priori assumption that any method will perform best on ecological data

where other statistical issues such as spatial autocorrelation (Lennon, 2000), small

sample sizes, or the influence of other, unmeasured covariates may be important. Each

method differs in the mechanism it uses to recover networks from data and we provide,

in Section 2.3, a description of the important features of the methods we trial, along
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with the full details of the mathematical implementation. All methods were imple-

mented in MATLAB c© (The MathWorks, Inc.) or R (http://www.R-project.org)

(see Table 2.2).

2.2.2 Simulation study

In order to have an objective measure of network recovery, we first tested the abil-

ity of the models to recover the true network structure from test data generated by

an ecological simulation model. This model combines a niche model (Williams and

Martinez, 2000) with a stochastic population model (Lande et al., 2003, chap. 8) in a 2-

dimensional lattice. The niche model defines the structure of the network and has two

parameters (the number of species and the connectance, or network density, defined as

L/S2 where L is the number of links and S the number of species in the network).

More precisely, to generate a food web consisting of N species, we start off by

assigning to each species i a niche value ni, drawn uniformly from [0, 1]. This gives

us an ordering of the species by niche value, where higher niche values mean that

species are higher up in the food chain. For each species we then draw a niche range ri

from a beta distribution with expected value 2C (where C is the desired connectance)

to determine the size of the niche that that species preys upon. Then we uniformly

draw a centre ci for the niche from [ ri
2 ,ni]. This allows us to construct a network of

predator-prey interactions, where species i preys on species j if n j falls within ri of

ci. The generated networks share many characteristics with real food webs, such as

the fraction of species with no prey, no predators or both prey and predators, and the

amount of cannibalism and looping in the network.

The population model is defined by a stochastic differential equation where the

dynamics of the log abundance Xi of species i can be expressed as:

dXi

dt
= ρi +

σd√
Ni

dAi(t)
dt

+σe
dBi(t)

dt
− γXi−Ω(X)+σE

dE(t)
dt

(2.1)

where ρi is the growth rate of species i, σd is the standard deviation of the demo-

graphic effect, Ni is the abundance of species i (eXi), Ai(t) is the species-specific de-

mographic effect (random variations in individual fitness), σe is the standard deviation

of the species-specific environmental effect, Bi(t) is the species-specific environmen-

tal effect (effect of the random variations in the environment on individual species),

γ is the intra-specific density dependence, Ω is the effect of competition for common

resources, σE is the standard deviation of the general environmental effect and E(t)
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is the general community environmental effect (effect of the random variations in the

environment on all species). Here, Ai(t), Bi(t) and E(t) are standard Wiener processes

(Brownian motion). In order to incorporate the niche model, the simulation modifies

the term Ω to include predator-prey interactions in the Lotka-Volterra form.

In order to extend this model to a 2D arena, the simulation incorporates an expo-

nential dispersal model, where the probability of a species moving from location A to

location B is determined by the Euclidean distance between A and B. Locations are

arranged on a rectangular grid. Each location has its own growth rates. The spatial

pattern of growth rates for a single species is generated by noise with spectral density

f β (with β < 0, and f the frequency at which the noise is measured), and a normal

error distribution.

We simulated the dynamics of this model for 3000 steps (until the system had

reached equilibrium), with 10 different network structures to generate 10 independent

data sets. The final ’gold-standard’ network against which the recovered networks

were assessed was the structure of the niche model linking among species present in

the data set (as some species went extinct during the initial runs to equilibrium). We

recovered networks from these data using all methods first without consideration of

spatial autocorrelation, then with the inclusion of spatial autocorrelation for methods

where this was possible.

The simulation described above produces continuous values for the population den-

sities. For some of the experiments below, we needed to transform these into pres-

ence/absence data similar to the Bird Atlas data. For this, we implement an observa-

tion process as follows. We assume that there is a random variable X which functions

as a threshold for observing a population; if the population density xg is below or equal

to this threshold, then that species is not observed. Let X be modelled by a Gaussian

N(µ,σ2). Then the probability of observing a species with population density xg is

P(X < xg), i.e. the cumulative distribution function:

P(X < xg) =
1
2

(
1+ er f

(
x−µ
σ
√

2

))
(2.2)

We can then sample a discrete value for xg from a binomial distribution, using

P(X < xg) as the parameter. Mean and variance of the Gaussian distribution are fitted

so that the distribution of ones and zeros over all locations and species is the same as

in the real data set.
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2.2.3 Application to the European bird atlas data

Note: This subsection describes the data used by Ali Faisal, and was written by Ali

Faisal and Colin Beale. The data extraction described was performed by Colin Beale.

Until relatively recently, climate was considered to be the main factor affecting

large-scale (continental) distribution patterns and global climate change is already hav-

ing measurable effects on the distribution of many species (Gaston, 2003). Lately,

however, theoretical models have suggested that biotic interactions may also be impor-

tant in shaping range limits (Holt and Barfield, 2009), and recent empirical research has

suggested that the distribution of many European bird species may not be as strongly

related to climate as previously thought (Beale et al., 2008). This weaker than expected

association with abiotic climate variables may be explained if biotic interactions are

more important than previously thought. If biotic interactions play an important role

in large-scale species distributions, developing a method to identify and predict their

influence must be considered a priority. If successful, therefore, application of network

recovery methods to mapped data used in ecological analysis would be valuable.

To test the utility of the available methods for network recovery in this large con-

text, we use a subset of the European breeding bird data set (Hagemeijer and Blair,

1997) covering Europe west of 30◦E and including all probable and confirmed breed-

ing records. From this data set we extracted the distributions of all 39 old world war-

bler species breeding in this area (families Phylloscopidae, Cettiidae, Acrocephalidae

and Sylviidae). These species are all small insectivores occupying a range of habi-

tat types from boreal forest to Mediterranean reedbeds, several of which are likely to

interact at a range of spatial scales (e.g. Murray Jr, 1988). As covariates we include

the mean temperature of the coldest month and the water availability for plant growth,

two climate variables that had strongest influence on avian distribution (Beale et al.,

2008). Climate data were available at 0.5◦ (data set CRU CL 1.0, New et al., 1999),

and because soil types differ in their ability to retain moisture (e.g. sandy soils drain

very quickly, whilst clay retains water longer) were combined with soil data (data set

WISE.AWC, Batjes 1996) using a bucket model (following Prentice et al. 1992) and

interpolated to 50km resolution. These or similar variables are typically used in distri-

bution modelling exercises (e.g. Thomas et al. 2004; Thuiller et al. 2005; Araujo et al.

2005; Beale et al. 2008; Huntley et al. 2008) not because they are always expected to

directly impact bird distributions, but they are perceived to have strong indirect effects

on birds and other taxa through effects on food availability or habitat type (Araujo
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et al., 2005; Beale et al., 2008; Huntley et al., 2008). Note that although some of the

warbler species we studied are migratory, and thus may be absent during the cold-

est month, the use of the temperature during this month is nevertheless justified, both

because it correlates strongly with temperature during other months, and because of

its impact on vegetation growth during the year, which will affect food source abun-

dance. Other biologically relevant climate variables could also be used but are usually

strongly correlated with one of these and have little effect on the strength of associ-

ations realised (Beale et al., 2008). As these are real valued variables, we discretise

them by maximising the mutual information. For this pre-processing step, we perform

a standard quantile discretisation into 20 levels and then use the information bottle-

neck algorithm, proposed by Hartemink (2001), to get a binary variable minimising

the expected information loss.

As the simulation studies suggested that the relevance vector machine (SBR) con-

sistently underperformed the other methods (see Section 2.6), and as the Gaussian

assumption underlying graphical Gaussian models (GGMs) is violated by the binary

nature of the data, we only applied L1-regularised regression (LASSO) and Bayesian

networks to recover network structures from the real data sets. We used three different

data sets that increased in complexity from the simple warbler dataset alone, through

inclusion of spatial autocorrelation, to inclusion of the bio-climate covariates. We

generated consensus networks for each data set, which should represent successively

better models of true network structure. We also attempted to build a latent variable

model (see Section 2.3.2.4) but the Markov chain Monte Carlo (MCMC) chains did

not converge and we do not consider this further for the European Bird Atlas Data.

In the absence of complete ecological knowledge of the true network of interac-

tions among these species, success of the modelling methods can only be assessed

against known or likely relationships. To validate our methods on these real datasets

we therefore determined four tests: firstly, for each pairwise interaction we sought to

give an a priori interaction score, identifying any published studies and, when these

were unavailable, using expert judgement to categorise interactions into likely, un-

known or unlikely (we provide this network and relevant literature in Section A.1 in

the appendix). We tested similarity between the recovered network and the a priori

network using the area under the receiver operator characteristic (ROC) curve and the

true positive rate at 5% false positives (TPFP5).

Secondly, as ecological niches are often conserved in evolutionary time (Losos,

2008) we expected there to be a relationship between phylogenetic distance and in-
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ferred interaction score (details of the phylogeny used are provided in Section A.2 in

the appendix). Thirdly, we expected that ecologically similar species were most likely

to interact, so for each species we identified the preferred habitat, migrant status (res-

ident, short or long-distance migrant), wing length, body mass and body length and

clutch size (all data from http://www.bto.org/birdfacts/ or Snow and Perrins (1998))

and summarised these variables to generate a measure of ecological distance (see Sec-

tion A.3 in the appendix for details). Significance of both these tests with phylogenetic

and ecological distance was assessed by correlation. Finally, as well as expecting these

measures to be related to the final networks identified, we predicted that the simpler

(and less biologically plausible) network models lacking spatial autocorrelation and

bio-climate covariates would show weaker associations with the ecological datasets

than the full models, and the number of significant interactions among bird species

in the network would decline as complexity increases (and spurious interactions are

accounted for by the additional complexity of the model).

To characterise the networks recovered using these methods and put them in the

context of other ecological networks, we counted the non-zero links with each species

in turn, and measured the frequency distribution of these (i.e. we measured the degree

distribution: Proulx et al., 2005). We also measured the mean shortest path between

all species in the network (Dunne et al., 2002) and a measure of how clustered the

network is (related to the proportion of species linked to the neighbours of a focal

species that are themselves linked to the focal species. We measured the clustering

coefficient: Luce and Perry, 1949). As our recovered networks are not binary but

identify continuous probabilities of linkage between two species, we calculated all

three values across a range of threshold levels and identified network characteristics

that are consistent across all thresholds.

2.2.4 Units

Table 2.1 gives an overview of the units for different quantities in our paper, along with

the equations where these quantities were used.



28 Chapter 2. Inferring species interaction networks from species abundance data

Symbol/Quantity Equation Unit

xr, xi, Xi 2.4, 2.18, 2.21,

2.22

Discrete presence/absence

value of species over 50 km2

area

ŷg, yg 2.4, 2.5, 2.9,

2.22

Discrete presence/absence

value of species over 50 km2

area

ŵg, wg, w, v 2.4, 2.5, 2.6,

2.7, 2.8, 2.9,

2.10, 2.11,

2.12, 2.13,

2.14, 2.15,

2.16, 2.17,

2.21, 2.22

Dimensionless weight param-

eters

a 2.21, 2.22 Spatial Autocorrelation: Dis-

crete presence/absence value

of species from averaging

over four 50 km2 areas

Temperature Covariate None Discrete warm/cold value

over 50 km2 area

Water Covariate None Discrete presence/absence

value over 50 km2 area

Table 2.1: Units for the different quantities in the paper, along with the equations where

they are used (if any).
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2.3 Theory

2.3.1 Statistical and Machine Learning Methods for Network Re-

construction

2.3.1.1 Graphical Gaussian models (GGMs)

Graphical Gaussian models (GGMs) are undirected probabilistic graphical models that

allow the identification of conditional independence relations among the nodes under

the assumption of a multivariate Gaussian distribution of the data. The inference of

GGMs is based on a (stable) estimation of the covariance matrix of this distribution.

The element Cik of the covariance matrix C is proportional to the correlation coeffi-

cient between nodes Xi and Xk. A high correlation coefficient between two nodes may

indicate a direct interaction, an indirect interaction, or a joint regulation by a common

(possibly unknown) factor.

However, only the direct interactions are of interest to the construction of a species

interaction network. The strengths of these direct interactions are measured by the

partial correlation coefficient ρik, which describes the correlation between nodes Xi

and Xk conditional on all the other nodes in the network. From the theory of normal

distributions it is known that the matrix of partial correlation coefficients ρik is related

to the inverse of the covariance matrix C, C−1 (with elements C−1
ik ) (Edwards, 2000):

ρik = −
C−1

ik√
C−1

ii C−1
kk

(2.3)

To infer a GGM, one typically employs the following procedure. From the given

data, the empirical covariance matrix is computed, inverted, and the partial correla-

tions ρik are computed from (2.3). The distribution of |ρik| is inspected, and edges

(i,k) corresponding to significantly small values of |ρik| are removed from the graph.

The critical step in the application of this procedure is the stable estimation of the co-

variance matrix and its inverse. Note that the covariance matrix is only non-singular if

the number of observations exceeds the number of nodes in the network. This condi-

tion might not always be satisfied in a survey study. In order to learn a GGM from a

data set in such a scenario, Schäfer and Strimmer (2005b) explored various stabilisa-

tion methods, based on the Moore-Penrose pseudo inverse and bagging.

In the present work, we apply an alternative regularisation approach based on

shrinkage, which Schäfer and Strimmer (2005b) found to be superior to their earlier
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x1 x2 xm
...

y x1 x2 xm

y

...

Figure 2.1: Schematic of the approach of partial correlation (left) and sparse regression (right). Left:

Conditional on y, the species abundance profiles x1,x2, . . . ,xm are independent, and the partial correla-

tion coefficients will be small. Right: The approach of sparse regression aims to find a minimal set of

predictors x1,x2, . . . ,xm to explain species abundance profile y.

schemes. The idea is to add a weighted non-singular regularisation matrix, e.g. the

unity matrix, to the covariance matrix so as to guarantee its non-singularity. The op-

timal weight parameter is estimated based on the Ledoit Wolf lemma from statistical

decision theory so as to minimise the expected deviation of the regularised covariance

matrix from the (unknown) true covariance matrix. The method of GGMs, which are

undirected graphs, can be extended to infer putative directions of causal interactions,

as proposed in Opgen-Rhein and Strimmer (2007). This scheme is based on the com-

putation of the standardised partial variance, which is the proportion of the variance

that remains if the influence of all other variables is taken into account. All significant

edges in the GGM network are directed in such a fashion that the direction of the arrow

points from the node with the larger standardised partial variance (the more exogenous

node) to the node with the smaller standardised partial variance (the more endogenous

node), provided the ratio of the two partial variances is significantly different from 1.

For further details, see Opgen-Rhein and Strimmer (2007).

2.3.1.2 Linear Regression and the LASSO

The approach discussed in the previous subsection aims to predict interactions be-

tween species based on the partial correlations between their abundance profiles. In

the present subsection, we review an alternative paradigm, which pursues a regression

approach: given the species abundance profile yg of some target species g, we aim to

find a set of regulators {r} (i.e. other species or exogenous variables related e.g. to the

habitat, climate etc.), whose abundance profiles {xr} are good predictors of abundance

profile yg:

ŷg = ∑
r

wgrxr (2.4)
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where ŷg is a predictor of yg, and the regression parameters wgr represent interac-

tion strengths between the target species g and the putative regulators r.

The different concepts are illustrated in Figure 2.1. We denote the vector of inter-

action strengths as wg, which has wgr as its rth component. The mismatch between the

predicted and measured expression profile of target species g is typically measured by

the L2 norm:

E(wg) = ||yg− ŷg(wg)||2 (2.5)

Obtaining the optimal interaction parameters ŵg by minimising E(wg) corresponds

to a maximum likelihood estimator under the assumption of isotropic Gaussian noise.

In practice, this approach is usually susceptible to over-fitting, which calls for the

application of some regularisation scheme. The standard method of ridge regression is

given by:

ŵg = argmin
wg

(
E(wg)+λ∑

r
w2

gr

)
(2.6)

This can be interpreted in three different ways:

1. Maximising the penalised likelihood with an L2-norm penalty term and regular-

isation parameter λ.

2. Constrained maximisation of the likelihood under the L2-norm constraint ∑r w2
gr <

C, where λ is a Lagrange parameter.

3. Bayesian maximum a posteriori estimate under a zero-mean Gaussian prior on

wg with diagonal isotropic covariance matrix λ−1I:

P(wg) = N (0,λ−1I).

A disadvantage of ridge regression is that the set of interaction parameters {wgr}
does usually not tend to be sparse. This is a consequence of the fact that the derivative

of the regularisation term with respect to wgr approaches zero as wgr → 0. Conse-

quently, there is no “force” pulling the parameters to zero when they are small. Ac-

cording to our current knowledge, species interaction networks are usually sparse, and

a stronger regularisation term is therefore desirable. This can be achieved with an

L1-norm instead of the L2-norm regularisation term:

ŵg = argmin
wg

(
E(wg)+λ∑

r
|wgr|

)
(2.7)
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which can be interpreted as a Bayesian maximum a posteriori estimate under a

Laplacian prior on wg, as first proposed by Williams (1995). The derivative of the

regularisation term with respect to the parameters is now constant, which provides a

stronger “force” driving small parameters to zero. The discontinuity of the derivative

at wgr → 0 can be exploited to implement an effective pruning scheme for discarding

interactions, as discussed in Williams (1995). The L1-norm regularisation term was

introduced to the statistics community by Tibshirani (1996), where it was termed the

LASSO (least absolute shrinkage and selection operator). One of the first applications

to the somewhat related problem of reconstructing gene regulatory networks is reported

in van Someren et al. (2006). Grandvalet and Canu (1999) showed that the LASSO

estimate of the interaction strengths is equivalent to ridge regression with r-dependent

regularisation hyperparameters:

ŵg = argmin
wg

(
E(wg)+∑

r
λrw2

gr

)
(2.8)

subject to the constraint ∑
R
r=1 1/λr = R/λ, for some predefined constant λ.

The regulatory network between the target species g and the regulators {r} is de-

fined by the set of interactions with nonzero interaction strengths wgr. The degree of

sparsity is determined by the regularisation hyperparameter λ, with larger values of λ

resulting in sparser networks. The question, then, is how to set λ. Williams (1995) sug-

gested integrating λ out; this approach has been subject to some controversy, though

(MacKay, 1996). A standard non-Bayesian approach is to estimate λ with k-fold cross-

validation. This is the approach that was implemented in the software we applied in

the present study, with k = 10. An alternative Bayesian approach would be to estimate

λ by maximising the evidence, as discussed in the next subsection.

Note that the generalisation of the sparse regression approach to more target species

g is straightforward: E(wg) in equation (2.5) just needs to be replaced by:

E(W) = ∑
g
||yg− ŷg(wg)||2 (2.9)

where W is a matrix with column vectors wg. If there is no clear separation be-

tween the set of target and regulatory species, the effect of species g needs to be ex-

cluded when forming the predictor ŷg(wg). Again, this requirement is straightforward

to implement. To avoid notational opacity, we have not described this approach in its

full generality, though.
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2.3.1.3 Relevance Vector Machine

As mentioned in the previous subsection, the minimisation of E(wg) in equation (2.5)

corresponds to maximising the likelihood P(D|wg) under the assumption of isotropic

Gaussian noise, where D = {yg,{xr}} is used to denote the data. The estimates ŵg in

equations (2.6) and (2.8) are equivalent to the maximum a posteriori estimates:

ŵg = argmax
wg

P(wg|D,λ) = argmax
wg

[
logP(D|wg)+ logP(wg|λ)

]
(2.10)

under the assumption of an isotropic Gaussian or Laplacian prior P(wg|λ) on the

interaction strengths wg. If we now want to do this within the Bayesian framework,

the hyperparameter λ is optimised by maximising the marginal likelihood or evidence:

P(D|λ) =
∫

P(D|w,λ)P(w|λ)dλ (2.11)

as discussed in MacKay (1992). In the present study, we applied the relevance

vector machine, also known as “sparse Bayesian regression” (SBR)1, of Rogers and

Girolami (2005), which is based on the work of Tipping and Faul (2003). Here, the

prior on the interaction parameters is chosen to be a product of zero-mean Gaussian

distributions:

P(wg|λλλ) = ∏
r

N (wgr|0,λ−1
r ) (2.12)

with separate hyperparameters for species r. This scheme is similar to equa-

tion (2.8), except that the constraint: ∑
R
r=1 1/λr = R/λ is missing. We can think of this

as ARD (Automatic Relevance determination) in the sense used by MacKay (1992)

The hyperparameters λr are optimised with the evidence scheme described above2.

Tipping and Faul (2003) showed that the marginal likelihood can be decomposed into

separate contributions from the individual regulatory species {r}. This leads to a fast,

iterative maximisation algorithm not only for the hyperparameters λr, but also for the

network structure: interactions between the target species g and the putative regula-

tory species {r} are progressively added and removed until a local maximum of the

marginal likelihood is reached. Specific details of the algorithm can be found in Tip-

ping and Faul (2003).
1This is not to be confused with other Bayesian approaches to sparse regression, most notably the

spike-and-slab prior (see, e.g. Titsias and Lázaro-Gredilla (2011)), which uses a mixture of a uniform
distribution and a delta spike at zero as a prior for the regression weights.

2In statistics this is called a type-II maximum likelihood estimation.
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The reason for the sparsity of the relevance vector machine may not be immediately

apparent. In fact, as Tipping (2001) points out, it comes from the hierarchical nature

of the prior on weights in equation 2.12. Each hyperparameter λr has a prior from

the Gamma family of distributions. In the algorithm, we assume an uninformative

Gamma prior with the shape and inverse scale parameters set to zero, which leads to

an improper prior for the weights if we integrate the hyperparameter out:

P(wg) =
∫

P(wg|λλλ)P(λλλ)dλλλ (2.13)

Which for an individual weight gives:

P(wgr) ∝
1

wgr
(2.14)

This is clearly a sparse prior. In fact, we can make an analogy to LASSO here. If

one takes a Bayesian view of the LASSO, as in Park and Casella (2008), then each

weight in the LASSO estimate has an independent Laplace prior, so that:

P(wgr) ∝ exp(−|wgr|) (2.15)

Both the LASSO and the relevance vector machine prior are sparse. However, they

differ in the amount of regularisation that they apply, as can be seen by taking the

derivative of the negative log likelihood for both priors:

RVM:
d

dwgr
{−logP(wgr)} ∝

1
wgr

(2.16)

LASSO:
d

dwgr
{−logP(wgr)} ∝ const (2.17)

The regularisation term for LASSO is constant, while the regularisation term for

the relevance vector machine tends to infinity as the weight tends to zero. Therefore,

the relevance vector machine applies much stronger regularisation than the LASSO

penalty. Note that it is the use of an improper prior for the weights which leads to this

situation, and it could be resolved by using a proper prior. However, for the purpose

of this work we were interested in comparing the existing relevance vector machine,

which uses the improper prior, with an existing implementation of the LASSO.
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2.3.1.4 Bayesian networks (BNs)

Bayesian networks (BNs) have received substantial attention from the computational

biology community as models of regulatory and interaction networks (Friedman et al.,

2000; Losos, 2008; Needham et al., 2007). Formally, a BN is defined by a graphical

structure M , a family of (conditional) probability distributions F , and their parameters

q, which together specify a joint distribution over a set of random variables of interest.

The structure M of a BN consists of a set of nodes and a set of directed edges. The

nodes represent random variables, e.g. species and their abundance values, while the

edges indicate conditional dependence relations. The structure M of a BN is a directed

acyclic graph (DAG), which defines a unique rule for expanding the joint probability

in terms of simpler conditional probabilities. Let X1,X2, ...,Xn be a set of random

variables represented by the nodes i ∈ {1, ...,n} in the graph, define pa[i] to be the set

of nodes with a directed edge feeding into node i (the “parents”), and let Xpa[i] represent

the set of random variables associated with pa[i]. Then

P(X1, ...,Xn) =
n

∏
i=1

P(Xi|Xpa[i]) (2.18)

The objective of learning is to find network structures with high posterior probabilities,

i.e. to sample network structures M from the posterior distribution

P(M |D) ∝ P(D|M )P(M ) (2.19)

where D denotes the training data. This requires a marginalisation over the parameters

θθθ:

P(D|M ) =
∫

P(D|θθθ,M )P(θθθ|M )dθθθ (2.20)

If certain regulatory conditions, discussed in Heckerman (1999), are satisfied and the

data are complete, then the integral in (2.20) is analytically tractable. Two function

families F that satisfy these conditions are the multinomial distribution with a Dirich-

let prior (Heckerman et al., 1995b) and the linear Gaussian distribution with a normal-

Wishart prior (Geiger and Heckerman, 1994). The resulting scores P(D|M ) are usu-

ally referred to as the BDe (discretised data, multinomial distribution) or the BGe

(continuous data, linear Gaussian distribution) score. Direct sampling from the pos-

terior distribution (2.19) is analytically intractable and is therefore approximated with

Markov Chain Monte Carlo (MCMC) (Madigan and York, 1995; Friedman and Koller,

2003; Grzegorczyk et al., 2008a). To restrict the size of the configuration space, we

restrict the fan-in to a node, i.e. we keep the number of incoming edges from other
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nodes below a pre-specified threshold (3 in our study). This approach, which is com-

monly adopted in other studies, e.g. Friedman and Koller (2003), incorporates our

prior knowledge that interaction networks are usually sparse.

The ultimate objective is to infer causal relations among the interacting nodes.

While such a causal network forms a valid Bayesian network, the inverse relation does

not always hold. One reason for this discrepancy is the existence of unobserved nodes.

Even under the assumption of complete observation, the inference of causal interac-

tion networks can be impeded by symmetries within so-called equivalence classes,

which consist of networks that define the same conditional independence relations.

Each Bayesian network corresponds to a whole equivalence class, represented by a

complete partially directed acyclic graph (CPDAG); see Chickering (1995). Under

the assumption of complete observation, directed edges in a CPDAG can be taken as

indications of putative causal interactions (Friedman et al., 2000).

Several tutorials on Bayesian networks have been published; see for instance Heck-

erman (1999), Husmeier et al. (2005) and Grzegorczyk et al. (2008b) for further details.

2.3.2 Extension

2.3.2.1 Spatial autocorrelation

Spatial autocorrelation, the phenomenon that observations at nearby locations are more

similar than observations at more distant locations, is nearly ubiquitous in ecology and

can have a strong impact on statistical inference (Legendre, 1993; Lennon, 2000; Dale

and Fortin, 2002). In our case, spatial autocorrelation could lead to the identification

of spurious interactions as a mere consequence of two species co-occurring in similar

geographical regions. Where possible, we applied an autoregressive approach similar

to that of Augustin et al. (1996) to incorporate potential spatial autocorrelation into

the models. To this end, we computed the average population at neighbouring cells,

weighted inversely proportional to the distance of the neighbours, which we will call

the autocorrelation variable:

a =
∑

N
i=1 ωixi

∑
N
i=1 ωi

(2.21)

where N is the number of neighbours that we are considering (usually N = 4), xi

is the population density at neighbour i, and ωi is the weight given to that neighbour,

which is inversely proportional to the Euclidean distance of the neighbour. A slight

subtlety when working with real world data that is not distributed in a regular grid is
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to work out which neighbouring locations to consider. In this work, we have opted

for the closest neighbours by Euclidean distance. The extension to the discrete case is

straightforward; we simply discretise the autocorrelation variable using a threshold.

The regression then becomes:

ŷg = ∑
r

wgrxr + va (2.22)

where wgr denotes the weights associated with each species r, and v is the additional

weight assigned to the autocorrelation variable. The weight v will catch the effects of

the spatial autocorrelation, leaving the other weights to determine the effects of other

species on species g.

For Bayesian networks, we connect each node to a parent node whose value is

given by (2.21), i.e., a representation of the spatial neighbourhood. The incoming

edge from the parent node is enforced and excluded from the fan-in count. In this

way the observation status at a node is, in the first instance, predicted by the spatial

neighbourhood. Only if the explanatory power of the latter is not sufficient will there

be an incentive for the inference scheme to include further edges related to species

interactions.

Introducing spatial autocorrelations into GGMs is less straightforward. Since we

did not apply GGMs to the real data (owing to their binary nature), we did not further

pursue this issue in our work.

2.3.2.2 Bio-climate Covariates

We include the bio-climate covariates (discretised temperature and water availability)

as extra variables, in the same way as we included the spatial autocorrelation variable.

In particular, in the Bayesian networks, we introduce fixed connections between the

bio-climate covariates and the other nodes. We modify the fan-in limit so that it does

not take these extra variables into account (i.e. if the fan-in limit is three, then that

means that a species can have up to six parent nodes: three other species, the covariates,

and the spatial autocorrelation node).

2.3.2.3 Consensus networks

As each of the network reconstruction methods has advantages and disadvantages, it

may be useful to combine outputs of different methods into one single recovered net-

work. Such a network would capture the consensus between the various methods,
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whilst simultaneously allowing the strengths of the different methods to be combined

(e.g. interaction size and sign inferred with regression-based methods could inform the

marginal posterior probabilities obtained for Bayesian networks). Simulation experi-

ments showed that the expected accuracy of the consensus network is higher than the

expected average accuracy of the individual networks (Section 2.6.2). In the present

project, we generated consensus networks by normalising the estimated interaction

probabilities and absolute strengths (where available) from each method to the range

[0, 1], then taking the arithmetic mean across all methods included within the con-

sensus graph. (For a comparison with other combination methods, e.g. based on the

harmonic mean, see Section 2.6.2) This potentially confuses statistical significance

(probabilities) with biological significance (strengths). However, for methods where

both significance measures were available we found a very strong correlation between

the two (ρ = 0.92), as discussed in more detail in Section 2.4.

2.3.2.4 Latent variable model allowing for unobserved factors

We want to extend the Bayesian network approach to allow for unobserved factors in

the environment, e.g. related to climate change or the availability of natural resources.

This can be achieved by including additional so-called latent variables in the model.

Ideally, the interactions between the latent variables and the species would be treated as

flexible (Fig. 2.2 a). To reduce the computational complexity, we keep them fixed, i.e.

they were enforced to be connected to all species. It is easy to prove that for discrete

values, this is equivalent to a model with a single latent variable and a flexible number

of discretisation levels (Fig. 2.2 b); this is the mixture model described in Grzegorczyk

et al. (2008a).

Inference can then be carried out with the allocation sampler described in No-

bile and Fearnside (2007) and Grzegorczyk et al. (2008a). The idea of the allocation

sampler is to sample from a Gaussian mixture with K mixture components, and an

allocation vector V that determines which mixture component each datapoint belongs

to. The mixture weights are integrated out; see Nobile and Fearnside (2007) for more

details.

We can think of V as a binary latent variable. Sampling is based on the following

iterative procedure: given the network structure, a new value for the latent variable

is sampled using the MCMC moves described in Nobile and Fearnside (2007) (im-

putation step). Then, given the complete data (real data, and imputed value for the

latent variable), the network structure is modified with a standard structure MCMC



2.3. Theory 39

(a) General Latent Variable

Model

(b) Restricted Latent Variable

Model

Figure 2.2: (a) Unrestricted latent variable model, here with two latent variables and

three observed ones. (b) Alternative model with a single completely connected latent

variable; this is effectively a mixture model. Zs are latent variables, Xs are observed

variables. Thin edges are learnt, thick edges are fixed.

step (Madigan and York, 1995). This procedure is iterated, and leads to a Markov

chain which (on convergence) samples both the network structure and the allocation of

the latent variable from the posterior distribution.

While the application of this scheme to the simulated data led to encouraging re-

sults (Section 2.6.3), the MCMC simulations did not properly converge for the warbler

data. The reason is that a straightforward adaptation of the method proposed in Grze-

gorczyk et al. (2008a) introduces a separate latent variable for each spatial location,

leading to a model that is significantly more complex than explored in the original

application. Our future work therefore aims to simplify the model complexity and

explore alternative inference schemes based on variational learning.

2.3.3 Performance evaluation

Each network reconstruction method infers a matrix of interaction strengths among

all species (nodes) in the network (graph). The nature of interaction strengths varies

among the methods (GGMs: partial correlation coefficients, LASSO and SBR: regu-

larised regression coefficients, Bayesian networks: marginal posterior probabilities).

However, all three scores define a ranking of the edges. If the true interaction network

is known, this ranking defines a receiver operator characteristics (ROC) curve, where
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the relative number of real interactions (i.e. the true positive or TP rate) is plotted

against the relative number of spurious interactions (the false positive or FP rate) for

all possible thresholds on the rank. To assess the network reconstruction accuracy,

we follow the procedure outlined in Werhli et al. (2006) and apply two complemen-

tary performance measures. The first measure is the area under the receiver operator

characteristics curve (AUC), which is a widely used global measure of reconstruction

accuracy. The expectation value for a random predictor is AUC=0.5, a perfect predic-

tor gives AUC=1.0, and larger values indicate a better reconstruction accuracy overall.

As we are particularly interested in the performance of the network recovery meth-

ods when setting the threshold to a value that generates few false positives, we also

identified the threshold that leads to an FP rate of 5% and counted the proportion of

true interactions that were recovered at this threshold. We call this second measure the

TP rate at 5% FP rate (the TPFP5 score). A good network reconstruction method is

characterised by both a high AUC score and a high TPFP5 score.

2.3.4 Implementations

Table 2.2 shows which software we used for the different network reconstruction meth-

ods described in Section 2.3.1, as well as where to get the MATLAB code for our own

implementations of the extensions in Section 2.3.2.

2.4 Investigation into LASSO Weights versus Confidence

Values for Edges

2.4.1 Motivation

When using LASSO linear regression to reconstruct an interaction network, we have

two options. One is to use the weights found during the regression and interpret them

as edge strengths between the target variable and the other variables in the network

(we will refer to this as “the weight method”). The other is to obtain confidence values

for the presence of an edge (“the confidence value method”). Obtaining the weights

is straightforward, and only requires one regression per variable. However, it is po-

tentially biased towards edges that have a strong effect, and may ignore edges with a

small (but consistent) effect.

To obtain confidence values, we use a method that is essentially an approximation
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Method Software Package Description

GGM R GeneNet The software implementing Graphical

Gaussian models is described in Schäfer

and Strimmer (2005b) and can be found

at: http://strimmerlab.org/software/

genenet/

LASSO

(Linear)

MATLAB Genelab For LASSO regression with continuous data,

we used software from the Genlab package

referenced in van Someren et al. (2006).

LASSO

(Logistic)

C BBR For LASSO regression with discrete data,

we used the BBR package (for Bayesian Bi-

nary Regression), which implements logis-

tic LASSO regression. The package can

be found at: http://www.stat.rutgers.

edu/˜madigan/BBR/

SBR MATLAB RegNets We used the relevance vector machine

software referenced in Rogers and

Girolami (2005) and available here:

http://www.dcs.gla.ac.uk/˜srogers/

reg_nets.htm

Structure

MCMC

MATLAB None The implementations for Structure MCMC

and Structure MCMC with latent variables

were developed from code by Marco Grze-

gorczyk and can be found at: http://www.

bioss.ac.uk/students/frankd.html

Population

Simulation

MATLAB None The simulation code was developed by

Jonathan Yearsley and slightly modi-

fied for this project. It can be found at:

http://www.bioss.ac.uk/students/

frankd.html

Table 2.2: Network reconstruction software used
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of a full Bayesian approach to regression. Rather than obtaining the probability that

an edge is zero from a posterior distribution of the weights, we follow Friedman et al.

(2000) and approximate this value by ’sampling’ data from the original dataset3 using

bootstrapping and subsampling. In bootstrap sampling, we sample data points with

replacement until the sample size is the same as the size of the original dataset. In

subsampling, we sample without replacement until we have obtained a dataset that is

half the size of the original dataset.

For each dataset sampled in this way, we run a LASSO regression. Then we record

the non-zero weights. After we have done this for a large number of samples, we

average over the results. This gives the confidence value for the occurrence of each

edge, independent of the strength of that edge. The drawback is that it requires many

more runs of the regression algorithm than just calculating the weights once.

We wanted to find out if the difference between using confidence values and using

the weights is substantial enough to warrant the extra computational cost. For that rea-

son, we used two synthetic datasets: A simple network model without cycles (in other

words, a DAG) from which we generated data using a linear regression model, and

a more complex ecological simulation based on Lotka-Volterra interactions between

species in a food web (see Section 2.2.2).

2.4.2 Simple Network Model

To simulate data from the simple network model based on linear regression, we first

sample a network from the niche model described in Section 2.2.2. If the model is not

a DAG, we remove edges until acyclicity has been restored. For each remaining edge,

we draw an interaction strength from the Gaussian distribution N(0,1).

Then we identify species without any parents in the network and draw their pop-

ulation numbers from the Gaussian distribution N(0,1)4. For each of the remaining

species, we do a standard regression:

ŷg = ∑
r

wgrxr + ε (2.23)

where r ranges over all species xr that are parents of species yg, and wgr is the

weight of the edge linking xr and yg, and ε ∼ N(0,0.1). The factor ε adds a small

3This should not be confused with sampling from a posterior distribution.
4This allows for negative population numbers, but this is not a problem since LASSO regression

does not assume that population numbers have to be positive.
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Figure 2.3: AUC and TPFP5 performance measures for the LASSO reconstruction of

the simple network model. Shaded boxes show the result when thresholding is applied.

amount of observational noise. We repeat this process, drawing new population num-

bers each time to generate different data points.

2.4.3 Results

Simple Network Model We generated data from 10 random networks using the sim-

ple linear regression model, and for each network we generated 100 bootstrap/subset

replica. Figure 2.3 shows the results. We started off by computing the confidence

values straightforwardly: For each sampled dataset, every weight that was not set to 0

by the LASSO regression was counted as detecting an edge. The results of this basic

approach are shown in the unshaded boxes in Figure 2.3.

Using a two-sided paired t-test, we determined that while the difference in TPFP5

values was not significant, the difference in AUC values between the two sampling

methods and the weight method was significant (p < 0.01). It is surprising to see the

weight method outperform the confidence value methods, as we would expect confi-

dence values to produce equally good if not better results.

The reason for this discrepancy becomes apparent once we change the procedure

for estimating confidence values slightly. Instead of treating all non-zero weight val-

ues in each sampled dataset as evidence of an edge, we only keep those above a cer-

tain threshold (arbitrarily set at 0.1). To be fair in our comparison, we also apply the

threshold to the weight method. When we do this, we notice that the AUC values of the

confidence value methods and the weight method are no longer significantly different

(p > 0.3).
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Figure 2.4: AUC and TPFP5 performance measures for the LASSO reconstruction of

the ecological network simulation model.

The problem is that the selection process which sets some weights to zero is not a

very conservative process. This means that some weights may never or rarely get set to

zero, despite having a very low value. A threshold artificially removes those weights,

and thus reduces the variance in the performance. This evens out the difference be-

tween the weight method and the confidence value methods.

Ecological Network Simulation Model We also want to compare the different meth-

ods using the simulation model described in Section 2.2.2. We use the same datasets

that were used in the rest of this study.

Since we have already established that thresholding is needed to remove the vari-

ance due to small but persistent weights in the confidence value methods, we also use

this method here. Figure 2.4 shows the results on the ecological simulation data. A

two-sided paired t-test shows that all differences in AUC values are significant (p <

0.01), but none of the differences in TPFP5 values are (p > 0.08).

Interestingly, the significant difference in AUC now shows an increased perfor-

mance for the confidence value methods. However, one must remember that the model

does not include any spatial autocorrelation (cf. Section 2.3.2.1), which is by necessity,

as sampling destroys the spatial structure. But this also means that sampling reduces

the spatial autocorrelation, because we only sample a subset of the total number of

nodes, so some of the neighbours of a selected location are left out. This explains

why we see a slight increase in performance in AUC. It is reasonable that it would

not be mirrored in the TPFP5 score, because this score relies on edges with high edge

weights, which will be found in any case.
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2.5 Number of Neighbouring Locations in the Spatial

Autocorrelation Model

As described in Section 2.3.2.1, our model for spatial autocorrelation calculates the

average population at neighbouring locations. One open question is how many neigh-

bouring locations to consider. If we assume that locations are distributed on a grid,

then two natural choices are to either consider 4 direct neighbours, or all 8 surrounding

neighbours.

We have compared the effect of calculating spatial autocorrelation using 4 direct

neighbours versus using 8 neighbours for the LASSO network reconstruction method

on simulated data. There was no significant difference between the two approaches

(p > 0.2 for AUC and TPFP5 scores). Figure 2.5 shows scatterplots comparing the

edge weights, AUC and TPFP5 scores for simulated data. We have also investigated

the effect of using 8 neighbours for the Warbler dataset (Figure 2.6), and found that

the edge weights inferred with 4 neighbours correlate very well with the edge weights

inferred for 8 neighbours. These findings lead us to conclude that 4 direct neighbours

are sufficient to accurately model the spatial autocorrelation.

2.6 Network Inference Results on Simulated Data

2.6.1 Method Comparison

All four network recovery methods succeeded in recovering some of the true network

structure, even when spatial autocorrelation was not incorporated (Fig. 2.7), though the

methods varied in their performance (Fig. 2.8). The relevance vector machine recov-

ered networks that were significantly worse than those recovered by the other methods,

having significantly lower AUC and TPFP5 scores (t9 > 3, p < 0.01) except for the

comparison with BN using the AUC score (t9 = 2.19, p = 0.06). All t statistics and

p-values have been calculated using a two-sided paired t-test, and the significance level

was set at p = 0.05. Tables 2.3-2.5 give a full overview of all p-values. Analysis of the

inferred interaction strengths indicates that poor performance of SBR is a consequence

of recovering networks that have too few links (i.e. are too sparse). This is the result of

SBR being over-regularised (see Section 2.3.1.3 for a discussion of this phenomenon),

which could be remedied by using a proper prior. Note that the effect would probably

be less pronounced for larger networks, as these can benefit from a higher degree of
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Figure 2.5: Comparison between no spatial autocorrelation modelled (0 neighbours),

spatial autocorrelation with 4 neighbours and spatial autocorrelation with 8 neighbours,

for networks reconstructed from simulated data with LASSO. From left to right, we com-

pare 0 neighbours with 4 neighbours, 0 neighbours with 8 neighbours and 4 neighbours

with 8 neighbours. The top row compares the inferred edge weights. The middle row

compares the AUC network reconstruction scores for each of the 10 simulated net-

works. The bottom row compares the TPFP5 reconstruction scores for each of the 10

simulated networks. For edge weights, we show the Spearman rank correlation co-

efficient, while for network reconstruction scores, we show the p value of a two-sided

paired t-test.
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Figure 2.6: Comparison between no spatial autocorrelation modelled (0 neighbours),

spatial autocorrelation with 4 neighbours and spatial autocorrelation with 8 neighbours,

for networks reconstructed from the Warbler dataset with LASSO. From left to right,

we compare 0 neighbours with 4 neighbours, 0 neighbours with 8 neighbours and 4

neighbours with 8 neighbours. In each plot, the inferred edge weights are compared.

sparsity, as opposed to the small-to-medium sized networks in this study.

For the three network recovery methods where this was applied (LASSO, BN,

SBR), incorporating spatial autocorrelation resulted in improved performance, espe-

cially for those methods that performed less well in the simple model (Fig. 2.8). In

particular, although incorporating spatial autocorrelation improved the performance of

SBR, it was still significantly worse than the other two methods (t9 > 3, p < 0.01)

except in the case of BN with the AUC score again (t9 = 0.68, p = 0.52).

Adding an observation process to discretise the simulation datasets (described in

Section 2.2.2) gave qualitatively similar results (beyond an expected drop in AUC and

TPFP5 scores). The results of applying our network reconstruction methods on the

discrete data can be seen in Figure 2.9.

As expected, the performance decreased when compared to the continuous data,

due to the information loss inherent in the discretisation process. The AUC scores

dropped around 0.1 for all methods, and the TPFP5 scores showed a similar drop,

except in the case of SBR, which stayed about the same. This is because discretisation

mostly hinders the identification of the more subtle interactions, which SBR had not

even detected in the continuous case. Apart from SBR, there is no significant difference

in the scores between methods for discrete data.

To finish our investigation, we looked at the effect of including spatial autocorre-

lation for the discretised data. The results are shown in Figure 2.9 (shaded boxes).

Unfortunately, none of the scores improved significantly when including spatial au-
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(a) BN (b) GGM

(c) LASSO (d) SBR

Figure 2.7: An example of a network recovered by GGM, BN, LASSO and SBR. Thick

edges represent edges that were identified correctly (true positives), thin edges repre-

sent edges that were not found (false negatives) and dashed edges are spurious edges

(false positives). The threshold was chosen so that the false positive rate was constant

at 5%, resulting in 7 false positive edges.



2.6. Network Inference Results on Simulated Data 49

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
U

C

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

BN GGM LASSO SBR

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T
P

F
P

5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BN GGM LASSO SBR

Figure 2.8: AUC and TPFP5 performance measures for continuous simulation data.

Shaded boxes represent models which include spatial autocorrelation. The expected

random performance scores are AUC=0.5 and TPFP5=0.05. See Section 2.3.1 for an

explanation of the abbreviations BN, GGM, LASSO, and SBR.
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Figure 2.9: AUC and TPFP5 performance measures for discretised simulation data.

Shaded boxes show the result when spatial autocorrelation is included in the model.
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BN GGM LASSO SBR

BN 1 0.06 0.02 0.06

GGM 1 0.28 0.00
LASSO 1 0.00
SBR 1

(a) Continuous, No Spat. Autocorr. Model

BN GGM LASSO SBR

BN 1 0.09 0.06 0.00
GGM 1 0.08 0.00
LASSO 1 0.00
SBR 1

(b) Discrete, No Spat. Autocorr. Model

BN LASSO SBR

BN 1 0.21 0.52

LASSO 1 0.00
SBR 1

(c) Continuous, With Spat. Autocorr.

Model

BN LASSO SBR

BN 1 0.08 0.16

LASSO 1 0.01
SBR 1

(d) Discrete, With Spat. Autocorr. Model

Table 2.3: Significance values obtained using a two-sided paired t-test when comparing

different methods based on the AUC scores of the reconstructed networks. Significant

results (with threshold p = 0.05) are marked in bold.

tocorrelation in the discrete case. This is likely due to the information loss in the

observation process, which makes it harder to estimate spatial autocorrelation effects

reliably. Our future work aims to reduce the information loss by applying more com-

plex spatial-temporal models, e.g. along the lines of the Markov random field model

proposed in Wei and Li (2007).

2.6.2 Consensus Networks

It is useful to combine outputs of different network reconstruction methods into one

single recovered network. We call this a consensus network, because it captures the

consensus between the various methods, whilst simultaneously allowing the strengths

of the different methods to be combined. There are several different ways in which we

can combine these methods:

• Arithmetic Mean: Edge strengths produced by regression methods are scaled

to the range [0,1] (posterior probabilities obtained by Bayesian nets are left un-

changed), then we take the arithmetic mean of the scaled strengths and proba-



2.6. Network Inference Results on Simulated Data 51

BN GGM LASSO SBR

BN 1 0.55 0.02 0.00
GGM 1 0.38 0.00
LASSO 1 0.00
SBR 1

(a) Continuous, No Spat. Autocorr. Model

BN GGM LASSO SBR

BN 1 0.22 0.58 0.00
GGM 1 0.71 0.00
LASSO 1 0.01
SBR 1

(b) Discrete, No Spat. Autocorr. Model

BN LASSO SBR

BN 1 0.17 0.00
LASSO 1 0.00
SBR 1

(c) Continuous, With Spat. Autocorr.

Model

BN LASSO SBR

BN 1 0.06 0.01
LASSO 1 0.01
SBR 1

(d) Discrete, With Spat. Autocorr. Model

Table 2.4: Significance values obtained using a two-sided paired t-test when comparing

different methods based on the TPFP5 scores of the reconstructed networks. Signifi-

cant results (with threshold p = 0.05) are marked in bold.

AUC TPFP5

BN 0.01 0.00
LASSO 0.00 0.00
SBR 0.00 0.04

(a) Continuous Data

AUC TPFP5

BN 0.58 0.80

LASSO 0.51 0.07

SBR 0.65 0.84

(b) Discrete Data

Table 2.5: Significance values obtained using a two-sided paired t-test when comparing

network reconstruction methods with spatial autocorrelation model to those without.

Significant results (with threshold p = 0.05) are marked in bold.
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Figure 2.10: AUC and TPFP5 performance measures for different types of consensus

networks. This figure only shows the results for discrete data with a spatial autocorre-

lation model. Results for other datasets were similar.

bilities obtained by all methods and use this as indication of the confidence we

have in each edge.

• Harmonic Mean: This is the same as the previous method, but instead of using

the arithmetic mean, we calculate the harmonic mean, which is generally more

appropriate for rates.

• Thresholded: In this method, we use the posterior probabilities obtained by

Bayesian nets as a threshold. All edges with probability less than 0.1 are re-

moved. Then the remaining edges are evaluated based on the interaction strengths

found in regression.

Note that some of these methods potentially confuse confidence values (probabil-

ities) with interaction strengths, but for methods where both were available we found

a very strong Spearman rank correlation between the two (ρ = 0.92), so this is not

problematic. As a base line, we used the mean of the AUC or TPFP5 scores obtained

from the different network reconstruction methods in isolation. A consensus method

works if it produces a better score than the mean score of the individual methods.

Figure 2.10 shows the results using the discretised dataset with spatial autocorre-

lation modelled. This most closely mirrors the experiments on the bird data; however,

results using continuous data and data without modelling the spatial autocorrelation

were similar. As can be seen, the only method performing better than our baseline is

the arithmetic mean. For AUC the difference is significant (using a two-sided paired

t-test, p = 0.03) while the harmonic mean does not perform significantly different
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(though only barely, p = 0.05) and the thresholded approach performs significantly

worse (p= 10−3). For the TPFP5 score, none of the three consensus methods performs

significantly different from the baseline of taking the mean of the scores, although the

arithmetic mean comes closest (p = 0.06 versus p = 0.25 and p = 0.58 for harmonic

mean and thresholded approach, respectively).

These results show that the arithmetic mean performs best when it comes to com-

bining different network reconstruction methods. On the basis of this investigation, we

have used the arithmetic mean to construct consensus networks for the bird atlas data.

2.6.3 Allowing for Unobserved Effects

As explained in Section 2.3.2.4, we may want to take account of unobserved effects that

act on the different species. While there are no explicit environmental factors (other

than noise) in the simulation model, it is easy to model an unobserved effect by adding

a species that acts directly on all other species, and removing the presence/absence

data for that species when reconstructing the network. To assess the helpfulness of

this approach, we tested it on a small network consisting of three observed nodes and

one unobserved node, with no interactions between the observed nodes (Fig. 2.11a).

Under these circumstances, the latent variable model should produce fewer spurious

interactions than a model without latent variables. In the Bayesian network model, this

means that the posterior probability of edges between observed nodes should be lower

when using the latent variable model.

Figure 2.11b shows the performance of the Latent Variable Model, compared with

the baseline of using simple Structure MCMC with a missing species and the optimal

scenario of having complete data. As can be seen, the Latent Variable Model succeeds

in reducing the median probability of spurious edges, although not quite to the level of

having complete knowledge of the data.

2.7 Real-World Network Inference Results

Note: The results presented in this sections were obtained by Ali Faisal, as described

in the preamble to this chapter.

We recovered three consensus networks for the warbler data: for data sets with

birds only, with birds and spatial autocorrelation and with birds, spatial autocorrela-

tion and bio-climate covariates. The first two can be found in the appendix (Figs.
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Figure 2.11: (a) The network used to test the performance of the latent variable model,

consisting of one fully connected species Z, and three unconnected species X1, X2,

X3. (b) Boxplot showing the posterior probabilities of spurious edges found using Struc-

ture MCMC with one fully-connected missing species, Structure MCMC with a latent

variable, and Structure MCMC with a complete dataset (no missing species).
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Figure 2.12: An example consensus network for the warbler data, with spatial autocor-

relation and bio-climate covariates. The edges are pruned by placing a threshold value

of 0.5 on the original consensus network, which corresponds to a p-value of 0.01. See

Section A.5 in the appendix for a description of how these p-values were calculated.

The thickness of an edge represents the strength of the interaction. The boxes on the

right represent unconnected species. Equivalent plots of consensus networks for the

other datasets are also available (Figs. A.3 and A.4 in the appendix).
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Figure 2.13: Comparison of recovered consensus networks with the a priori interaction

network: AUC scores on the left and TPFP5 scores on the right. White bars show

the birds only dataset, grey bars the birds and spatial autocorrelation, black bars the

birds, spatial autocorrelation and bio-climate covariate dataset. The top row shows the

results for consensus networks, while the bottom row shows the results for BN and

LASSO individually. Note that the AUC and TPFP5 scores tend to increase as the

model complexity increases. The vertical position of the horizontal axis indicates the

expected performance of a random predictor.

A.3 and A.4); here we just present the third (Fig. 2.12). Comparison of the recov-

ered consensus networks with the a priori network predicted from the literature and

expert judgement revealed small but statistically significant relationships (Fig. 2.13).

We also identified small but significant relationships between the interaction score for

the recovered consensus networks and both the phylogenetic and ecological distances

(Table 2.6). Increasing model complexity (i.e. sequentially adding autocorrelation and

bio-climate covariates) generally led to both stronger correlations with the predicted

network structure and sparser networks (Fig. 2.14). Our predictions in Section 2.2.3

were therefore corroborated.

Network characterisation identified that the degree distribution of the consensus



2.7. Real-World Network Inference Results 57

Pval < 0.01 Pval < 0.1
0

10

20

30

40

50

60

70

80

S
pa

rs
ity

 L
ev

el

BN LASSO
0

10

20

30

40

50

60

70

80

S
pa

rs
ity

 L
ev

el

Figure 2.14: Sparsity of the recovered networks. White bars show the birds only

dataset, grey bars the birds and spatial autocorrelation, black bars the birds, spatial

autocorrelation and bio-climate covariate dataset. The left figure shows the results for

consensus networks at two different thresholds, while the right figure shows the results

for BN and LASSO individually at a threshold with p-value < 0.01.

Recovered Network A priori net Phylogenetic Dist. Ecological Dist.

Basic Dataset
-0.98 -0.11 -0.13

(0.32, -2.28) (-0.18, -0.04) (-0.20, -0.06)

Spatial Autocorrelation
-1.40 -0.12 -0.15

(-0.03, -3.16) (-0.19, -0.05) ( -0.22, -0.08)

Spatial Autocorrelation -1.60 -0.14 -0.14

and Bio-climate Covariates (-0.03, -3.16) (-0.21, -0.07) ( -0.22, -0.07)

Table 2.6: Results of comparison between recovered consensus networks with the a

priori interaction network, phylogenetic distance and ecological distance. For compar-

isons with the a priori network (second column), we show the regression coefficient of

a logistic regression, other results (third and fourth column) are Pearson’s correlation

coefficients, all with 95% confidence intervals shown in brackets. Confidence intervals

that do not include zero indicate that the correlation is significant.
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networks was consistent across all threshold values, with all networks showing an

exponential distribution. Both the clustering coefficient and the mean shortest path

length varied greatly as the threshold level changed and are therefore not considered

a useful description of these networks. Further details on the network characterisation

can be found in Section A.7 in the appendix.

2.8 Discussion

As expected, we found that warblers in Europe form a well connected network, with

most well known interactions (e.g. several Acrocephalus warblers: A. arundianceus/

A. melanopogon /A. schoenobaenus/A. scirpaceus (Schäfer et al., 2006; Rolando and

Palestrini, 1991), and a triangle of interacting Sylvia warblers: S. borin/S. atricapilla/

S. communis (Elle, 2003; Garcia, 1983)) accurately described by the better consensus

network structures.

Given the general expectation that climate alone shapes distributions at large scales,

it might seem surprising that the chosen bioclimate variables were not more strongly

connected to species distributions. We believe there are two primary reasons for the

relatively low effect of climate variables: firstly, our discretised climate data is likely

to be too crude to capture all the meaningful climate variation, reducing the associ-

ation with these parameters. Secondly, there is growing evidence to suggest that the

importance of climate and abiotic variables has previously been overstated (e.g. Watts

and Worner 2008) largely because processes like the biotic interactions included in our

models have previously been neglected (Davis et al., 1998; Beale et al., 2008; Holt

and Barfield, 2009; La Sorte et al., 2009). It would clearly be valuable to develop

the methods further to include both continuous variables and binary variables in the

same analyses. Defining appropriate probability distributions is rather straightforward.

However, these distributions depend on parameters, and integrating them out in the

likelihood is analytically intractable. To address this difficulty, one can either seek ap-

proximate solutions based on variational calculus, or resort to an extended sampling

scheme with MCMC. A development of these ideas and a comparative evaluation study

provides an interesting and challenging project for future work.

To quantify the network reconstruction accuracy, we have applied various evalua-

tion criteria (described in Section 2.2.3). We found that the correlations between the

interaction scores obtained from the network reconstruction methods and those used

for evaluation – phylogenetic distances and ecological similarities – were significant
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(Table 2.6). Likewise, the reconstruction assessment scores obtained on the basis of an

overall a priori network structure elicited from expert judgement – AUC and TPFP5

(Fig. 2.13) – were significantly better than random. We note that the correlations are

weak (Table 2.6) and the AUC and TPFP5 scores (Fig. 2.13) are significantly below

the score of a perfect reconstruction (AUC = TPFP5 = 1.0). This is over-pessimistic

in that the scores are based on evaluation criteria which themselves are noisy and dis-

torted characterisations of the unknown true species interaction network: Tables A.3

and A.4 in the appendix demonstrate that the correlation coefficients and network re-

construction scores for these criteria are also weak. This is a general problem when

trying to assess the network reconstruction on real data, for which the true interaction

network is unknown. The fact that the reconstructed networks show weak yet con-

sistently significant agreement with the various evaluation criteria indicates that the

machine learning methods investigated in our study have reconstructed genuine pat-

terns of the (unknown) species interaction network.

To compensate for the lack of gold standard for the warbler data, we have extended

our study by applying the network reconstruction methods to simulated data, for which

the underlying network is known. Our results are consistent with related studies in

molecular systems biology (Werhli et al., 2006). The global network reconstruction in

terms of AUC scores typically lies in the range between 0.75 and 0.9, which is consid-

erably better than random (0.5), but not perfect (1.0). In terms of TPFP5 scores, we

can expect to reconstruct about 60% of the true species interactions at a false prediction

rate of 5%. Aiming for a perfect reconstruction would be an unrealistic target, given

the noise in the data, the limited data set size, and the fact that all reconstruction models

investigated in our study are simplifications of the complex ecological processes.

Our comparative evaluation of different network reconstruction methods has found

that SBR performed significantly worse than the other methods (Fig. 2.8) and discov-

ered a much smaller proportion of edges than the other methods (illustrated e.g. in Fig.

2.7). We provide a mathematical explanation in Section 2.3.1.3. We have also shown

that including spatial autocorrelation effects leads to a clear and significant improve-

ment in the network reconstruction accuracy on simulated data (Fig. 2.8). The evalua-

tion on the warbler data was more difficult due to the lack of a gold standard. In gen-

eral, more complex models, which included spatial autocorrelations and bio-climate

covariates, resulted in stronger matches between the predicted species interactions and

the prior network derived from expert judgement (Fig. 2.13). We also found that the

absolute value of the correlations between predicted species interaction strengths and
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both phylogenetic and ecological distance scores increased as a consequence of includ-

ing spatial autocorrelations and bio-climate covariates (Table 2.6). This suggests that

accounting for additional sources of variation removed spurious interactions and led to

a more plausible network structure.

The reconstructed warbler interaction networks have shown an exponential rather

than a power law degree distribution (Figs. A.6 and A.7 in the appendix). This finding

is consistent with Dunne et al. (2002) and contributes to the ongoing discussion about

the global characteristics of species interaction networks. The networks inferred in our

study suggest a number of novel strong interactions that may exist among the warblers.

This leads to the formulation of new hypotheses: do S. currucca and S. nisoria interact,

and is the relationship between H. icterina and P. sibilatrix real? Investigation of the

mechanisms behind these interactions may prove valuable.

2.9 Conclusion

We have carried out one of the first studies to address the problem of reconstructing

species interaction networks from species abundance data. To this end, we have ap-

plied and adapted four machine learning methods recently developed in the field of

computational molecular systems biology. We have applied these models and their

adaptations to a subset of the European bird atlas data (warblers), and have discovered

both interactions that are known from the literature, and significant correlations with

interaction scores based on phylogenetic distances and ecological similarities.

It should be noted that finding an interaction between two species in a reconstructed

network does not reveal the mechanism that underlies the interaction. If it is found

that species A interacts with species B, this could be due to factors as disparate as a

predator-prey relationship, competition for common resources, or a symbiotic relation-

ship. Adding further covariates to the data can often elucidate the possible cause; if

for example adding information about availability of food sources causes the interac-

tion to disappear, then it is likely that the two species compete for the same resources.

However, in the absence of perfect and complete observations, it is not always possible

to say with certainty what caused an interaction to be inferred.

We have complemented our study with an evaluation of the network reconstruction

on simulated data, for which a proper gold-standard is known. The reconstruction per-

formance was considerably better than random, but we note that perfect reconstruction

is unlikely given limited data and the complexity of the ecological processes involved.



2.9. Conclusion 61

The machine learning methods investigated in our study therefore do not provide a

mechanism for hypothesis validation. However, our findings suggest that they do offer

a useful tool for hypothesis generation, which can enrich and complement traditional

methods based on fieldwork and experimental analysis.

The comparative evaluation of different network reconstruction methods has deep-

ened our insight into their relative performance. However, we have found that for a

successful application in ecology, the network reconstruction methods currently ap-

plied in molecular systems biology need to be modified and improved. We have in-

corporated a mechanism for taking spatial autocorrelations into account, and we have

expanded the models so as to include exogenous bio-climate variables.

Future model improvement should focus on the explicit inclusion of ecological

prior knowledge, along the lines of Werhli and Husmeier (2007), and the inclusion of

latent variables to allow for unobserved effects (see Sections 2.3.2.4 and 2.6.3 for a

preliminary exploration). We have investigated the adaptation of the model proposed

in Grzegorczyk et al. (2008a) to include latent variables in Bayesian networks. While

our preliminary results on the simulated data were encouraging, as shown in Figure

2.11, the application of this scheme to the warbler data suffered from convergence and

mixing problems of the MCMC simulations, which calls for further methodological

improvements.

The true value of our study lies in demonstrating that even using large-scale spatial

datasets, relevant patterns in ecological networks can be identified using the machine

learning methods described here. This suggests that these methods have the potential

to contribute novel important tools for gaining deeper insight into the structure and

stability of ecosystems, managing biodiversity, and predicting the impact of climate

change.





Chapter 3

Time-varying networks: global vs

sequential information sharing

Note: This chapter is largely based on the paper “Heterogeneous Continuous Dy-

namic Bayesian Networks with Flexible Structure and Inter-Time Segment Informa-

tion Sharing” (Dondelinger et al., 2010), which I presented at “The 27th International

Conference on Machine Learning (ICML 2010)”. Some of the sections from this paper

have been reproduced verbatim. The results on the circadian clock genes in Arabidop-

sis in Section 3.6.3 have been reproduced from the journal paper ”Dynamic Bayesian

networks in molecular plant science: Inferring gene regulatory networks from multiple

gene expression time series” (Dondelinger et al., 2012a). In addition, some of the text

for the introduction and methodology has been adapted from the Machine Learning

paper (Dondelinger et al., 2012b).

3.1 Introduction

As pointed out in Chapter 1, one of the challenging problems in the field of systems

biology is the inference of gene regulatory networks from high-throughput transcrip-

tomic profiles. While protein interactions can be measured directly with various high-

throughput assays, gene regulatory interactions involve several intermediate steps re-

lated to the formation, activation and complex formation of transcription factors (e.g.

via phosphorylation or dimerization). These processes are generally not directly ob-

servable, especially in a high-throughput fashion. For that reason the inference of

interactions has to be based on indirect noisy measurements of mRNA concentrations

(a proxy for gene activity), rendering the problem of regulatory network reconstruction

63
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more difficult than for proteins. Various statistical techniques that I have described in

Chapter 1 aim to perform network inference on this data, and the reconstructed regu-

lation networks can reveal how the genes and the proteins they code for interact.

However, many of the regulatory interactions in the cell vary in time. During the

development and growth of an organism, some genes and pathways are more active

during the early stages, but show practically no activity during the later stages, or vice-

versa. Drosophila melanogaster, for instance, goes through several developmental

stages, from embryo to larva to pupa to adult. Genes involved in wing muscle develop-

ment would naturally fulfil different roles during the embryonal phase, when no wings

are present, than they do in the adult fly, when the wings have fully developed. Gene

regulatory and signalling networks can also vary in time in reaction to an environmen-

tal trigger, such as the type of growth substrate, or the type of drug treatment applied.

Such a trigger can enhance or prevent the interactions of certain proteins, which in turn

can have repercussions for the whole network. A recent pertinent example comes from

cancer biology, where it has been shown that treatment with one kind of anticancer

drug can lead to a rewiring of the signalling network, which affects the response to

subsequent treatment with a different drug (Lee et al., 2012).

We are therefore presented with the problem of inferring a regulatory network

from a series of discrete measurements or observations in time, where the structure

of the network is subject to potential change. Moreover, we may not always know at

which stage structural changes are likely to occur, as the underlying processes may be

time-delayed, or dependent on unobservable external factors. To extend conventional

reverse engineering methods, which only aim to infer a single immutable regulatory

network, this work builds on recent research in combining dynamic Bayesian networks

(DBNs) with multiple changepoint processes (Robinson and Hartemink, 2009, 2010;

Grzegorczyk and Husmeier, 2009, 2011; Lèbre, 2007; Lèbre et al., 2010; Kolar et al.,

2009). Below, I will briefly review the state of the art, and the shortcomings of existing

methods that we aim to address.

The standard assumption underlying DBNs is that time-series have been generated

from a homogeneous Markov process. This assumption is too restrictive, as discussed

above, and can potentially lead to erroneous conclusions. While there have been vari-

ous efforts to relax the homogeneity assumption for undirected graphical models (Talih

and Hengartner, 2005; Xuan and Murphy, 2007), relaxing this restriction in DBNs is

a more recent research topic (Robinson and Hartemink, 2009, 2010; Grzegorczyk and

Husmeier, 2009, 2011; Ahmed and Xing, 2009; Lèbre, 2007; Lèbre et al., 2010; Ko-
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lar et al., 2009). At present, none of the proposed methods is without its limitations,

leaving room for further methodological innovation. The method proposed in Ahmed

and Xing (2009) and Kolar et al. (2009) is non-Bayesian. This requires certain reg-

ularization parameters to be optimized “externally”, by applying information criteria

(like AIC or BIC), cross-validation or bootstrapping. The first approach is suboptimal,

the latter approaches are computationally expensive1. In this chapter, we therefore fol-

low the Bayesian paradigm, as in Robinson and Hartemink (2009, 2010); Grzegorczyk

and Husmeier (2009, 2011); Lèbre (2007) and Lèbre et al. (2010). These approaches

also have their limitations. The method proposed in Grzegorczyk and Husmeier (2009,

2011) assumes a fixed network structure and only allows the interaction parameters to

vary with time. This assumption is too rigid when looking at processes where changes

in the overall regulatory network structure are expected, e.g. in morphogenesis or em-

bryogenesis. The method proposed in Robinson and Hartemink (2009, 2010) requires

a discretization of the data, which incurs an inevitable information loss. These limita-

tions are addressed in Lèbre (2007) and Lèbre et al. (2010), where the authors propose

a method for continuous data that allows network structures associated with different

nodes to change with time in different ways. However, this high flexibility causes po-

tential problems when applied to time series with a low number of measurements, as

typically available from systems biology, leading to overfitting or inflated inference

uncertainty.

The objective of this chapter is to present a novel model that addresses the method-

ological shortcomings of the three Bayesian methods mentioned above, and to demon-

strate its viability by application to gene expression time series from Drosophila me-

lanogaster and Arabidopsis thaliana. Unlike Robinson and Hartemink (2009, 2010),

the model is continuous and therefore avoids the information loss inherent in a dis-

cretization of the data. We further improve on the model in Robinson and Hartemink

(2009, 2010) by allowing different nodes in the networks to have different penalty

terms. Unlike Grzegorczyk and Husmeier (2009, 2011), our model allows the net-

work structure to change among segments, leading to greater model flexibility. As an

improvement on Lèbre (2007) and Lèbre et al. (2010), our model introduces informa-

tion sharing among time series segments, which provides an essential regularization

effect. In this chapter, we have applied the model to reconstruct two regulatory net-

works: a network of genes involved in wing muscle development during the life cycle

1See Larget and Simon (1999) for a demonstration of the higher computational costs of bootstrapping
over Bayesian approaches based on MCMC.
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of Drosophila melanogaster, based on data from Arbeitman et al. (2002), and a net-

work of circadian clock genes in Arabidopsis thaliana, based on data from Edwards

et al. (2006), Mockler et al. (2007) and Grzegorczyk et al. (2008a).

I compare two different information coupling paradigms in this chapter: global in-

formation coupling and sequential information coupling. Global information coupling

is appropriate when there is no natural sequential order of the time series segments,

such as for segments derived from different experimental conditions. This is the case

for the Arabidopsis thaliana dataset. Sequential information sharing, which I will also

investigate in more detail in Chapter 4, is appropriate for modelling a temporal de-

velopmental process, such as those related to morphogenesis, where changes to the

network structure happen sequentially. I will present a comparison between the two

approaches based on simulation data, before applying them to real-world datasets.

This chapter is organized as follows. Section 3.2 reviews the time-varying, non-

homogeneous DBN on which our work is based. Section 3.3 describes the method-

ological innovation of Bayesian regularization via information coupling. Section 3.4

describes the implementation of our method and the setup of the simulation studies.

Section 3.5 gives a description of the synthetic data, and the two real-world datasets

from Drosophila melanogaster and Arabidopsis thaliana that were used in this chap-

ter. Section 3.6 presents and discusses the results of applying our network inference

method to this data. The chapter concludes in Section 3.7 with a general discussion

and summary.

3.2 Background: Non-homogeneous DBNs

This section summarizes the auto regressive time-varying DBN proposed in Lèbre

(2007) and Lèbre et al. (2010). A similar model was proposed in Punskaya et al.

(2002). The idea is to combine the Bayesian regression model of Andrieu and Doucet

(1999) with multiple changepoint processes and pursue Bayesian inference with re-

versible jump Markov chain Monte Carlo (RJMCMC) (Green, 1995). We call this

method TVDBN (Time-Varying Dynamic Bayesian Network).

The model is based on the first-order Markov assumption. This assumption is not

critical, though, and a generalization to higher orders, as pursued in Punskaya et al.

(2002), is straightforward. The value that a node in the graph takes on at time t is de-

termined by the values that the node’s parents (i.e. potential regulators, see below) take

on at the previous time point, t− 1. More specifically, the conditional probability of
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the observation associated with a node at a given time point is a conditional Gaussian

distribution, where the conditional mean is a linear weighted sum of the parent values

at the previous time point, and the interaction parameters and parent sets depend on

the time series segment. The latter dependence adds extra flexibility to the model and

thereby relaxes the homogeneity assumption. The interaction parameters, the variance

parameters, the number of potential parents, the location of changepoints demarcat-

ing the time series segments, and the number of changepoints are given (conjugate)

prior distributions in a hierarchical Bayesian model. For inference, all these quanti-

ties are sampled from the posterior distribution with RJMCMC. Note that a complete

specification of all node-parent configurations determines the structure of a regulatory

network: each node receives incoming directed edges from each node in its parent set.

In what follows, we will refer to nodes as genes and to the network as a gene

regulatory network. The method is not restricted to molecular systems biology, though.

3.2.1 Graph

Let p be the number of observed genes, and let xxx=(xi(t))1≤i≤p,1≤t≤N be the expression

values measured at N time points. M h represents a directed graph, i.e. the network

defined by a set of directed edges among the p genes. M h
i is the subnetwork associated

with target gene i, determined by the set of its parents, i.e. the nodes with a directed

edge feeding into gene i; these are the potential regulators of the target gene. The

meaning of the superscript h is explained in the next section.

3.2.2 Multiple changepoint process

The set of regulatory relationships among the genes, defined by M h, may vary across

time, which we model with a multiple changepoint process. For each target gene

i, an unknown number ki of changepoints define ki + 1 non-overlapping segments.

Segment h = 1, ..,ki + 1 starts at changepoint ξ
h−1
i and stops before ξh

i , where ξξξi =

(ξ0
i , ...,ξ

h−1
i ,ξh

i , ...,ξ
ki+1
i ) with ξ

h−1
i < ξh

i . To delimit the bounds, two pseudo-change-

points are introduced: ξ0
i = 2 and ξ

ki+1
i =N+1. Thus vector ξξξi has length |ξξξi|= ki+2.

The set of changepoints is denoted by ξξξ= (ξξξi)1≤i≤p. This changepoint process induces

a partition of the time series, xxxh
i =(xi(t))ξ

h−1
i ≤t<ξh

i
, with different network structures M h

i

associated with the different segments h ∈ {1, . . . ,ki + 1}. Identifiability is satisfied

by ordering the changepoints based on their position in the time series. We define

Mi = {M h
i }1≤h≤ki+1 and M = {Mi}1≤i≤p.
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3.2.3 Regression model

For each gene i, the random variable Xi(t) refers to the expression of gene i at time

t. Within any segment h, the expression of gene i depends on the p gene expression

values measured at the previous time point through a regression model defined by (a)

a set of sh
i parents denoted by M h

i = { j1, ..., jsh
i
} ⊆ {1, . . . , p}, |M h

i | = sh
i , and (b) a

set of parameters (aaah
i , σh

i ) where aaah
i = (ah

i j)0≤ j≤p, ah
i j ∈ R and σh

i > 0. For all j 6= 0,

ah
i j = 0 if j /∈M h

i . For each gene i, for each time point t in segment h (ξh−1
i ≤ t < ξh

i ),

the random variable Xi(t) depends on the p variables {X j(t−1)}1≤ j≤p according to

Xi(t) = ah
i0 +∑ j∈M h

i
ah

i j X j(t−1) + ε
h
i (t) (3.1)

where the noise εh
i (t) is assumed to be Gaussian with mean 0 and variance (σh

i )
2,

εh
i (t) ∼ N(0,(σh

i )
2). We define aaai = (aaah

i )1≤h≤ki+1, aaa = (aaai)0≤i≤p, σσσ222
i = (σh

i )
2
1≤h≤ki+1

and σσσ222 = (σσσ222
i )0≤i≤p.

3.2.4 Prior

The ki + 1 segments are delimited by ki changepoints, where ki is distributed a priori

as a truncated Poisson random variable with mean λ and maximum k = N−2:

P(ki|λ) ∝
λki

ki!
1l{ki≤k}; P(kkk|λ) =

p

∏
i=1

P(ki|λ) (3.2)

where kkk = (k1, . . . ,kp). Conditional on ki changepoints, the changepoint position vec-

tor ξξξi = (ξ0
i ,ξ

1
i , ...,ξ

ki+1
i ) takes non-overlapping integer values, which we take to be

uniformly distributed a priori. There are (N−2) possible positions for the ki change-

points, thus vector ξξξi has prior density:

P(ξξξi|ki) = 1/
(

N−2
ki

)
=

ki!(N−2− ki)!
(N−2)!

(3.3)

For each gene i, for each segment h, the number sh
i of parents for node i follows a

truncated Poisson distribution with mean Λ and maximum s = 5:

P(sh
i |Λ) ∝

Λsh
i

sh
i !

1l{sh
i≤s} (3.4)

Conditional on sh
i , the prior for the parent set M h

i is a uniform distribution over all

parent sets with cardinality sh
i ,

P(M h
i |sh

i ) = 1/( p
sh

i
) =

sh
i !(p− sh

i )!
p!

(3.5)



3.2. Background: Non-homogeneous DBNs 69

The overall prior on the network structures is given by marginalization:

P(M h
i |Λ) = ∑

s
sh

i =0 P(M h
i |sh

i )P(s
h
i |Λ) (3.6)

Conditional on the parent set M h
i of size sh

i , the sh
i + 1 regression coefficients form a

subset of aaah
i denoted by aaaM h

i
= (ah

i0,(a
h
i j) j∈M h

i
). They are assumed zero-mean multi-

variate Gaussian with covariance matrix (σh
i )

2ΣΣΣM h
i

,

P(aaah
i |M h

i ,σ
h
i )=|2π(σh

i )
2
ΣΣΣM h

i
|−

1
2 exp

−aaa†
M h

i
ΣΣΣ
−1
M h

i
aaaM h

i

2(σh
i )

2

 (3.7)

where |.| denotes the determinant of a matrix, the symbol † denotes matrix transposi-

tion, ΣΣΣ
−1
M h

i
= δ−2DDD†

M h
i

DDDM h
i

and DDDM h
i

is the (ξh
i − ξ

h−1
i )× (sh

i + 1) matrix whose first

column is a vector of 1’s (for the constant in model (3.1)) and each ( j+ 1)th column

contains the observed values (x j(t))ξ
h−1
i −1≤t<ξh

i−1 for each factor gene j in M h
i . This

so-called g-prior was also used in Andrieu and Doucet (1999) and is motivated in Zell-

ner (1986). Note that although the g-prior can be considered data-dependent via the

design matrix DDD, which seems to violate the Likelihood Principle, this violation is

less critical than one may suspect due to fact that DDD is only used to obtain the Fisher

information matrix for the covariates of the regression, and not for obtaining infor-

mation about the response. For more details on the g-prior, see Liang et al. (2008).

Finally, the conjugate prior for the variance (σh
i )

2 is the inverse gamma distribution,

P((σh
i )

2) = I G(υ0,γ0). Following Lèbre (2007) and Lèbre et al. (2010), we set the

hyper-hyperparameters for shape, υ0 = 0.5, and scale, γ0 = 0.05, to fixed values that

give a vague distribution. The terms λ and Λ can be interpreted as the expected number

of changepoints and parents, respectively, and δ2 is the expected signal-to-noise ratio.

These hyperparameters are drawn from vague conjugate hyperpriors, which are in the

(inverse) gamma distribution family:

P(Λ) = P(λ) = Ga(0.5,1) = Λ
−0.5 exp(−Λ)

Γ(0.5)
(3.8)

and

P(δ2) = I G(2,0.2) = δ
−6 0.04exp(−0.2

δ2 )

Γ(2)
(3.9)
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3.2.5 Posterior

Equation (3.1) implies that

P(xxxh
i |M h

i ,aaa
h
i ,σ

h
i ) =(√

2πσ
h
i

)−length(xxxh
i )

exp

(
−
(xxxh

i −DDDM h
i
aaaM h

i
)† (xxxh

i −DDDM h
i
aaaM h

i
)

2(σh
i )

2

)
(3.10)

where length(xxxh
i ) is the length of the time series segment h. From Bayes’ theorem, the

posterior is given by the following equation, where all prior distributions have been

defined above:

P(kkk,ξξξ,M ,aaa,σσσ222,λ,Λ,δ2|xxx) ∝P(δ2)P(λ)P(Λ)
p

∏
i=1

P(ki|λ)P(ξξξi|ki)
ki

∏
h=1

P(M h
i |Λ)

P([σh
i ]

2)P(aaah
i |M h

i , [σ
h
i ]

2,δ2)P(xxxh
i |M h

i ,aaa
h
i , [σ

h
i ]

2)

(3.11)

An attractive feature of the chosen model is that the integration over the parameters

aaa and σσσ222 in the posterior distribution of equation (3.11) is analytically tractable:

P(kkk,ξξξ,M ,λ,Λ,δ2|xxx) =
∫ ∫

P(kkk,ξξξ,M ,aaa,σσσ222,λ,Λ,δ2|xxx)daaadσσσ
222 (3.12)

∝ P(δ2)P(λ)P(Λ)
p

∏
i=1

∫ ∫
P(ki,ξξξi,Mi,aaai,σσσ

222
i ,xxxi|λ,Λ,δ2)daaaidσσσ

222
i

For each gene i, the joint distribution for ki, ξξξi, Mi, aaai, σσσ222
i , xxxi conditional on hyper-

parameters λ, Λ, δ2, is integrated over the parameters aaai (normal distribution) and σσσ222
i

(inverse gamma distribution). Solving this integral (for details see Lèbre et al., 2010),

the following expression is obtained:∫ ∫
P(ki,ξξξi,Mi,aaai,σσσ

222
i ,xxxi|λ,Λ,δ2)daaaidσσσ

222
i =

Cλ λ
ki
(N−2− ki)!
(N−2)!

ki+1

∏
h=1

{
(p− sh

i )!
p!

CΛ Λ
sh

i P(xxxh
i |M h

i ,δ
2)

} (3.13)

where Cλ,CΛ are the normalization constants required by the truncation of the Poisson

distribution (3.2) and (3.4) and where

P(xxxh
i |M h

i ,δ
2) = (δ2 +1)−

sh
i +1
2

(
γ0
2

)υ0/2

Γ(υ0
2 )

Γ

(
υ0 + length(xxxh

i )

2

)(
γ0 +(xxxh

i )
†PPPh

i xxxh
i

2

)−υ0+length(xxxh
i )

2
(3.14)
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where the matrices PPPh
i and MMMh

i are defined as follows, with III referring to the identity

matrix of size length(xxxh
i ):

PPPh
i = III−DDDM h

i
MMMh

i DDD†
M h

i
, (3.15)

MMMh
i =

δ2

δ2 +1

(
DDD†

M h
i

DDDM h
i

)−1
. (3.16)

The number of changepoints kkk and their location, ξξξ, the network structure M and the

hyperparameters λ, Λ and δ2 can be sampled from the posterior P(kkk,ξξξ,M ,λ,Λ,δ2|xxx)
with a reversible jump MCMC (Green, 1995) scheme detailed in the next subsection.

3.2.6 RJMCMC scheme

Four different update moves are proposed: birth of a new changepoint (B); death (re-

moval) of an existing changepoint (D); shift of a changepoint to a different time-point

(S); and update of the network topology within the segments (N). These moves occur

with probabilities bki for B, dki for D, uki for S and vki for N, depending only on the cur-

rent number of changepoints ki and satisfying bki +dki +uki +vki = 1. The changepoint

birth and death moves represent changes from, respectively, ki to ki+1 segments and ki

to ki−1 segments. In order to preserve the restriction on the number of changepoints,

some probabilities are set to 0: d0 = u0 = 0 and bk = 0. Otherwise, following Green

(1995), these probabilities are chosen as follows,

bki = c min
{

1,
P(ki +1|λ)

P(ki|λ)

}
, dki+1 = c min

{
1,

P(ki|λ)
P(ki +1|λ)

}
(3.17)

where P(ki|λ) is the prior distribution for the number of changepoints defined in equa-

tion (3.2) and the constant c is chosen to be smaller than 1/4 so that network struc-

ture updates and changepoint position shifts are proposed more frequently than births

and deaths of changepoints. This improves mixing and convergence with respect to

changepoint positions and network structures within the different segments. Shifting

of a changepoint is proposed with probability uki = (1− bki − dki+1)/3, and updat-

ing of the network structure within each segment is proposed with probability vki =

1− (bki +dki +uki).

Following Green (1995), the RJMCMC acceptance probability of a changepoint

birth is equal to min{1,R}, where the acceptance ratio R reads as follows:

R = (likelihood ratio)× (prior ratio)× (proposal ratio)× (Jacobian). (3.18)
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The product of the likelihood and the prior ratio is the posterior ratio which is derived

from equation (3.12). The computation of the proposal ratio and the Jacobian depends

on the choice for the various moves designed to sample the time-varying network dis-

tribution. We briefly describe below the chosen moves and their associated acceptance

ratio. A complete description of the computation of the acceptance ratio for each move

can be found in Lèbre et al. (2010).

Let ξξξi be the current changepoint vector containing ki changepoints. For a change-

point birth move, a new changepoint position ξ? is sampled uniformly from the avail-

able positions. The new changepoint is within an existing segment h? of the target

gene i, ξ
h?−1
i < ξ? < ξh?

i . Let us denote by h?L and h?R the segments to the left and to the

right of the new changepoint respectively and by xxxh?
i = (xxxh?L

i ,xxxh?R
i ) the observed values

for gene i in those segments. One of h?L and h?R is chosen with equal probability. That

segment retains the current network topology M h?
i of segment h?, and an entirely new

topology is sampled from the prior defined in equation (3.6) for the other segment. Let

us denote by s? the number of edges of the new topology. The Jacobian is equal to 1

and the prior ratio is computed from the probability of choosing a new changepoint po-

sition and a new network structure for the new segment. Then the birth of the proposed

changepoint is accepted with probability A(ξξξ+i |ξξξi) = min{1,R(ξξξ+i |ξξξi)}, with

R(ξξξ+i |ξξξi) =
1

(δ2 +1)(s?+1)/2

(
γ0
2

)υ0/2

Γ(υ0
2 )

Γh?LΓh?R
Γh?

(
υ0 +(xxxh?

i )†PPPh?
i xxxh?

i
2

) 1
2 (υ0+ξh?

i −ξ
h?−1
i )

(
υ0 +(xxxh?L

i )†PPPh?L
i xxxh?L

i
2

)− 1
2 (υ0+ξ

h?L
i −ξ

h?L−1
i )(

υ0 +(xxxh?R
i )†PPPh?R

i xxxh?R
i

2

)− 1
2 (υ0+ξ

h?R
i −ξ

h?R−1
i )

(3.19)

For details see Lèbre et al. (2010). Here ξξξ
+
i refers to the proposed changepoint vector

after adding the new changepoint ξ? to the current vector ξξξi and for all h in {1, ..,ki+1},

Γh = Γ

(
υ0+ξh

i−ξ
h−1
i

2

)
, and all other quantities are defined in Section 3.2.5.

For a changepoint death move, an existing changepoint in the current configuration

is selected uniformly at random. The two segments adjacent to this changepoint are

proposed to be merged into one segment, which will conserve the network structure

of one of the two segments (selected with equal probability). Let us denote by ξξξ
−
i the

proposed changepoint vector after removing the selected changepoint from the current

vector ξξξi. The acceptance ratio of the changepoint death move is equal to the inverse of

the changepoint birth acceptance ratio R(ξξξi|ξξξ
−
i ) for proposing a change from ξξξ

−
i to ξξξi,
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given in equation (3.19). Therefore the acceptance probability of a changepoint death

move is,

A(ξξξ−i |ξξξi) = min{1,
(

R(ξξξi|ξξξ
−
i )
)−1
}. (3.20)

Proposed shifts in changepoint positions are accepted using a standard Metropolis-

Hastings step (Hastings, 1970) where a change is accepted with probability min{1,R}
where R = (posterior ratio)× (proposal ratio). The new changepoint vector ξ̃ξξi is ob-

tained by replacing ξh
i with ξ̃h

i such that the absolute value |ξh
i − ξ̃h

i | = 1. The pos-

terior ratio is obtained from equation (3.12). Let us denote by Q (ξ̃ξξi|ξξξi) the prob-

ability of shifting changepoint ξh
i to ξ̃h

i in the current changepoint vector ξξξ
i (and

reciprocally for Q (ξξξi|ξ̃ξξi)), then the changepoint shift is accepted with probability

A(ξ̃ξξi|ξξξi) = min{1,R(ξ̃ξξi|ξξξi)} where,

R(ξ̃ξξi|ξξξi) =


(

γ0 +(x̃xxh
i )

†P̃PPh
i x̃xxh

i

)(υ0+ξ̃h
i−ξ

h−1
i ) (

γ0 +(x̃xxh+1
i )†P̃PPh+1

i x̃xxh+1
i

)(υ0+ξ
h+1
i −ξ̃h

i )

(
γ0 +(xxxh

i )
†PPPh

i xxxh
i
)(υ0+ξh

i−ξ
h−1
i )

(
γ0 +(xxxh+1

i )†PPPh+1
i xxxh+1

i

)(υ0+ξ
h+1
i −ξh

i )


1/2

Γ

(
υ0+ξ̃h

i−ξ
h−1
i

2

)
Γ

(
υ0+ξ

h+1
i −ξ̃h

i
2

)
Γ

(
υ0+ξh

i−ξ
h−1
i

2

)
Γ

(
υ0+ξ

h+1
i −ξh

i
2

) Q (ξξξi|ξ̃ξξi)

Q (ξ̃ξξi|ξξξi)
,

(3.21)

where x̃xxh
i and x̃xxh+1

i refer to the expression levels for gene i observed in phase h and

h+ 1 of the new changepoint vector ξ̃ξξi, and P̃PPh
i and P̃PPh+1

i are the projection matrices

built from x̃xxh
i and x̃xxh+1

i as defined in equation (3.15), and all other quantities are as

defined in Section 3.2.5. See Lèbre et al. (2010) for the derivation of this equation.

Finally, network structure updates within segments invoke a second RJMCMC

scheme, which was adapted from the model selection approach of Andrieu and Doucet

(1999). When such a move is chosen, for each segment successively, we consider ei-

ther the birth or death of an edge. For an edge birth move, a new edge is selected

uniformly at random from the set of possible edges. For an edge death move, an edge

to be removed is selected uniformly at random from the set of existing edges. The

edge birth and death moves represent changes from sh
i to sh

i +1 or sh
i −1 parents in the

regression model. The probabilities of choosing these moves, bsh
i

and dsh
i

respectively,

are defined as follows,

bsh
i
=Csh

i
min

{
1,

Ps(sh
i +1)

Ps(sh
i )

}
and dsh

i
=Csh

i
min

{
1,

Ps(sh
i −1)

Ps(sh
i )

}
(3.22)
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where Csh
i

is a normalization constant dependent on sh
i , and set to ensure that bsh

i
+dsh

i
=

1. Additionally, we define b0 = 1, d0 = 0, bs = 0 and ds = 1. The acceptance ratio

R(M̃ h
i |M h

i ) for the new set of s̃h
i parents M̃ h

i (which corresponds to M h
i with a parent

added or removed) is computed according to equation (3.18). Using equations (3.4)

and (3.5), the edge birth prior ratio becomes

Rprior =
P(M̃ h

i |s̃h
i )

P(M h
i |sh

i )

P(s̃h
i |Λ)

P(sh
i |Λ)

(3.23)

and the proposal ratio becomes

Rproposal =
Q (M h

i |M̃ h
i )

Q (M̃ h
i |M h

i )
(3.24)

where Q (M̃ h
i |M h

i ) is the proposal probability of parent set M̃ h
i given parent set M h

i ,

which is defined as follows:

Q (M̃ h
i |M h

i ) = b|M h
i |

δ(|M̃ h
i |, |M h

i |+1)Q +(M̃ h
i |M h

i )+

d|M h
i |

δ(|M̃ h
i |, |M h

i |−1)Q −(M̃ h
i |M h

i )
(3.25)

with δ(x,y) being the Kronecker delta function. Q +(M̃ h
i |M h

i ) = 1/(p−|M̃ h
i |) is the

proposal probability of an edge birth move, and Q −(M̃ h
i |M h

i ) = 1/|M̃ h
i | is the pro-

posal probability of an edge death move. The Jacobian equals 1. Then using equation

(3.14) for the likelihood ratio, the Metropolis-Hastings acceptance ratio for an edge

move becomes

R(M̃ h
i |M h

i ) =
Q (M h

i |M̃ h
i )

Q (M̃ h
i |M h

i )

P(s̃h
i |Λ)

P(sh
i |Λ)

P(M̃ h
i |s̃h

i )

P(M h
i |sh

i )

P(xxxh
i |M̃ h

i ,δ
2)

P(xxxh
i |M h

i ,δ
2)

(3.26)

Note that the prior ratio and the proposal ratio cancel out, and hence the edge move

acceptance ratio is equal to the likelihood ratio, that is,

R(M̃ h
i |M h

i ) =
P(xxxh

i |M̃ h
i ,δ

2)

P(xxxh
i |M h

i ,δ
2)

(3.27)

Finally, the probability of accepting an edge move is,

A(M̃ h
i |M h

i ) = min{1,R(M̃ h
i |M h

i )} (3.28)

The sampling scheme for updating the hyperparameters δ2, λ and Λ is described in

Lèbre (2007) and Lèbre et al. (2010). Together the four moves B, D, S and N allow

the generation of samples from probability distributions defined on unions of spaces of

different dimensions for both the number of changepoints ki and the number of parents

sh
i within each segment h for gene i.
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3.3 Model Improvement

Allowing the network structure to change between segments leads to a highly flexi-

ble model. However, this approach faces a conceptual and a practical problem. The

practical problem is potential model over-flexibility. If subsequent changepoints are

close together, network structures have to be inferred from short time series segments.

This will almost inevitably lead to overfitting (in a maximum likelihood context) or

inflated inference uncertainty (in a Bayesian context). The conceptual problem is the

underlying assumption that structures associated with different segments are a priori

independent. This is not realistic. For instance, for the evolution of a gene regulatory

network during embryogenesis, we would assume that the network evolves gradually

and that networks associated with adjacent time intervals are a priori similar.

To address these problems, we propose two methods of information sharing among

time series segments. The first method is based on the hierarchical Bayesian model of

Werhli and Husmeier (2008). However, rather than sharing information hierarchically

– comparing all network structures to a central latent structure – we share information

sequentially: a network structure is a priori assumed to be similar to the adjacent ones.

The second method uses information from all the other segments to define a prior

distribution on the edges for a given segment. We will investigate the relative merits of

these two information sharing schemes below.

3.3.1 Sequential information sharing

Denote by Ki := ki +1 the number of partitions associated with node i, and recall that

each time series segment yh is associated with a separate subnetwork M h
i , 1 ≤ h ≤

Ki. We impose a prior distribution P(M h
i |M

h−1
i ,βi) on the structures, and the joint

probability distribution factorizes according to a Markovian dependence:

P(y1, . . . ,yKi,M 1
i , . . . ,M

Ki
i ,βi) =

Ki

∏
h=1

P(yh|M h
i )P(M h

i |M h−1
i ,βi)P(βi) (3.29)

This leads to a graphical structure for our model as represented in Figure 3.1.

Similar to Werhli and Husmeier (2008) we define

P(M h
i |M h−1

i ,βi) =
exp(−βi|M h

i −M h−1
i |)

Zi(βi,M h−1
i )

(3.30)

for h ≥ 2, where βi is a hyperparameter that defines the strength of the coupling

between M h
i and M h−1

i . For h = 1, P(M h
i ) is given by (3.6). The denominator
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M1
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M2
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MKi-1
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M

x
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β
i
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1 2 Ki-1 Ki

i i i i

i i i i

Figure 3.1: Sequential information sharing scheme, whereby each sub-network M h
i for

node i depends on the previous sub-network M h−1
i , through an exponential prior on

the number of differences between the two networks, regularized by a hyperparameter

βi.

Zi(βi,M h−1
i ) in (3.30) is a normalizing constant, also known as the partition function:

Zi(βi) = ∑M h
i ∈Mi

e−βi|M h
i −M h−1

i | (3.31)

where Mi is the set of all valid subnetwork structures. If we ignore any fan-in restric-

tion that might have been imposed a priori (via s), then the expression for the partition

function can be simplified: Zi(βi) ≈ ∏i ∏ j Zi j(βi) where

Zi j(βi) = ∑
1
eh

i j=0 e−βi|eh
i j−eh−1

i j | = 1+ e−βi (3.32)

and hence

Zi =
(

1+ e−βi
)p

(3.33)

Inserting (3.33) into (3.30) gives:

P(M h
i |M h−1

i ,βi) =
exp(−βi|M h

i −M h−1
i |)(

1+ e−βi
)p (3.34)

It is straightforward to integrate the proposed model into the RJMCMC scheme of

Lèbre (2007). When proposing a new network structure M h
i → M̃i

h
for segment h, the

prior probability ratio has to be replaced by the following one:

P(M h+1
i |M̃i

h
,βi)P(M̃i

h
|M h−1

i ,βi)

P(M h+1
i |M h

i ,βi)P(M h
i |M

h−1
i ,βi)

=
exp[−βi(|M h+1

i −M̃ h
i |+ |M̃ h

i −M h−1
i |)]

exp[−βi(|M h+1
i −M h

i |+ |M h
i −M h−1

i |)]
(3.35)

An additional MCMC step is introduced for sampling the hyperparameters βi from the

posterior distribution. For a proposal move βi→ β̃i with symmetric proposal probabil-
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ity Q(β̃i|βi) = Q(βi|β̃i) we get the following acceptance probability:

A(β̃i|βi) = min
{ Ki

∏
h=2

exp(−β̃i|M h
i −M h−1

i |)
exp(−βi|M h

i −M h−1
i |)

(
1+ e−βi

)p
P(β̃i)(

1+ e−β̃i

)p
P(βi)

,1
}

(3.36)

where in our study the hyperprior P(βi) was chosen as the uniform distribution on

the interval [0,5]. Note that the scheme proposed in Robinson and Hartemink (2009)

can be regarded as a special case of the one we propose. However, Robinson and

Hartemink (2009) use two simplifications that are not present in our method: (1)

Changepoints are not allowed to vary between nodes. (2) The common hyperparameter

βi = β ∀i has to be chosen by the user in advance and is not inferred from the data.

3.3.2 Global information sharing

We investigate an alternative scheme, based on ideas presented in Ferrazzi et al. (2008).

Let eh
i j ∈ {0,1} denote the indicator variable for a directed edge from node i to node

j in the hth network (i.e. the network corresponding to the hth section of the time

series), and let θi j ∈ [0,1] denote the probability that the node pair (i, j) is connected

by a directed edge. We assume that for a given node pair (i, j), the edge indicator

variables {eh
i j} are iid distributed,

P(eh
i j|θi j) = (θi j)

eh
i j(1−θi j)

1−eh
i j (3.37)

with a conjugate beta prior on the parameters θi j:

P(θi j) =
Γ(αi j +αi j)

Γ(αi j)Γ(αi j)
θ

αi j−1
i j (1−θi j)

αi j−1 (3.38)

where αi j and αi j are hyperparameters. Given the subnetworks M h̃
i in all segments

h̃ different from the current segment h, the prior probability of the subnetwork in the

current segment, M h
i , is

P(M h
i |{M

h̃
i }h̃6=h) = ∏ j P(eh

i j|{eh̃
i j}h̃ 6=h) (3.39)

P(eh
i j|{eh̃

i j}h̃6=h) =
∫

P(eh
i j|θi j)P(θi j|{eh̃

i j}h̃6=h)dθi j

where

P(θi j|{eh̃
i j}h̃6=h) ∝ P({eh̃

i j}h̃ 6=h|θi j)P(θi j) (3.40)

We introduce the following sufficient statistics: Bh
i j is the number of networks in seg-

ments different from the current segment h in which the node pair (i, j) is connected
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by a directed edge. Conversely, Bh
i j is the size of the complement set, i.e. the number

of networks in segments different from the current segment h without an edge from

node i to node j. Obviously, Bh
i j +Bh

i j = Ki−1, and

P({eh̃
i j}h̃6=h|θi j) = θ

Bh
i j

i j (1−θi j)
Bh

i j (3.41)

Inserting (3.41) and (3.38) into (3.40) leads to:

P(θi j|{eh̃
i j}h̃6=h) =

Γ(αi j +Bh
i j +αi j +Bh

i j)

Γ(Bh
i j +αi j)Γ(Bh

i j +αi j)
θ

Bh
i j+αi j−1

i j (1−θi j)
Bh

i j+αi j−1 (3.42)

Inserting (3.37) and (3.42) into (3.39) yields:

P(eh
i j|{eh̃

i j}h̃6=h) =
Γ(αi j +Bh

i j +αi j +Bh
i j)

Γ(Bh
i j +αi j)Γ(Bh

i j +αi j)

∫
(θi j)

Bh
i j+eh

i j+αi j−1(1−θi j)
Bh

i j+eh
i j+αi j−1dθi j

=
Γ(αi j +Bh

i j +αi j +Bh
i j)

Γ(Bh
i j +αi j)Γ(Bh

i j +αi j)

Γ(Bh
i j +αi j + eh

i j)Γ(B
h
i j +αi j + eh

i j)

Γ(αi j +Bh
i j +αi j +Bh

i j +1)
(3.43)

where we have defined eh
i j = 1− eh

i j. Using Γ(x+ 1) = xΓ(x), this expression can be

simplified:

P(eh
i j = 1|{eh̃

i j}h̃6=h) =
αi j +Bh

i j

αi j +Bh
i j +αi j +Bh

i j

(3.44)

The MCMC scheme is identical to the one described in Section 3.2.6, except that

P(M h
i |{M

h̃
i }h̃6=h) has to be used as the prior on M h

i , which is obtained by inserting

(3.44) into (3.39). In our study, we have set αi j = αi j = 1, in which case P(θi j) in

(3.38) reduces to the uniform distribution over the unit interval. One can extend this

scheme by imposing a hyperprior on αi j and αi j, and sampling these hyperparameters

from the posterior distribution with MCMC – this is the subject of future work.

3.4 Simulation Study

The methods described in this chapter have been implemented in R, based on code

from Lèbre et al. (2010). Our program sets up an RJMCMC simulation to sample the

network structure, the changepoints and the hyperparameters from the posterior distri-

bution. As a convergence diagnostic, we monitor the potential scale reduction factor

(PSRF) (Gelman and Rubin, 1992), computed from the within-chain and between-

chain variances of marginal edge posterior probabilities. Values of PSRF ≤ 1.1 are
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usually taken as indication of sufficient convergence. In our simulations, we extended

the burn-in phase until a value of PSRF ≤ 1.05 was reached, and then sampled 1000

network and changepoint configurations in intervals of 200 RJMCMC steps. From

these samples we compute the marginal posterior probabilities of all potential interac-

tions, which defines a ranking of the edges in the recovered network. For the synthetic

simulation study (see below), the gold standard (i.e. the true interaction network) is

known. Therefore, by varying the threshold on the rank, we can construct the Re-

ceiver Operating Characteristic, or ROC curve (plotting the sensitivity or recall against

the complementary specificity), and the precision-recall or PR curve (plotting the pre-

cision against the recall). To assess and succinctly score the network reconstruction

accuracy, we follow a three-prong approach and compute three figures of merit that

have been widely applied in the literature: the area under the ROC curve (AUROC),

the area under the PR-curve (AUPRC), and the true positive rate at a fixed false positive

rate of 5% (TPFP5).

3.5 Data

3.5.1 Synthetic data

We generated synthetic time series, each consisting of K = 10 segments of length 50,

as follows. Random networks M h, 1 ≤ h ≤ K, are generated stochastically, with the

number of edges drawn from a Poisson distribution. Each directed edge from node

j (the parent) to node i (the child) has a weight ah
i j that determines the interaction

strength, drawn from a Normal distribution. The signal associated with node i at time

t, yi(t− 1), evolves according to the non-homogeneous first-order Markov process of

equation (3.1). Denote by Ah the matrix of all interaction strengths ah
i j. To ensure

stationarity of the time series, we tested if all eigenvalues of Ah had a modulus ≤ 1,

and removed edges randomly until this condition was met.

The networks M h that generated the time series consisted of 10 nodes, with on

average 3 parents per node. To simulate a sequence of networks separated by change-

points, we sampled ∆nh from a Poisson distribution and then randomly changed ∆nh

edges between M h and M h+1, leaving the total number of edges unchanged. The pa-

rameter of the Poisson distribution, which determines the average number of changes

between adjacent structures, M h and M h+1, was varied, as described in more detail in

Section 3.6.1.
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3.5.2 Gene expression times course during morphogenesis in Dro-

sophila

We also applied our method to the developmental gene expression time series for

Drosophila melanogaster (fruit fly), obtained by Arbeitman et al. (2002). Expression

values of 4028 genes were measured with microarrays at 67 time points during the

Drosophila life cycle, which contains the four distinct phases of embryo, larva, pupa

and adult. In our study we concentrated on a subset of 11 genes that regulate muscle

development. This dataset has also been used in Guo et al. (2007), Zhao et al. (2006)

and Robinson and Hartemink (2009).

3.5.3 Gene expression time courses measuring circadian rhythms

in Arabidopsis

Plants assimilate carbon via photosynthesis during the day, but have a negative carbon

balance at night. They buffer these daily alternations in their carbon budget by storing

some of the assimilated carbon as starch in their leaves in the light, and utilising it as a

carbon supply during the night. In order to synchronize these processes with the exter-

nal 24 hour photo period, plants possess a circadian clock that can potentially provide

predictive, temporal regulation of metabolic processes over the day/night cycle. The

proper working of this circadian regulation is paramount to biomass production and

growth, and considerable research efforts are therefore underway to elucidate its un-

derlying molecular mechanism. We aim to reconstruct the regulatory network of nine

circadian genes in the model plant Arabidopsis thaliana.

Our analysis is based on four independent gene expression profiling experiments

described in Mockler et al. (2007), Edwards et al. (2006) and Grzegorczyk et al.

(2008a). In these studies, wild-type Col-0 seedlings of Arabidopsis thaliana were

grown for 7 days under artificially controlled light-dark cycles. On the 8th day the

seedlings were placed in constant light. From these seedlings, RNA was extracted and

assayed on Affymetrix GeneChip oligonucleotide arrays at regular time intervals. The

data were background-corrected and normalised according to standard procedures, us-

ing the GeneSpring software (Agilent Technologies). The experiments were carried

out at different laboratories and under different pre-experiment entrainment conditions

and for different time intervals of measurements. An overview is provided in Table 3.1.
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Mockler Edwards Grzegorcyk Grzegorcyk

et al.(2007) et al. (2006) et al. (2008) et al. (2008)

Data 1 Data 2

Time points 12 13 13 13

Time point interval 4h 4h 2h 2h

Pretreatment 12h-light 12h-light 10h-light 14h-light

entrainment 12h-dark 12h-dark 10h-dark 14h-dark

cycle cycle cycle cycle

Measurement Constant Constant Constant Constant

conditions light light light light

Laboratory Kay Lab Millar Lab Millar Lab Millar Lab

Table 3.1: Overview of the gene expression profiling experiments for Arabidopsis

thaliana. Measurements were started after 7 days of growth of the seedlings and were

repeated every 2 or 4 hours, depending on the dataset, for up to two days. Pretreatment

entrainment specifies the light conditions before measurements were taken.

3.6 Results and Discussion

3.6.1 Experiments on simulated data

We compared the network reconstruction accuracy of three models: the time-varying

DBN based on Lèbre et al. (2010) as described in Section 3.2 (TVDBN-0), the time-

varying DBN with the sequential information sharing scheme proposed in Section 3.3.1

(TVDBN-SI), and the time-varying DBN with the global information sharing scheme

proposed in Section 3.3.2 (TVDBN-GI). The methods were applied to the synthetic

data described in Section 3.5.1. We repeated the simulations for each experimental

setting on 10 independent data instantiations, and scored the network reconstruction

accuracy with three separate measures, as discussed in Section 3.4. We investigated

how the average number of changes in network structure between adjacent segments

affects the performance.

Figure 3.2 shows boxplots of the score distributions. To test for significance of the

discerned trends, we carried out paired t-tests. Table 3.2 shows paired t-tests between

the AUROC scores of the different information sharing methods. We see that when

varying the number of changes between segments, all differences in AUROC scores
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Figure 3.2: Network reconstruction accuracy, measured with three scoring schemes,

as discussed in Section 3.4. Top left panel: AUROC; top right panel: AUPRC; bottom

panel: TPFP5. The boxplots show the distributions of these scores, where the hori-

zontal bar shows the median, the box margins show the 25th and 75th percentiles, the

whiskers indicate data within 2 times the interquartile range, and circles are outliers.

The grey shading indicates the method. Unshaded boxes: TVDBN-0. Light shading:

TVDBN-SI. Dark shading: TVDBN-GI. The numbers on the horizontal axes indicate the

average number of network structure changes per node between adjacent time series

segments. A paired t-test showed that all differences are significant at the 5% level

except for the following. AUROC: TVDBN-GI versus TVDBN-SI, 1 change; AUPRC:

TVDBN-0 versus TVDBN-GI, 2 changes; TPFP5: TVDBN-0 versus TVDBN-GI, 1 and 2

changes.



3.6. Results and Discussion 83

are significant except for the difference between TVDBN-SI and TVDBN-GI when

the number of changes is 1. For the AUPRC score, the results are similar, except that

when the number of changes is 2, the difference between TVDBN-0 and TVDBN-GI

is no longer significant. For the TPFP5 score, the difference between TVDBN-0 and

TVDBN-GI is never significant when the number of changes is > 0. Note however,

that a significant effect does not always denote an effect that is large.

Table 3.2: P-values from paired t-tests for AUROC scores of TVDBN-0, TVDBN-SI

and TVDBN-GI for full DBN model when varying the mean number of changes between

segments (TOP) AUROC Scores (MIDDLE) AUPRC Scores (BOTTOM) TPFP5 Scores.

(A)

CHANGE NUM 0 1 2

TVDBN-0 VS -SI < 1e−5 < 1e−5 < 1e−5

TVDBN-SI VS -GI < 1e−5 0.92 < 1e−2

TVDBN-GI VS -0 < 1e−5 < 1e−5 < 1e−4

(B)

CHANGE NUM 0 1 2

TVDBN-0 VS -SI < 1e−5 < 1e−4 < 1e−3

TVDBN-SI VS -GI < 1e−5 0.04 < 1e−3

TVDBN-GI VS -0 < 1e−5 < 1e−3 0.26

(C)

CHANGE NUM 0 1 2

TVDBN-0 VS -SI < 1e−5 < 1e−3 0.04

TVDBN-SI VS -GI < 1e−5 < 1e−3 < 1e−3

TVDBN-GI VS -0 < 1e−5 0.19 0.26

When there are no changes in the network structure, information sharing results

in a considerable performance improvement, and TVDBN-GI outperforms TVDBN-

SI. The latter finding is plausible, as TVDBN-GI utilizes information from all the

segments, whereas TVDBN-SI only utilizes information from the adjacent segments.

When the number of edge changes between segments increases, information sharing

achieves a less substantial, yet still significant improvement over TVDBN-0. Also,

the performance between the two approaches is inverted, with TVDBN-SI slightly yet
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significantly outperforming TVDBN-GI. Again, this result is plausible. Larger differ-

ences among network structures imply that, per se, less is gained from information

sharing. Also, given a segment, a network associated with a remote segment will on

average have accumulated a larger number of structure differences than a network asso-

ciated with a close segment; this explains the superiority of the sequential (TVDBN-SI)

over the global (TVDBN-GI) information sharing scheme.

To investigate the trend more thoroughly, we reduced the computational costs of the

MCMC simulations by reducing the network complexity to 1 target node and 20 poten-

tial parents, and keeping the hyperparameters fixed. We then carried out simulations

over an extended range of average structure differences. The resulting AUROC scores

are shown in Figure 3.3. For small numbers of differences among the network struc-

tures associated with different segments, information sharing results in a considerable

performance improvement over TVDBN-0. The amount of improvement degrades as

the differences among structures increase. For small differences, TVDBN-GI tends

to outperform TVDBN-SI. This trend is inverted when the difference among network

structures increases. These results thus confirm the patterns found in Figure 3.2, which

have been discussed above.
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Figure 3.3: Network reconstruction accuracy for different methods. The plots show

mean AUROC scores (vertical axis) plotted against the average number of network

structure changes per node between adjacent time series segments (horizontal axis).

Mean values and standard errors were obtained from 10 independent time series.

Some additional results for TVDBN-GI on simulation data generated with a slightly

different simulation model can be found in Appendix B. These results are qualitatively
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Figure 3.4: Changepoints during morphogenesis in Drosophila melanogaster. Top

panel: TVDBN-SI, posterior probability of a changepoint occurring for any node at a

given time (vertical axis) plotted against time (horizontal axis). Bottom panel: TESLA,

L1-norm of the difference of the regression parameter vectors associated with two adja-

cent time points (vertical axis) plotted against time (horizontal axis). The vertical dotted

lines indicate the three morphogenic transitions.

similar in that they demonstrate that using information sharing outperforms TVDBN-0.

3.6.2 Gene networks related to morphogenesis in the Drosophila

life cycle

The top panel in Figure 3.4 shows the marginal posterior probability of changepoints

during the life cycle of Drosophila melanogaster, inferred with TVDBN-SI from the

gene expression time series described in Section 3.5.2. Since it is clear that devel-

opmental changes will happen sequentially, we have only considered TVDBN-SI in

this section. For a comparison, we applied the method proposed in Ahmed and Xing

(2009), using the authors’ software package TESLA. Note that this model depends

on various regularization parameters, which were optimized by maximizing the BIC

score, as in Ahmed and Xing (2009). The results are shown in the bottom panel of

Figure 3.4, where the graph shows the L1-norm of the difference of the regression pa-
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rameter vectors associated with adjacent time points. Robinson and Hartemink (2009)

applied their discrete time-varying DBN to the same data set, and a plot corresponding

to the top panel of Figure 3.4 can be found in their paper. A comparison of these plots

suggests that our method is the only one that clearly detects all three morphogenic

transitions: embryo→ larva, larva→ pupa, and pupa→ adult. The bottom panel of

Figure 3.4 indicates that the last transition, pupa→ adult, is less clearly detected with

TESLA, and it is completely missing in Robinson and Hartemink (2009). Both our

method, TVDBN-SI, as well as TESLA detect additional transitions during the em-

bryo stage, which are missing in Robinson and Hartemink (2009). We would argue

that a complex gene regulatory network is unlikely to transit into a new morphogenic

phase all at once, and some pathways might have to undergo activational changes ear-

lier in preparation for the morphogenic transition. As such, it is not implausible that

additional transitions at the gene regulatory network level occur. However, a failure

to detect known morphogenic transitions can clearly be seen as a shortcoming of a

method, and on these grounds our model appears to outperform the two alternative

ones.

In addition to the changepoints, we have inferred network structures for the mor-

phogenic stages of embryo, larva, pupa and adult. We present a graphical represen-

tation of the networks recovered using the time-varying DBN model with sequential

information sharing (TVDBN-SI). These networks have been constructed by discard-

ing all edges with marginal posterior probability < 0.25. Due to the enforced sparsity

introduced by our prior on the number of parents, a higher threshold would have led to

overly sparse networks, which might miss the subtle distinctions between the phases.

The recovered networks are presented in Figure 3.5.

An objective assessment of the reconstruction accuracy is not feasible due to the

limited existing biological knowledge and the absence of a gold standard. Even if we

had perfect knowledge of the regulatory network, the difficulties of detecting post-

translational effects such as phosphorylation or ubiquitination of proteins would make

a perfect reconstruction using only gene expression data very unlikely; we would re-

quire additional information about protein concentrations and state (e.g. phosphory-

lation). However, our reconstructed networks show many similarities with the net-

works discovered by Robinson and Hartemink (2009), Guo et al. (2007) and Zhao

et al. (2006). For instance, we recover the interaction between two genes, eve and twi.

This interaction is also reported in Guo et al. (2007) and Zhao et al. (2006), while

Robinson and Hartemink (2009) seem to have missed it. We also recover a cluster
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Figure 3.5: Recovered networks for each of the morphological phases in the develop-

ment of Drosophila melanogaster, using the TVDBN-SI method.
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of interactions among the genes myo61f, msp300, mhc, prm, mlc1 and up during all

morphogenic phases. This result is not implausible, as all genes (except up) belong

to the myosin family. However, unlike Robinson and Hartemink (2009), we find that

actn also participates as a regulator in this cluster. There is some indication of this in

Zhao et al. (2006), where actn is found to regulate prm. As far as changes between the

different stages are concerned, we found an important change in the role of twi. This

gene does not have an important role as a regulator during the early phases, but func-

tions as a regulator of five other genes during the adult phase: mlc1, gfl, actn, msp300

and sls. The absence of a regulatory role for twi during the earlier phases is consistent

with Elgar et al. (2008), who found that another regulator, mef2 (not included in the

dataset) controls the expression of mlc1, actn and msp300 during early development.

3.6.3 Circadian clock gene regulation network in Arabidopsis tha-

liana

We applied DBN network inference with our global information sharing method (TVDBN-

GI) to the Arabidopsis data described in Section 3.5.3. In this setting, we treat each

dataset as a network segment, which means that the changepoints are fixed and corre-

spond to the boundaries between datasets. This is motivated by the observation that

different experimental or growth conditions can often lead to the activation of different

pathways, which introduces changes in the inferred networks. In this situation, global

information sharing is appropriate because there is assumed to be a global network

underlying the inferred networks. We compared TVDBN-GI to network inference

without information sharing (TVDBN-0), where each network is only inferred from

one dataset. Fig. 3.6 shows the results for TVDBN-0. To determine which interac-

tions were relevant, we put a threshold on the marginal posterior probability of the

interaction (the fraction of this interaction being present in the sampled networks).

We can observe a couple of effects of neglecting to use information sharing. First of

all, the connectivity of the inferred networks varied widely between the four datasets.

In fact, the network reconstructed from the Mockler et al. dataset had so few inter-

actions with high posterior probability that we had to lower the threshold to obtain a

network with a similar number of interactions compared to the other networks. An-

other effect is that some genes, such as LHY, vary from being regulated by just one or

two genes (Fig. 3.6a-3.6c) to being regulated by no less than 5 genes (Fig. 3.6d).

Fig. 3.7 shows the networks obtained when using the global information sharing
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Figure 3.6: Networks reconstructed from the four datasets, without information sharing

(TVDBN-0), though with common hyperparameters and initialisation. Only interactions

that were present in more than 35% of the sampled networks have been selected (ex-

cept for the Mockler et al. dataset, where the sampled networks were sparse, and we

lowered the threshold to 25% of the sampled networks). Interactions that were found in

all datasets are marked in bold.
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Figure 3.7: Networks reconstructed from the four datasets, using the information shar-

ing method described in Section 3.3.2 (TVDBN-GI). In all networks, only interactions

that were present in more than 15% of the sampled networks have been selected.

Interactions that were found in all datasets are marked in bold. The lower threshold

compared to Fig. 3.6 can be explained by considering the information sharing as a

penalisation factor. Even very strong edges will be penalised if they only occur in one

or two of the four segments. This makes the procedure more selective and allows us to

point out a restricted subset of interactions, i.e. interactions which are strong enough to

be found in the data after penalisation.
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approach (TVDBN-GI). The first thing to note is that the information sharing has a reg-

ularising effect on the network density, which allowed us to apply the same threshold

to all four inferred networks. Overall, the sampled networks have fewer interactions,

due to the penalising effect of the information sharing prior described in Section 3.3.2.

This made it much easier to find an appropriate threshold on the posterior probability

of the interactions.

Compared to the networks in Fig. 3.6, we notice that there is less variation in

the connectivity, although the first network is still sparser. Also, the variation in the

number of regulators for LHY is no longer as drastic as in Fig. 3.6.

These networks reveal several gene interactions that can be found in the literature.

For instance McClung (2006) shows CCA1 and LHY, two genes that are active in the

morning, as central regulators of genes that are active in the evening, such as PRR9,

TOC1 and ELF3. We recover these interactions in most (though not all) datasets. In ad-

dition, it seems that LHY regulates CCA1; this interaction was discovered consistently

in all datasets using our information sharing method.

Conversely, some of the evening genes are known or suspected to activate the morn-

ing genes. We discovered consistent interactions which identified GI (an evening gene)

as a regulator of CCA1 and LHY. In addition, we also found that GI regulates TOC1,

an interaction which seems likely given results in Locke et al. (2005). One interesting

interaction that we found consistently was the regulation of GI by PRR9; McClung

(2006) depicts PRR9 as regulating CCA1 and LHY directly, while our model seems to

favour an indirect regulation via GI. Using the information sharing model helps us to

identify these interactions more consistently, as comparing Fig. 3.6 and Fig. 3.7 shows:

Although one can find all of the interactions listed above in at least one of the networks

in Fig. 3.6, they are found much more consistently across networks in Fig. 3.7.

We can also investigate the effect of information sharing more directly, by compar-

ing whether the similarity of the marginal posterior probabilities of the gene interac-

tions inferred from different datasets increases when we introduce information sharing.

Fig. 3.8 shows scatterplots comparing the posterior probabilities obtained from Grze-

gorczyk et al. Dataset 1 and Grzegorczyk et al. Dataset 2. Originally, the posterior

probabilities are quite scattered, with a Spearman rank correlation2 of only 0.54. Using

information sharing, the rank correlation increases to 0.86. For comparisons between

other pairs of datasets, the increase in rank correlation was even bigger, as Table 3.3

2Spearman rank correlation measures whether the order is similar, with values closer to 1 indicating
probabilities that would produce the same ranking.
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Figure 3.8: Comparison of the marginal posterior probabilities of the gene interactions

inferred from Grzegorczyk et al. Dataset 1 and Grzegorczyk et al. Dataset 2. (a)

Without information sharing (TVDBN-0), (b) with global information sharing (TVDBN-

GI). Correlation coefficients were calculated using Spearman rank correlation.

Table 3.3: Spearman rank correlations between the posterior probabilities for the gene

interactions that were inferred for each dataset.

(A) NO INFORMATION SHARING

DATASET MOCKLER EDWARDS GRZEGORCZYK 1 GRZEGORCZYK 2

MOCKLER 1 0.42 0.39 0.39

EDWARDS 0.42 1 0.33 0.40

GRZEGORCZYK 1 0.39 0.33 1 0.54

GRZEGORCZYK 2 0.39 0.40 0.54 1

(B) INFORMATION SHARING

DATASET MOCKLER EDWARDS GRZEGORCZYK 1 GRZEGORCZYK 2

MOCKLER 1 0.79 0.72 0.69

EDWARDS 0.79 1 0.74 0.73

GRZEGORCZYK 1 0.72 0.74 1 0.86

GRZEGORCZYK 2 0.69 0.73 0.86 1
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Figure 3.9: Agreement between the networks inferred from the four datasets, plotted as

the fraction of coinciding interactions (including coinciding non-interactions) in all four

networks as the threshold on the posterior probability of the edges increases from 0 to

1. The solid line shows the agreement without information sharing (TVDBN-0), and the

dotted line shows agreement with global information sharing (TVDBN-GI).

shows.

Fig. 3.9 shows how the fraction of interactions and non-interactions that coincide

in all four inferred networks changes as we increase the threshold on the posterior

probabilities of the interactions from 0 to 1. For very low thresholds, all possible inter-

actions will be included, so that the networks all coincide, while for high thresholds,

no interactions will be included, again resulting in perfect agreement. The interesting

part of the plot is the middle area, where we see that the agreement with information

sharing increases much faster than the agreement without information sharing.

3.7 Conclusions

We have proposed a novel time-varying DBN, which has various advantages over exist-

ing schemes: it does not require the data to be discretized (as opposed to Robinson and

Hartemink (2009)); it allows the network structure to change with time (as opposed

to Grzegorczyk and Husmeier (2009)); it includes a regularization scheme based on

inter-time segment information sharing (as opposed to Lèbre (2007) and Lèbre et al.

(2010)); and it allows all hyperparameters to be inferred from the data via a consistent

Bayesian inference scheme (as opposed to Ahmed and Xing (2009)).

An evaluation on synthetic data has demonstrated an improved performance over
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Lèbre (2007) and Lèbre et al. (2010). We have carried out a comparison between

two alternative paradigms of information sharing, global versus sequential. Our in-

vestigation has revealed that global information sharing will win out if there is a lot

of commonality between all the network segments, but sequential information sharing

will win out if the number of sequential changes is such that distant networks have

little in common.

The application of our sequential information sharing method to gene expression

time series taken during the life cycle of Drosophila melanogaster has revealed better

agreement with known morphogenic transitions than the methods of Robinson and

Hartemink (2009) and Ahmed and Xing (2009), and we have detected changes in gene

regulatory interactions that are consistent with independent biological findings.

To further test our global information sharing method, we applied it to the problem

of inferring a regulatory network of circadian clock genes in Arabidopsis thaliana. We

showed that information sharing leads to greater agreement between networks inferred

from datasets obtained under different experimental and growth conditions, and that

the networks we obtained have good agreement with known facts about circadian clock

gene regulation.

In the next chapter, I will investigate sequential information sharing in more detail,

and present several alternative information sharing priors, with different treatment of

inter-node coupling and allowing for different penalties for changing edges and non-

edges in the network. I will also introduce a new RJMCMC sampling scheme, and

show that it leads to improved sampling in the presence of information sharing.



Chapter 4

Time-varying networks with sequential

information sharing

4.1 Introduction

In Chapter 3, I have described two paradigms for introducing information sharing when

inferring networks with structure changes. The first is global information sharing,

where differences between network segments are assumed to be the result of changes

that have been applied to some unchanging underlying network, for example as a re-

sult of different experimental conditions or of using different cell lines. The second

is sequential information sharing, where differences arise as a result of changes ap-

plied sequentially to the initial network, so that network segments that are temporally

distant from each other are more dissimilar than those that are temporally close. This

situation can arise during the development and growth of an organism, where we can

observe that some genes and pathways show different levels of activity during differ-

ent morphological or developmental stages. Another example where one would use

sequential information sharing is to capture the reaction of gene regulatory networks

to the application of a drug, or a change in growth environment.

In this chapter, I will concentrate on sequential information sharing, and will apply

it to reconstruct two real-world gene regulatory networks: the network of genes in-

volved in wing muscle development during the life cycle of Drosophila melanogaster

described in Section 3.5.2, and an engineered network from synthetic biology, consist-

ing of five genes in Saccharomyces cerevisiae.

In Chapter 3, I only looked at one form of sequential information sharing, the expo-

nential prior (Section 3.3.1). I also assumed that there was no inter-segment coupling

95
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among nodes in the network; i.e. the hyperparameters controlling the strength of the

regularising effect of information sharing were independent for each segment. In this

chapter, I will present different functional forms of the prior (exponential versus bino-

mial) and different versions of information coupling (hard versus soft), and compare

their performance on simulated data. I will also present an improved sampling scheme.

In the previous chapter, a standard Metropolis-Hastings-Green (RJMCMC) sampler

was employed. In this chapter, I have identified several scenarios where this sampler

is bound to fail, and I describe a new type of MCMC proposal move. I show that these

moves avoid the convergence problems encountered with the original sampler, leading

to a substantial improvement in mixing.

The Bayesian hierarchical models that I propose here depend on various hyper-

parameters. I have investigated the influence of the higher level hyperparameters by

carrying out a set of simulation studies for the proposed models. To substantiate the

findings, I have additionally presented a semi-analytical investigation for a simplified

scenario, in which the computation of the marginal likelihood is tractable (see Section

4.5.2).

Shortly before the submission of the paper on which this chapter is based (Don-

delinger et al. (2012b)), a somewhat related paper was published: Wang et al. (2011).

While methodologically similar, there is an important difference in the application and

inference, though. The objective of Wang et al. (2011) is online parameter estimation

via particle filtering, with applications e.g. in tracking. This is a different scenario

from most systems biology applications, where an interaction structure is typically

learnt off-line after completion of a series of high-throughput experiments. Unlike

Wang et al. (2011), our work thus follows other applications of DBNs in systems biol-

ogy (Robinson and Hartemink, 2009, 2010; Grzegorczyk and Husmeier, 2009, 2011;

Lèbre, 2007; Lèbre et al., 2012; Kolar et al., 2009) and aims to infer the model structure

by marginalising out the parameters in closed form. Inference in Wang et al. (2011) is

based on a filter, while inference in our work is based on a smoother.

The chapter is organised as follows. Section 4.2 describes the different information

sharing priors and node-coupling strategies for our Bayesian regularisation scheme.

Section 4.3 introduces the improved RJMCMC scheme based on multi-segment moves.

Note that I will not recap the underlying time-varying dynamic Bayesian network

model or the original RJMCMC scheme here. For these, see Chapter 3, Section 3.2.

Section 4.5 discusses results obtained on synthetic data, with an investigation of the in-

fluence of the hyperparameters. Section 4.6 describes and interprets the two real-world
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Figure 4.1: Hierarchical Bayesian model for inter-segment and hard inter-node informa-

tion coupling. Hard coupling among nodes i is achieved by a common hyperparame-

ter ΘΘΘ regulating the strength of the coupling between structures associated with adja-

cent segments, M h
i and M h+1

i . This corresponds to the models in Section 4.2.2, with

ΘΘΘ = {β}, ΨΨΨ = [0,20], and no ΩΩΩ, and Section 4.2.4, with ΘΘΘ = {a,b}, ΨΨΨ = {α,α,γ,γ},
and ΩΩΩ = {1,2, ...,100}.

applications, related to morphogenesis in Drosophila melanogaster and synthetic biol-

ogy in Saccharomyces cerevisiae. The chapter concludes in Section 4.7 with a general

discussion and summary.

4.2 Sequential information coupling methods

Sequential information sharing over network structures makes sense when changes

to the network take place gradually over the time period of the measurements. For

instance, for the evolution of a gene regulatory network during embryogenesis, we

would assume that the network evolves gradually and that networks associated with

adjacent time intervals are a priori similar. In these kinds of situations, sequential

information sharing provides a regularisation that reduces the potential over-flexibility

of the model, and thus reduces inference uncertainty.

We propose four methods of information sharing among time series segments:

two functional forms, and two types of information coupling among nodes. The first

method is based on hard information coupling between the nodes, using the expo-

nential distribution proposed in Werhli and Husmeier (2008) that has already been

described in Section 3.3.1. The second scheme uses the same exponential distribu-

tion, but replaces the hard coupling by a soft information coupling scheme via a hy-
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Figure 4.2: Hierarchical Bayesian model for inter-segment and soft inter-node infor-

mation coupling. Soft coupling among nodes i is achieved by node-specific hyperpa-

rameters ΘΘΘi regulating the strength of the coupling between structures associated with

adjacent segments, M h
i and M h+1

i , coupled via level2-hyperparameters ΨΨΨ. This cor-

responds to the model in Section 4.2.3, with ΘΘΘi = {βi}, ΨΨΨ = κ, and ΩΩΩ = λκ = 10, and

Section 4.2.5, with ΘΘΘi = {ai,bi}, ΨΨΨ = {α,α,γ,γ}, and ΩΩΩ = {1,2, ...,100}.

perprior.1. The third and fourth scheme are also based on hard and soft information

coupling, respectively, but use a binomial distribution with a conjugate beta prior. The

difference between hard and soft information coupling is illustrated in Figures 4.1 and

4.2, and is explained in more detail in the following subsection.

4.2.1 Hard versus soft information coupling of nodes

As noted above, we propose to share information about the network structure among

the different time series segments that result from the changepoint process. The strength

of these couplings is governed by the hyperparameters associated with the information

sharing prior. We represent these hyperparameters collectively by ΘΘΘ. However, an-

other level of coupling is possible, coupling genes (nodes in the network) rather than

time series segments.

Recall from Section 3.2 that each node in the network is associated with a random

variable Xi(t) that represents the gene expression level of gene i at time t. Under the

regression model in equation (3.1), the regulators for gene i are independent of the

structure of the rest of the network. Once we bring in information sharing, however,

there is a set of hyperparameters that could conceivably be shared among different

1Note that these two schemes are very similar to the sequential information sharing scheme from
Chapter 3. The difference lies in the fact that there was no information coupling among nodes in Chapter
3; the βi were inferred independently for each node i.
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nodes; namely ΘΘΘ. We address this by proposing two different ways of sharing ΘΘΘ:

Hard coupling, where the information sharing prior has the same hyperparameters ΘΘΘ

for all nodes (with hyperprior having level-2 hyperparameters ΨΨΨ); and soft coupling,

where the information sharing prior has node-specific hyperparameters ΘΘΘi, with com-

mon level-2 hyperparameters ΨΨΨ. In both cases we have a prior on ΨΨΨ with level-3

hyperparameters ΩΩΩ. See Figures 4.1 and 4.2 for an illustration of hard versus soft

information coupling of nodes.

In the following sub-sections, I will describe the different information sharing

schemes in more detail.

4.2.2 Hard information coupling based on an exponential prior

Denote by Ki := ki +1 the total number of partitions in the time series associated with

node i, and recall that each time series segment Dh
i is associated with a separate sub-

network M h
i , 1≤ h≤Ki. We modify the prior from equation (3.6) by imposing a prior

distribution P(M h
i |M

h−1
i ,β) on the structures, and the joint probability distribution

factorizes according to a Markovian dependence:

P(D1
i , . . . ,D

Ki
i ,M 1

i , . . . ,M
Ki

i ,β) = P(D1
i |M 1

i )P(M 1
i )P(β)

Ki

∏
h=2

P(Dh
i |M h

i )P(M h
i |M h−1

i ,β)
(4.1)

Similar to Werhli and Husmeier (2008) we define

P(M h
i |M h−1

i ,β) =
exp(−β|M h

i −M h−1
i |)

Z(β,M h−1
i )

(4.2)

for h≥ 2, where β is a hyperparameter that defines the strength of the coupling between

M h
i and M h−1

i , and |.| denotes the Hamming distance. For h = 1, P(M h
i ) is given by

(3.6). The denominator Z(β,M h−1
i ) in (4.2) is a normalizing constant, also known

as the partition function: Z(β,M h−1
i ) = ∑M h

i ∈M
e−β|M h

i −M h−1
i | where M is the set of

all valid subnetwork structures. If we ignore any fan-in restriction that might have

been imposed a priori (via s in equation (3.4)), then the expression for the partition

function can be simplified: Z(β,M h−1
i ) ≈ ∏

p
j=1 Z j(β,eh−1

i j ), where eh
i j is a binary

variable indicating the presence or absence of a directed edge from node j to node i in

time series segment h, and Z j(β,eh−1
i j ) = ∑

1
eh

i j=0 e−β|eh
i j−eh−1

i j | = 1+ e−β. Note that this

expression no longer depends on M h−1
i , and hence

Z(β,M h−1
i ) = Z(β) =

(
1+ e−β

)p
(4.3)
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Inserting this expression into (4.2) gives:

P(M h
i |M h−1

i ,β) =
exp(−β|M h

i −M h−1
i |)(

1+ e−β
)p (4.4)

It is straightforward to integrate the proposed model into the RJMCMC scheme of

Lèbre (2007) and Lèbre et al. (2010), which we have summarized in Section 3.2.6.

When proposing a new network structure M h
i → M̃ h

i for segment h, the prior proba-

bility ratio in equation (3.23) has to be replaced by P(M h+1
i |M̃ h

i ,β)P(M̃ h
i |M

h−1
i ,β)

P(M h+1
i |M h

i ,β)P(M h
i |M

h−1
i ,β)

, leading

to the acceptance probability

A(M̃ h
i |M

h
i ) = min

{
P(Dh

i |M̃ h
i )P(M

h+1
i |M̃ h

i ,β)P(M̃ h
i |M

h−1
i ,β)Q (M h

i |M̃ h
i )

P(Dh
i |M h

i )P(M
h+1

i |M h
i ,β)P(M h

i |M
h−1

i ,β)Q (M̃ h
i |M h

i )
,1
}

(4.5)

This equation is equivalent to equation (3.28), with the prior probabilities in equa-

tion (3.23) replaced by those in equation (4.4). Note that P(Dh
i |M h

i ) is short for

P(xxxh
i |M h

i ,δ
2) which is defined in equation (3.14) and the proposal ratio Q (M h

i |M̃ h
i )

Q (M̃ h
i |M h

i )
is

defined in equations (3.24-3.25). An additional MCMC step is introduced for sampling

the hyperparameter β from the posterior distribution. For a proposal move β→ β̃ with

symmetric proposal probability Q (β̃|β) = Q (β|β̃) we get the following acceptance

probability:

A(β̃|β) = min
{

P(β̃)
P(β)

p

∏
i=1

Ki

∏
h=2

exp(−β̃|M h
i −M h−1

i |)
exp(−β|M h

i −M h−1
i |)

(
1+ e−β

)p(
1+ e−β̃

)p ,1
}

(4.6)

where in our study the hyperprior P(β) was chosen as the uniform distribution on the

interval [0,20].

4.2.3 Soft information coupling based on an exponential prior

We modify the model defined in (4.1) by making the hyperparameter β, which de-

fines the prior coupling strength between structures associated with adjacent segments,

node-dependent: β→ βi, and

P(D1
i , . . . ,D

Ki
i ,M 1

i , . . . ,M K
i ,βi) = P(D1

i |M 1
i )P(M 1

i )
Ki

∏
h=2

P(Dh
i |M h

i )

P(M h
i |M h−1

i ,βi)P(βi)

(4.7)

with

P(M h
i |M h−1

i ,βi) =
exp(−βi|M h

i −M h−1
i |)

Z(βi,M h−1
i )

=
exp(−βi|M h

i −M h−1
i |)

(1+ e−βi)p
(4.8)
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where by analogy with the previous section, Z(βi,M h−1
i )≈ (1+ e−βi)p. To introduce

soft information coupling between the subnetworks, we choose a hierarchical structure

for the prior distribution on the hyperparameters βi. At the first level, the hyperparam-

eters are given a common gamma prior:

P(βi) = P(βi|κ,ρ) = β
κ−1
i

exp(−βi/ρ)

ρκΓ(κ)
(4.9)

with shape parameter κ > 0 and scale parameter ρ > 0. Recall that the gamma distri-

bution has mean µ = κρ and variance σ2 = κρ2. We elect to set the scale parameter

ρ = 0.1 fixed. The shape parameter κ is given a vague exponential prior:

P(κ|λκ) = λκ exp(−κ/λκ) (4.10)

with λκ = 10 to reflect our prior ignorance. This choice of prior has the following mo-

tivation. The coupling strength between the substructures is defined by the coefficient

of variation σ/µ = 1/
√

κ, with smaller coefficients corresponding to stronger coupling

strengths, and a zero coefficient (κ→ ∞) reducing to the hard coupling scheme dis-

cussed in the previous section. By inferring the shape parameter κ from the data, start-

ing from a vague yet proper prior distribution, we determine if the coupling strength

should be strong or weak.

It is straightforward to adapt the RJMCMC scheme of the previous section. When

proposing a new network structure M h
i → M̃ h

i for segment h, the prior probability ratio

in equation (3.23) has to be replaced by the ratio P(M h+1
i |M̃ h

i ,βi)P(M̃ h
i |M

h−1
i ,βi)

P(M h+1
i |M h

i ,βi)P(M h
i |M

h−1
i ,βi)

, leading

to the equivalent of the acceptance probability in equation (3.28):

A(M̃ h
i |M

h
i ) = min

{
P(Dh

i |M̃ h
i )P(M

h+1
i |M̃ h

i ,βi)P(M̃ h
i |M

h−1
i ,βi)Q (M h

i |M̃ h
i )

P(Dh
i |M h

i )P(M
h+1

i |M h
i ,βi)P(M h

i |M
h−1

i ,βi)Q (M̃ h
i |M h

i )
,1
}

(4.11)

Note that P(Dh
i |M h

i ) is short for P(xxxh
i |M h

i ,δ
2) which is defined in equation (3.14) and

the proposal ratio Q (M h
i |M̃ h

i )

Q (M̃ h
i |M h

i )
defined in equations (3.24-3.25). When proposing new

hyperparameters β̃i from a symmetric proposal distribution Q (β̃i|βi) = Q (βi|β̃i) we

get the following acceptance probability:

A(β̃i|βi) = min
{

P(β̃i|ρ,κ)
P(βi|ρ,κ)

Ki

∏
h=2

exp(−β̃i|M h
i −M h−1

i |)
exp(−βi|M h

i −M h−1
i |)

(
1+ e−βi

1+ e−β̃i

)p

,1
}

(4.12)

An additional sampling step is needed for the shape parameter κ of the level-2 hy-

perprior. Drawing a new shape parameter κ̃ from a symmetric proposal distribution
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Q (κ̃|κ), the acceptance probability is given by

A(κ̃|κ) = min
{

exp(−κ̃/λκ)

exp(−κ/λκ)

p

∏
i=1

P(βi|κ̃,ρ)
P(βi|κ,ρ)

,1
}

(4.13)

4.2.4 Hard information coupling based on a binomial prior

An alternative way of information sharing among segments and nodes is by using a

binomial prior:

P(M h
i |M h−1

i ,a,b) = aN1
1 [h,i](1−a)N0

1 [h,i]bN0
0 [h,i](1−b)N1

0 [h,i] (4.14)

where we have defined the following sufficient statistics: N1
1 [h, i] is the number of

edges in M h−1
i that are matched by an edge in M h

i , N0
1 [h, i] is the number of edges

in M h−1
i for which there is no edge in M h

i , N1
0 [h, i] is the number of edges in M h

i for

which there is no edge in M h−1
i , and N0

0 [h, i] is the number of coinciding non-edges

in M h−1
i and M h

i . Since the hyperparameters are shared, the joint distribution can be

expressed as:

P({M h
i }|a,b) =

p

∏
i=1

P(M 1
i )

Ki

∏
h=2

P(M h
i |M h−1

i ,a,b)

= aN1
1 (1−a)N0

1 bN0
0 (1−b)N1

0

p

∏
i=1

P(M 1
i )

(4.15)

where we have defined Nl
k = ∑

p
i=1 ∑

Ki
h=2 Nl

k[h, i], and the right-hand side follows from

Eq. (4.14). The conjugate prior for the hyperparameters a,b is a beta distribution,

P(a,b|α,α,γ,γ) ∝ a(α−1)(1−a)(α−1)b(γ−1)(1−b)(γ−1) (4.16)

which using Bayes’ rule leads to the (beta) posterior distribution:

P(a,b|α,α,γ,γ,{M h
i }) ∝ a(α+N1

1−1)(1−a)(α+N0
1−1)b(γ+N0

0−1)(1−b)(γ+N1
0−1) (4.17)

This allows the hyperparameters to be integrated out in closed form:

P({M h
i }|α,α,γ,γ) =

∫ ∫
P({M h

i }|a,b)P(a,b|α,α,γ,γ)dadb

∝
Γ(α+α)

Γ(α)Γ(α)

Γ(N1
1 +α)Γ(N0

1 +α)

Γ(N1
1 +α+N0

1 +α)

Γ(γ+ γ)

Γ(γ)Γ(γ)

Γ(N0
0 + γ)Γ(N1

0 + γ)

Γ(N0
0 + γ+N1

0 + γ)

(4.18)

The level-2 hyperparameters α,α,γ,γ, which can be interpreted as fictitious prior ob-

servations due to the conjugacy of the prior, are given a discrete uniform hyperprior
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over {1,2, ...,100}. The MCMC scheme of Section 3.2.6 has to be modified as fol-

lows. When proposing a new network structure for node i and segment h, M h
i → M̃ h

i ,

the structures M h
i and M̃ h

i enter the prior probability ratio in equation (3.23) via the

expression P({M h
i }|α,α,γ,γ). The prior probability ratio becomes:

P({M 1
i , . . . ,M̃ h

i , . . . ,M
Ki

i }
p
i=1|α,α,γ,γ)

P({M 1
i , . . . ,M h

i , . . . ,M
Ki

i }
p
i=1|α,α,γ,γ)

leading to the acceptance probability:

A(M̃ h
i |M

h
i ) =

min
{

P(Dh
i |M̃ h

i )P({M 1
i , . . . ,M̃ h

i , . . . ,M
Ki

i }
p
i=1|α,α,γ,γ)Q (M h

i |M̃ h
i )

P(Dh
i |M h

i )P({M 1
i , . . . ,M h

i , . . . ,M
Ki

i }
p
i=1|α,α,γ,γ)Q (M̃ h

i |M h
i )

,1
} (4.19)

This equation is equivalent to equation (3.28), with the prior probabilities in equa-

tion (3.23) replaced by those in equation (4.18). Note that P(Dh
i |M h

i ) is short for

P(xxxh
i |M h

i ,δ
2) which is defined in equation (3.14) and the proposal ratio Q (M h

i |M̃ h
i )

Q (M̃ h
i |M h

i )

defined in equations (3.24-3.25). From Figure 4.1, it becomes clear that as a conse-

quence of integrating out the hyperparameters, all network structures become interde-

pendent, and information about the structures is contained in the sufficient statistics

N1
1 ,N

0
1 ,N

1
0 ,N

0
0 . A new proposal move for the level-2 hyperparameters is added to the

existing RJMCMC scheme of Section 3.2.6. New values for the level-2 hyperparame-

ters α are proposed from a uniform distribution over the support of P(α). For a move

α→ α̃, the acceptance probability is:

A(α̃|α) = min
{

P({M 1
i , . . . ,M

Ki
i }

p
i=1|α̃,α,γ,γ)

P({M 1
i , . . . ,M

Ki
i }

p
i=1|α,α,γ,γ)

,1
}

(4.20)

and similarly for α, γ and γ.

4.2.5 Soft information coupling based on a binomial prior

We can relax the information sharing scheme from a hard to a soft coupling by in-

troducing node-specific hyperparameters ai,bi that are softly coupled via a common

level-2 hyperprior, P(ai,bi|α,α,γ,γ) ∝ a(α−1)
i (1− ai)

(α−1)b(γ−1)
i (1− bi)

(γ−1) as illus-

trated in Figure 4.2:

P(M h
i |M h−1

i ,ai,bi) = (ai)
N1

1 [h,i](1−ai)
N0

1 [h,i](bi)
N0

0 [h,i](1−bi)
N1

0 [h,i] (4.21)

This leads to a straightforward modification of equation (4.15) – replacing a,b by

ai,bi – from which we get as an equivalent to (4.18), using the definition Nl
k[i] =
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∑
Ki
h=2 Nl

k[h, i]:

P(M 1
i , . . . ,M

Ki
i |α,α,γ,γ) ∝

Γ(α+α)

Γ(α)Γ(α)

Γ(N1
1 [i]+α)Γ(N0

1 [i]+α)

Γ(N1
1 [i]+α+N0

1 [i]+α)
(4.22)

Γ(γ+ γ)

Γ(γ)Γ(γ)

Γ(N0
0 [i]+ γ)Γ(N1

0 [i]+ γ)

Γ(N0
0 [i]+ γ+N1

0 [i]+ γ)

As in Section 4.2.4, we extend the RJMCMC scheme from Section 3.2.6 so that when

proposing a new network structure, M h
i → M̃ h

i , the prior probability ratio in equation

(3.23) has to be replaced by: P(M 1
i ,...,M̃ h

i ,...,M
Ki

i |α,α,γ,γ)
P(M 1

i ,...,M h
i ,...,M

Ki
i |α,α,γ,γ)

, leading to the equivalent of the

acceptance probability in equation (3.28):

A(M̃ h
i |M

h
i ) = min

{
P(Dh

i |M̃ h
i )P(M 1

i , . . . ,M̃ h
i , . . . ,M

Ki
i |α,α,γ,γ)Q (M h

i |M̃ h
i )

P(Dh
i |M h

i )P(M 1
i , . . . ,M h

i , . . . ,M
Ki

i |α,α,γ,γ)Q (M̃ h
i |M h

i )
,1
}

(4.23)

Note that P(Dh
i |M h

i ) is short for P(xxxh
i |M h

i ,δ
2) which is defined in equation (3.14)

and the proposal ratio Q (M h
i |M̃ h

i )

Q (M̃ h
i |M h

i )
defined in equations (3.24-3.25). In addition, we

have to add a new level-2 hyperparameter update move: when proposing a level-2

hyperparameter α→ α̃, where the prior and proposal probabilities are the same as in

Section 4.2.4, the acceptance probability becomes:

A(α̃|α) = min
{ p

∏
i=1

P(M 1
i , . . . ,M

Ki
i |α̃,α,γ,γ)

P(M 1
i , . . . ,M

Ki
i |α,α,γ,γ)

,1
}

(4.24)

and similarly for α, γ and γ.

4.3 Improved MCMC scheme

The various information sharing priors that I have introduced in the previous section

(4.2.2, 4.2.3, 4.2.4, 4.2.5) share the characteristic that they encourage the networks of

all segments to be similar to each other2. When applying the MCMC scheme from

Lèbre et al. (2010), summarized in Section 3.2.6 and adapted to our prior as discussed

above, this can lead to the following curious effect. On simulated data where the net-

work structure is the same for all segments, we found that the network reconstruction

accuracy deteriorated when we increased the coupling strength between the structures.

The results will be presented below, in Section 4.5 and Figure 4.4. These findings ap-

pear counter-intuitive, given that increasing the coupling strength brings the prior more
2Note that the binomial information sharing prior (Section 4.2.4 and 4.2.5) can in principle encourage

either similarity or dissimilarity depending on the hyperparameters a and b. As discussed in Section 4.5,
we had originally envisaged setting the level-2 hyperparameters α and γ equal to 1 to enforce similarity,
but Figure 4.8 demonstrates that this constraint is too restrictive.
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in line with the truth (the perfect prior would have infinitely strong coupling). How-

ever, it is easily seen that increasing the coupling strength adversely affects the mixing

of the Markov chains. Consider a set of identical network structures which, at an initial

stage of the MCMC simulations, are all poor at explaining the data. We now visit a

segment and propose a modification of the network structure associated with it. This

modification introduces a mismatch between the structures and is, hence, discouraged

by the prior. For strong coupling this discouragement might outweigh the gain in the

likelihood that would result from a better structure. The structures thus remain identi-

cal, which in turn will tend to increase the coupling strength. The MCMC simulation

thus gets trapped in a suboptimal state of the configuration space (local optimum).

To deal with this problem, we have implemented an alternative MCMC scheme

where changes are applied to multiple segments. The new moves will propose changes

to the network structure in more than one segment, and we will hence refer to them as

multi-segment moves. Note that the moves for proposing new changepoint configura-

tions are unaffected by these modifications. The multi-segment moves are presented as

target-node specific (i.e. they presuppose a choice of target node i). However, they can

be generalized for inference over the whole network by simply picking a target node

at random.

Given a node, the proposal move consists of two steps: (1) Pick one of p possible

parents for the target node i. (2) For each segment h of the Ki segments, flip the edge

status (changing an edge to a non-edge or vice-versa) between the parent node and

the target node with probability q. In our simulations, we set q = 1
2 so that flipping the

edge status and conserving it are equally likely outcomes. It is straightforward to adapt

this parameter during the burn-in phase. This means that the probability of proposing a

new set of structures M̃i given the set of network structures Mi using the multi-segment

move is:

Q (M̃i|Mi) =
1

p2Ki
(4.25)

where Mi = {M h
i }1≤h≤Ki as before.

We now derive the acceptance ratio for multi-segment moves. We define the quan-

tity Rprior(M̃i|Mi) to be the ratio of the prior probabilities of the original set Mi and

the proposed set M̃i. Let Rlikelihood(M̃ h
i |M h

i ) =
P(xxxh

i |M̃ h
i ,δ

2)

P(xxxh
i |M h

i ,δ
2)

be the likelihood ratio of

the original and proposed network structures for segment h and target node i, where

the likelihood P(xxxh
i |M h

i ,δ
2) is defined in equation (3.14) of Section 3.2.6. Note that

the changes introduced by multi-segment moves are equivalent to a sequence of add

and remove edge moves applied to individual segments, so that this ratio remains un-
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changed. Then the acceptance ratio for multi-segment moves can be expressed as:

R(M̃i|Mi) = Rprior(M̃i|Mi)Rproposal(M̃i|Mi)
Ki

∏
h=1

Rlikelihood(M̃ h
i |M

h
i ) (4.26)

where Rprior(M̃i|Mi) =
P(M̃i)
P(Mi)

. The form of P(Mi) depends on our choice of prior.

If segments are independent, then P(Mi) = ∏
Ki
h=1 P(M h

i ), where P(M h
i ) is the prior

from equation (3.6), with a Poisson distribution on the number of parents. If we want

to use information sharing between segments, then the prior for segment h depends

on segment h−1, so that P(Mi) = P(M 1
i )∏

Ki
h=2 P(M h

i |M
h−1

i ), where P(M h
i |M

h−1
i )

could be any of the information sharing priors introduced in Section 4.2. Finally,

Rproposal(M̃i|Mi) is the Hastings ratio:

Rproposal(M̃i|Mi) =
Q (Mi|M̃i)

Q (M̃i|Mi)
(4.27)

where Q (M̃i|Mi) is defined in equation (4.25). Since the proposal probability Q (M̃i|Mi)

is independent of the set of network structures Mi, the multi-segment moves are sym-

metric, and we obtain that Rproposal(M̃i|Mi) = 1.

We have explored an alternative proposal scheme consisting of two moves: (1) a

move proposing network structures where an edge has been set identical in all seg-

ments, and (2) the move described above, which corresponds to a random perturbation

of an edge. However, we found that including the first kind of proposal move adversely

affected mixing and convergence in simulations where the true network structure pre-

sented differences among segments. These network structures are less likely to be

proposed when both moves are included.

4.4 Implementation and Simulations

We have implemented our model in R, based on code from Lèbre (2007) and Lèbre

et al. (2010). The network structure, the changepoints and the hyperparameters are

sampled from the posterior distribution using RJMCMC as described in Sections 3.2.6

and 4.3. We ran the MCMC chains until we were satisfied that convergence was

reached. Then we sampled 1000 network and changepoint configurations in intervals

of 200 RJMCMC steps. By marginalization and under the assumption of convergence,

this represents a sample from the posterior distribution in equation (3.12). By further

marginalization, we get the posterior probabilities of all gene regulatory interactions,

which defines a ranking of the interactions in terms of posterior confidence. We use the
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potential scale reduction factor (PSRF) (Gelman and Rubin, 1992), computed from the

within-chain and between-chain variances of marginal edge posterior probabilities, as

a convergence diagnostic. The usual threshold for sufficient convergence lies at PSRF

≤ 1.1. In our simulations, we extended the burn-in phase until a value of PSRF≤ 1.05

was reached.

Subsequent to the publication of the paper on which this chapter is based, I fur-

ther developed the R code and released it on the Comprehensive R Archive Network

(CRAN). The resulting software package EDISON (Estimation of Directed Interac-

tions from Sequences Of Nonhomogeneous gene expression) is described in Appendix

F. Software and documentation can be found at http://cran.r-project.org/web/

packages/EDISON/.

For the study on simulated data, and the synthetic biology data, the true interac-

tion network is known. Therefore, varying the threshold on this ranking allows us to

construct the Receiver Operating Characteristic (ROC) curve (plotting the sensitivity

or recall3 against the complementary specificity4) and the precision-recall (PR) curve

(plotting the precision5 against the recall), and to assess the network reconstruction ac-

curacy in terms of the areas under these graphs (AUROC and AUPRC, respectively);

see Davis and Goadrich (2006). These two measures are widely used in the systems

biology literature to quantify the overall network reconstruction accuracy (Prill et al.,

2010), with larger values indicating a better prediction performance overall.

4.5 Evaluation on simulated data

4.5.1 Comparative evaluation of network reconstruction and hy-

perparameter inference

The purpose of the simulation study is two-fold. Firstly, we want to carry out a com-

parative evaluation of the proposed Bayesian regularization schemes for a controlled

scenario in which the true network structure is known. Secondly, we want to assess

the Bayesian inference scheme and test the viability of the proposed MCMC samplers.

To focus on the task of network reconstruction, we keep the changepoints fixed at their

true values. The inference of the changepoints will be investigated later, on the real

gene expression time series (see Figure 4.12).

3The sensitivity or recall denotes the fraction of true interaction that have been recovered.
4The specificity denotes the fraction of spurious interactions that have been successfully avoided.
5The precision is the fraction of predicted interactions that are correct.
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Figure 4.3: Evaluation of AUROC and AUPRC network reconstruction scores for the five

methods, TVDBN-0 (white), TVDBN-Exp-hard (dark grey, left), TVDBN-Exp-soft (dark

grey, right), TVDBN-Bino-hard (light grey, left), TVDBN-Bino-soft (light grey, right). Top

Row: The boxplots show the distributions of the reconstruction scores. Bottom Row:

The boxplots show the difference of the AUROC and AUPRC reconstruction scores to

TVDBN-0; larger differences indicate better performance with information sharing. All

simulations were repeated for 10 independent data sets with 4 network segments each.

Structure changes were applied to the segments sequentially, changing between 0-10%

of the edges with each new segment. A paired t-test shows that for 0% changes, the dif-

ference to TVDBN-0 was significant for all methods (p < 0.05). For > 0% changes, the

difference to TVDBN-0 was significant (p < 0.05) except for the difference in AUPRC

scores for TVDBN-Exp-hard for 5% changes (p = 0.08) and TVDBN-Exp-hard and

TVDBN-Exp-soft for 10% changes (p = {0.07,0.18}). In all plots, the horizontal bar

of the boxplot shows the median, the box margins show the 25th and 75th percentiles,

the whiskers indicate data within 2 times the interquartile range, and circles are outliers.

See Table 4.1 for hyperparameter settings.
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Figure 4.4: Results for the exponential prior with hard coupling on the simulated
data without mismatch among the structures. Panel (a) shows the AUROC scores

for different values of the hyperparameter β. Panel (b) shows a corresponding plot for

the AUPRC scores. The simulations were repeated on 10 independent data instanti-

ations of time series length 60. The error bars show the standard error. The results

were obtained with the novel MCMC sampler, described in Section 4.3. Panels (c)

and (d) show the results from corresponding simulations with the old MCMC sampler

adapted from Lèbre et al. (2010) and described in Section 3.2.6. The reconstruction

performance deteriorates with larger values of the hyperparameter, as a consequence

of poor MCMC mixing and convergence.
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Table 4.1: List of different information sharing (IS) priors for the TVDBN (Time-Varying

Dynamic Bayesian Network), the equation where they were defined, and the most com-

mon hyperparameter settings that were used, or hyperparameter ranges if they are

inferred. Only the highest level hyperparameters in the Bayesian hierarchy are shown.

Name Prior Section Equation Hyperparameters

TVDBN-0 Poisson (No IS) 3.2.4 3.4, 3.6 Λ = 3

TVDBN-Exp-hard Exponential Hard IS 4.2.2 4.2 β ∈ [0,20]

TVDBN-Exp-soft Exponential Soft IS 4.2.3 4.10 λκ = 10

TVDBN-Bino-hard Binomial Hard IS 4.2.4 4.17, 4.18 α,α,γ,γ ∈
{1,2, ...,100}

TVDBN-Bino-soft Binomial Soft IS 4.2.5 4.22 α,α,γ,γ ∈
{1,2, ...,100}

The simulation model is the same as the one used in Chapter 3, which I will now

recap briefly. We randomly generated 10 networks with 10 nodes each. A Poisson dis-

tribution with mean λparents = 3 was used to determine the number of parents for each

node. We simulated changes in the network structure by producing 4 different network

segments, where a Poisson distribution with mean λchanges ∈ {0.25,0.5,1} was used to

determine the number of changes per node. The changes were then applied uniformly

at random to edges and non-edges in the previous segment. For each segment h, we

generated a time series of length 15 using a linear regression model:

D(t) =WWW hD(t−1)+ εεε (4.28)

where D(t) is the 10×1 vector of observations at time t and WWW h = {wh
i j} is the 10×10

matrix of segment-specific regression weights for each edge. We chose the regression

weights such that wh
i j = 0 if there is no edge between node i and node j in the network

structure for segment h, and wh
i j ∼ N(0,1) otherwise. We added Gaussian observation

noise εi ∼ N(0,1) independently for each observation of node i.

First, we consider the scenario of homogeneous time series in which the regulatory

network structure does not change (although the regression coefficients associated with

each edge may change between segments). This is the situation in which the proposed

Bayesian regularization scheme should achieve the strongest boost in the network re-

construction accuracy. We indeed found this conjecture confirmed in our simulations,

as demonstrated in Figure 4.3 (0% changes). We would also assume that high values of
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the hyperparameter β should lead to the best network reconstruction accuracy, as this

corresponds to the tightest tying between adjacent structures. However, repeating the

MCMC simulations initially did not confirm this conjecture; see Figures 4.4c and 4.4d.

As discussed in Section 4.3, the observed mismatch was a consequence of poor mixing

and convergence for large hyperparameter values, which is endemic to the naive exten-

sion of the MCMC sampler from Lèbre et al. (2010). Repeating the simulations with

the novel MCMC scheme proposed in Section 4.3 leads to the graphs of Figure 4.4a

and 4.4b. Here, the network reconstruction accuracy no longer deteriorates with in-

creasing hyperparameters, indicating that the mixing and convergence problems have

been averted.

Another question we investigated is whether the sampled values of the hyperpa-

rameters concur with those that optimize the network reconstruction accuracy. While

the hyperparameter β of the exponential prior does indeed tend to higher values, the

situation is different for the hyperparameters a and b of the binomial prior. The top pan-

els in Figure 4.5 show the network reconstruction accuracy in terms of AUROC and

AUPRC scores for several fixed values of the hyperparameters a and b. As expected,

the peak performance is reached for the highest values, as no mismatch between the

structures implies that tight coupling is consistent with the data. The centre panels of

Figure 4.5 show the posterior distribution of the hyperparameters that was obtained

with the conventional MCMC proposal scheme adapted from Lèbre et al. (2010) and

described in Section 3.2.6. There is an obvious mismatch between the high-posterior

probability region and the region of hyperparameters that optimize the network recon-

struction. This provides more evidence that the sampler adapted for segment coupling

from Lèbre et al. (2010) suffers from mixing and convergence problems. The bottom

panels of Figure 4.5 show the marginal posterior distributions of the hyperparameters

inferred in the MCMC simulations with the novel multi-segment proposal move in-

troduced in Section 4.3. It is seen that, unlike the centre panels in Figure 4.5, and

as a consequence of the different proposal scheme, the high posterior probability re-

gion now concurs with the region of maximum network reconstruction accuracy. This

agreement suggests that the novel MCMC sampler leads to a significant improvement

in mixing and convergence, in corroboration of our conjecture in Section 4.3.

Next, we turn our attention to varying network structures. We varied the percentage

of edges that change from segment to segment between 2.5% to 10%6. A significant

6Because our simulation was set up so that we had on average 3 regulatory interactions per node,
this corresponds to a change of between 8.25% and 33% of the original interactions.
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Figure 4.5: Results for the binomial prior with hard coupling on the simulated
data without mismatch among the structures. Panel (a) shows the AUROC scores

for different values of the hyperparameters a and b. Panel (b) shows a corresponding

plot for the AUPRC scores. Panels (c) and (d) show the marginal posterior distribu-

tion of the hyperparameters a and b, as obtained with the MCMC sampler adapted

from Lèbre et al. (2010) and described in Section 3.2.6. Panels (e) and (f) show the

marginal posterior distribution of the hyperparameters a and b, as obtained with the

new MCMC sampler proposed in Section 4.3. The marginal distributions of a and b

are obtained from the sampled values of the level-2 hyperparameters α, α, γ, γ and

from the sampled networks using a kernel density estimator with the beta distribution

from equation (4.17). The level-2 hyperparameters were given a uniform prior over the

discrete set {1,2, ...,100}.
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Figure 4.6: Results for the binomial prior with hard coupling on the simulated
data with mismatch among the structures. Panel (a) shows the AUROC scores for

different values of the hyperparameters a and b. Panel (b) shows a corresponding plot

for the AUPRC scores. Panels (c) and (d) show the marginal posterior distribution of

the hyperparameters a and b, as obtained with the novel MCMC sampler proposed in

Section 4.3. The marginal distributions of a and b were obtained from the sampled

values of the level-2 hyperparameters α, α, γ, γ and from the sampled networks using

a kernel density estimator with the beta distribution from equation (4.17). The level-2

hyperparameters were given a uniform prior over the discrete set {1,2, ...,100}.
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Figure 4.7: Results for the exponential prior with hard coupling on the simulated
data with mismatch among the structures. Panel (a) shows the AUROC scores and

their standard deviations for different values of the hyperparameter β. Panel (b) shows

a corresponding plot for the AUPRC scores. Panel (c) shows box plot representations

of the inferred posterior distribution of β, for different sample sizes, using the MCMC

scheme from Section 4.3. The horizontal bar shows the median, the box margins show

the 25th and 75th percentiles, the whiskers indicate data within 2 times the interquartile

range, and circles are outliers. The simulations were repeated on 10 independent data

instantiations of time series length n = 60.

improvement in the network reconstruction accuracy can be achieved over the unregu-

larized method, as shown in the bottom panels of Figure 4.3. However, the magnitude

of the improvement in the scores decreases as the number of changes between adja-

cent segments increases. This is plausible: as we introduce more structural changes

between adjacent networks, we would expect to gain less benefit from information

sharing. We note that the degradation in performance seems to be stronger for the

exponential prior than for the binomial prior.

We investigated whether the inferred hyperparameters coincide with the optimal re-

construction performance for the case where 10% of the edges in the network change

between adjacent segments. There are two effects to be traded off. Hyperparame-

ter values that are too low will not bring about any improvement over the uncoupled

unregularized scenario. Hyperparameter values that are too high will not allow the

network structure to change with time. We would therefore expect to find some opti-

mal finite range of hyperparameter values, 0 < β < ∞ and 0 < a,b < 1. This has in

fact been borne out in our simulations. Figure 4.6 shows the network reconstruction

accuracy in terms of AUROC and AUPRC scores for different values of the hyperpa-

rameters a,b. The best network reconstruction accuracy is obtained when b, which
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governs consistency among non-interactions, is high (≥ 0.9), while a, which controls

agreement among interactions, is reduced to a range around its uninformative setting

a≈ 0.5.

The bottom panel of Figure 4.6 shows that the inferred posterior distribution is

consistent with these ranges, and that the Bayesian inference scheme thus optimizes

the network reconstruction accuracy. A slightly different picture emerges for the ex-

ponential prior, though. Figures 4.7a-4.7b show the AUROC and AUPRC scores for

different values of β, indicating a clear peak in the network reconstruction accuracy

for finite 0 < β < ∞. This peak does not coincide with the high posterior probability

range of β, as shown in Figure 4.7c. Only when increasing the data set size by a factor

of 4 does the Bayesian inference scheme succeed in optimizing the network recon-

struction accuracy in the sense that the high posterior probability region now coincides

with the range of the highest AUROC/AUPRC scores. The obvious question to ask is

whether this trend is another artifact of poor MCMC convergence/mixing. To this end

we have devised a simplified model for which the posterior distribution can be com-

puted in closed form. Our analysis, which we present in Section 4.5.2, reproduces the

results from this simulation study, suggesting that the suboptimal performance of the

Bayesian inference scheme is intrinsic to the chosen form of the prior.7 In principle

this problem can be addressed by choosing a sparse prior for the hyperparameter β.

However, this requires us to set the desired level of sparsity in advance (if we have

prior knowledge about the similarity between adjacent network segments). Inferring

the level of sparsity from the data would be infeasible, since Section 4.5.2 shows that

the problem only arises when the data are not sufficiently informative. In the absence

of prior knowledge, we therefore recommend using an alternative form of information

sharing prior, such as the binomial prior.

Returning to the binomial prior, we finally investigated the influence of the level-2

hyperparameters α,α,γ, and γ. Recall that owing to the conjugacy of the prior, these

values can be interpreted as fictitious prior observation counts. Our initial idea was to

keep the mismatch hyperparameters fixed at α = γ = 1, while putting a vague uniform

distribution over the set {1,2, , . . . ,100} as a prior on the match hyperparameters α

and γ. The rationale behind this choice is that the regularization scheme is intended

to encourage similarity rather than dissimilarity between adjacent network structures.

7We may note that the results for the exponential prior seem to be at odds with those reported in
Chapter 3. The reason is that in the previous chapter, I had selected, by a fluke, a more restrictive prior
on the hyperparameter: βi ∈ [0,5]. As the discussion in Section 4.5.2 shows, this setting boosts the
network reconstruction performance.



116 Chapter 4. Time-varying networks with sequential information sharing

1 5 10 15 25 50

gamma bar

50

25

15

10

5

1

al
ph

a 
ba

r

0.820.830.820.830.810.73

0.820.810.830.830.810.73

0.82 0.8 0.830.820.810.73

0.820.810.820.820.810.72

0.810.820.820.820.810.72

0.810.820.830.820.810.73

0.74 0.8
Value

Color Key

(a)

1 5 10 15 25 50

gamma bar

50

25

15

10

5

1

al
ph

a 
ba

r

0.640.660.650.650.610.54

0.630.620.650.640.610.53

0.62 0.6 0.650.640.610.53

0.630.630.650.640.620.53

0.590.630.640.640.610.53

0.580.620.650.650.610.52

0.55 0.65
Value

Color Key

(b)

Figure 4.8: Results for the binomial prior with hard coupling on the simulated
data with mismatch among the structures: dependence of the reconstruction ac-
curacy on the higher-level hyperparameters. Panel (a) shows the AUROC scores

for different values of the level-2 hyperparameters α and γ. Panel (b) shows a cor-

responding plot for the AUPRC scores. The results indicate that setting α = γ = 1

is over-restrictive and that the reconstruction accuracy improves as a consequence of

employing a non-informative prior.

However, repeating the MCMC simulations for different values of the level-2 hyper-

parameters revealed that the setting α = γ = 1 is too restrictive and that the network

reconstruction accuracy can be improved by relaxing this constraint (see Figure 4.8).

The findings of our simulation study can be summarized as follows. A naive ex-

tension of the MCMC sampler of Lèbre et al. (2010), as described in Section 3.2.6,

leads to a poor network reconstruction accuracy for high values of the hyperparame-

ters; this problem can be resolved with the novel proposal scheme introduced in Sec-

tion 4.3. With this new proposal scheme, information sharing with the binomial prior

leads to a significant improvement in the network reconstruction accuracy in all cases,

while information sharing with the exponential prior leads to a significant improve-

ment when the true network structures are sufficiently similar. A detailed analysis of

hyperparameter inference shows that the Bayesian inference scheme is consistent for

the binomial prior in the sense that the high posterior probability region of the hyper-

parameters concurs with the one that optimizes the network reconstruction accuracy.

For the exponential prior, this consistency is only given when the data set size is suf-

ficiently large; otherwise a more restrictive hyperprior (i.e. prior on β) is needed. On
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Table 4.2: Likelihood and prior scores for the edges contained in the sets defined in

Figure 4.9. The product of the prior and the likelihood defines the rank of the edge; the

truth indicator is shown in the second column.

Set True Supported Supported Likelihood Prior Number

edge by the data by the prior of edges

L yes yes no A e−β NL

LB yes yes yes A 1 NLB

LB∗ yes no yes 1 1 NLB∗

L∗ yes no no 1 e−β NL∗

B no no yes 1 1 NB

B∗ no yes yes A∗ 1 NB∗

F∗ no yes no A∗ e−β NF∗

F no no no 1 e−β NF

the other hand, a restrictive setting for the level-2 hyperparameters of the binomial

prior is counter-productive, and better network reconstruction scores are obtained with

a non-informative hyperprior.

4.5.2 Closed-form inference for the exponential prior

The results in Figure 4.7 indicated that for the exponential prior, the Bayesian inference

scheme might fail to find the hyperparameters that optimize the network reconstruction

accuracy. Our conjecture is that this is not a consequence of poor mixing and conver-

gence of the MCMC sampler, but intrinsic to the Bayesian inference scheme per se. As

a demonstration, we reproduce the observation from Figure 4.7 with a simpler model

for which a closed-form expression of the posterior distribution of the hyperparameter

can be derived.

We consider the scenario depicted in Figure 4.9, where edges of a hypothetical

network can be divided into different categories, depending on whether or not they

are true, supported by the data, or included in the prior network. An overview of

the notation is presented in Table 4.2. We make the simplifying assumption that the

edges are a posteriori independent, leading to a multiplicative contribution of each

edge to the likelihood. While this is clearly an unrealistic assumption, our aim is to

demonstrate that even this simplified model will produce the same behaviour that the
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F

L BLB

L*
LB*

F*

B*

Figure 4.9: Illustration of a hypothetical network scenario, where edges fall into several

categories. Edges in sets L, LB, L∗ and LB∗ are true edges, which means they are

included in the network corresponding to the current time series segment. Edges in

sets L and LB are ’true positives’ in that they contribute a score A > 1 to the likelihood.

Edges in sets L∗ and LB∗ are ’false negatives’, which contribute the neutral score of 1

to the likelihood. The edges in sets F∗ and B∗ are ’false positives’, which contribute a

score A∗ > A > 1 to the likelihood. The edges in sets LB, LB∗, B∗ and B are consistent

with the prior network, all those in the complementary sets are not found in the prior

network. Edges in set F are neither included in the network associated with the current

segment, nor can they be found in the prior network. They also don’t contribute any

score to the log likelihood (i.e. they contribute a neutral score of 1 to the likelihood). An

overview can be found in Table 4.2.
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Figure 4.10: Results for the simplified model with exponential prior. The leftmost

column shows the marginal posterior distribution of β, computed from equation (4.31).

The middle column shows the AUROC score as β varies. The rightmost column shows

the AUPRC score as β varies. Solid line: A = 2, A∗ = 4, dashed line: A = 12, A∗ = 14.

The top and bottom rows correspond to two different settings of the set sizes. Top Row:

{L : 15,LB : 0,B : 40,F : 60,L∗ : 0,LB∗ : 10,B∗ : 25,F∗ : 0}. Bottom Row: {L : 15,LB :

20,B : 10,F : 25,L∗ : 0,LB∗ : 10,B∗ : 20,F∗ : 0}.
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Figure 4.11: Existence of a peak in the posterior distribution of β for the simplified
model with exponential prior. The two plots show values of A and A∗ for which the

marginal posterior probability of β monotonically increases as β increases (red tiles),

and those where the posterior probability decreases for high β (white tiles), indicating

the existence of a peak in the distribution. We used the same settings of the set sizes

as in Figure 4.10. Left: {L : 15,LB : 0,B : 40,F : 60,L∗ : 0,LB∗ : 10,B∗ : 25,F∗ : 0}.
Right: {L : 15,LB : 20,B : 10,F : 25,L∗ : 0,LB∗ : 10,B∗ : 20,F∗ : 0}.

more sophisticated DBN model exhibits. The likelihood is given by

P(D|M ) = A(nL+nLB)A∗(nB∗+nF∗) (4.29)

where nS counts the number of elements in set S for network M , and the symbols

denoting the sets have been defined in Table 4.2. Assuming a uniform prior on β, the

posterior distribution of the hyperparameter becomes:

P(β|D) ∝ P(D,β) = ∑
M

P(D|M )P(M |β)P(β)

∝
1

Z(β)∑
M

P(D|M )exp(−β|M −M 0|) (4.30)

where M 0 represents our prior knowledge. Inserting (4.29) into (4.30) we get, with
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equation (4.3) for Z(β) and under the assumption of a uniform prior on β:

P(β|D) ∝
1(

1+ e−β
)N

NL

∑
nL=0

NLB

∑
nLB=0

NB

∑
nB=0

NF

∑
nF=0

NL∗

∑
nL∗=0

NLB∗

∑
nLB∗=0

NB∗

∑
nB∗=0

NF∗

∑
nF∗=0(

NL

nL

)(
NLB

nLB

)(
NB

nB

)(
NF

nF

)(
NL∗

nL∗

)(
NLB∗

nLB∗

)(
NB∗

nB∗

)(
NF∗

nF∗

)
A(nL+nLB)A∗(nB∗+nF∗)

exp(−β[nL +nF +NLB−nLB +NB−nB +

nL∗+nF∗+NLB∗−nLB∗+NB∗−nB∗]) (4.31)

A plot of (4.31) is shown in Figure 4.10. The optimal network reconstruction in

terms of AUROC and AUPRC scores is achieved for a finite value of β ≈ 1. The ef-

fect of the data set size is emulated by varying the settings of the parameters entering

the likelihood. For small values of A and A∗, corresponding to small data sets, the

posterior probability increases monotonically in β, and the Bayesian inference scheme

intrinsically fails to find the range of hyperparameters that optimizes the network re-

construction accuracy. When we increase the data set size, this mismatch disappears,

and the two regions concur. These findings are consistent with those presented in Fig-

ure 4.7 and suggest that the observed mismatch is a genuine inference feature rather

than an MCMC artifact.

To further analyse this effect, we have investigated the values of A and A∗ for

which the posterior distribution shows a peak for a finite value of β. Analytically,

this corresponds to finding values for A and A∗ such that the equation dP(β|D)
dβ

= 0

has a solution. Unfortunately, it is non-trivial to determine the existence of a solution

analytically; we have therefore resorted to numerically calculating dP(β|D)
dβ

for β = 20.

At β = 0, we have dP(β|D)
dβ

> 0; therefore, if dP(β|D)
dβ

< 0 at β = 20, this indicates that the

distribution has a peak on the interval [β,20]. On the other hand, under the assumption

of unimodality, dP(β|D)
dβ

> 0 at β = 20 indicates that the marginal posterior probability

of β increases monotonically with β. The results of this analysis are shown in Figure

4.11, which shows a clear phase shift towards distributions with a peak as A and A∗

increase.

What does this analysis entail for the general applicability of the exponential prior?

It is clear that when the data set size is too small, then the marginal posterior distri-

bution of β will be biased towards high values. The exact definition of ”too small”

will crucially depend on the nature of the dataset. Given that we have shown in Sec-

tion 4.5.1 that the binomial prior avoids this weakness and outperforms the exponential
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prior in terms of network reconstruction accuracy, we would recommend that this form

of information sharing prior be used in preference of the exponential prior.

4.6 Real-world applications

4.6.1 Morphogenesis in Drosophila melanogaster

This subsection describes the application of our sequential information sharing meth-

ods to gene expression data from the life-cycle of Drosophila. This is analogous to

the application described in Section 3.6.2. However, the results presented in Chapter

3 have been extended in two important regards: By applying an additional functional

forms of the prior (binomial) and different node coupling schemes (soft and hard), and

by presenting the networks obtained with the objectively best method (TVDBN-Bino-

hard) and validating a number of interactions using the FLIGHT database (Sims et al.,

2006).

During its life-cycle, Drosophila melanogaster undergoes four major stages of

morphogenesis: embryo, larva, pupa and adult. Arbeitman et al. (2002) obtained a

gene expression time series covering all four stages. We have applied our methods to a

subset of this gene expression time series consisting of eleven genes involved in wing

muscle development. First, we investigated whether the changepoints inferred by our

methods correspond to the known transitions between stages. Figure 4.12a shows the

posterior probabilities of inferred changepoints for any gene using TVDBN-0 (unreg-

ularized by information sharing, see Table 4.1), while Figures 4.12c-4.12d show the

posterior probabilities for the information sharing methods. We compared this perfor-

mance to the method proposed in Ahmed and Xing (2009), using the authors’ software

package TESLA (Figure 4.12b). In addition, Robinson and Hartemink (2009) used a

discrete non-homogeneous DBN to analyse the same data set, and a plot corresponding

to Figure 4.12b can be found in their paper.

An analysis of the results suggests that our non-homogeneous DBN methods are

generally more successful than TESLA. We recover changepoints for all three transi-

tions (embryo→ larva, larva→ pupa, and pupa→ adult). As shown in Figure 4.12b,

the last transition, pupa→ adult, is less clearly detected with TESLA, and it is com-

pletely absent in Robinson and Hartemink (2009). Furthermore, TESLA and our

method both detect additional changepoints during the embryo stage, which are miss-

ing in Robinson and Hartemink (2009). It is not implausible that additional transitions
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(d) Drosophila CPs with TVDBN-Bino
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(e) Synthetic Network CPs with TVDBN-Exp
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Figure 4.12: Changepoints inferred from gene expression time series related to mor-

phogenesis in Drosophila melanogaster, and synthetic biology in Saccharomyces cere-

visiae (yeast). 4.12a: TVDBN-0 changepoints for Drosophila (no information sharing).

4.12b: TESLA, L1-norm of the difference of the regression parameter vectors asso-

ciated with two adjacent time points plotted against time. 4.12c and 4.12d: TVDBN

changepoints for Drosophila with information sharing; the method is indicated by the

legend. 4.12e and 4.12f: TVDBN changepoints for the synthetic gene regulatory net-

work in yeast. All figures using TVDBN plot the posterior probability of a changepoint

occurring for any node at a given time (ordinate) against time (abscissa). In 4.12a-

4.12d, the vertical dotted lines indicate the three morphogenic transitions, while in

4.12e and 4.12f the line indicates the boundary between the “switch on” (galactose)

and “switch off” (glucose) phases.
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(a) Embryo (b) Larva

(c) Pupa (d) Adult

Figure 4.13: Gene regulatory networks inferred from gene expression time series re-

lated to morphogenesis in Drosophila melanogaster, using TVDBN-Bino-hard. The net-

works were obtained by applying a threshold of 0.25 to the marginal posterior probabil-

ities of the gene interactions. We have reconstructed a network for each morphological

phase; interactions that were consistent across all four phases are marked in bold.

at the gene regulatory network level should occur within one morphogenic phase. One

would expect that a complex gene regulatory network is unlikely to transition into a

new phase all at once, and some pathways might have to undergo activational changes

earlier in preparation for the morphogenic transition. However, a failure to detect a

known transition represents a shortcoming of a method, and so we can say that in this

aspect, our model appears to outperform the two alternative approaches.

In addition to the changepoints, we have inferred network structures for the mor-

phogenic stages of embryo, larva, pupa and adult (see Figure 4.13). An objective

assessment of the reconstruction accuracy is not feasible due to the limited exist-

ing biological knowledge and the absence of a gold standard. However, our recon-
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structed networks show many similarities with the networks discovered by Robinson

and Hartemink (2009), Guo et al. (2007) and Zhao et al. (2006). For instance, we re-

cover the interaction between two genes, eve and twi. This interaction is also reported

in Guo et al. (2007) and Zhao et al. (2006), while Robinson and Hartemink (2009)

seem to have missed it. We also recover a cluster of interactions among the genes

myo61f, msp300, mhc, prm, mlc1 and up during all morphogenic phases. This result is

not implausible, as all genes (except up) belong to the myosin family. However, unlike

Robinson and Hartemink (2009), we find that actn also participates as a regulator in

this cluster. There is some indication of this in Zhao et al. (2006), where actn is found

to regulate prm.

We have further validated our reconstructed networks using genetic and protein

interactions recorded in the FLIGHT database (Sims et al., 2006). We found that a

number of the inferred interactions over all segments correspond to interactions that

have been reported in the literature. Some of these result from indirect interactions,

where the intermediate gene is missing in the data. Table 4.3 gives an overview of the

identified interactions with references to the biological literature.

4.6.2 Synthetic biology in Saccharomyces cerevisiae

Synthetic biology is a rapidly developing and highly topical discipline that aims to

combine the biological sciences and engineering (Andrianantoandro et al., 2006). One

of its aims is to design new gene regulatory networks in living cells. We make use

of these endeavours by using gene expression time series obtained in vivo from cells

with a known gene regulatory network structure to objectively assess the network re-

construction accuracy. Our work is based on Cantone et al. (2009), where the authors

constructed a synthetic regulatory network with 5 genes in Saccharomyces cerevisiae

(yeast). Then they measured gene expression time series with RT-PCR for 16 and 21

time points under two experimental conditions, related to the carbon source: galac-

tose (“switch on”), and glucose (“switch off”). The authors applied two established

state-of-the-art methods from computational systems biology to reconstruct the known

underlying network from these time series. One is based on ODEs: ordinary differen-

tial equations (TSNI), the other is based on conventional DBNs (Banjo); see Cantone

et al. (2009) for details. Both methods are optimization-based and only output a single

network. By comparison with the known network, the authors calculated the preci-

sion (proportion of predicted regulatory interactions in the network that are correct)

and recall (proportion of predicted true interactions) scores. Figure 4.14 shows the



126 Chapter 4. Time-varying networks with sequential information sharing

Table 4.3: Reconstructed interactions in the Drosophila melanogaster wing muscle

development network, validated using the FLIGHT database (Sims et al., 2006).

Interaction References Interaction Notes

actn↔ mhc Homyk Jr and Emerson Jr

(1988); Nongthomba et al.

(2003); Montana and Little-

ton (2004)

Protein Via missing gene

wupA

actn→ up Homyk Jr and Emerson Jr

(1988); Nongthomba et al.

(2003)

Protein Via missing gene

wupA

eve→ twi Parkhurst and Ish-Horowicz

(1991)

Protein Via missing gene

RpIIl40

up↔ mhc Homyk Jr and Emerson Jr

(1988); Nongthomba et al.

(2003); Montana and Little-

ton (2004)

Protein Direct interaction

actn→ msp300 Formstecher et al. (2005) Gene Via missing gene

TSG101 or miss-

ing gene Hrs

actn→ sls Sanchez et al. (1999) Gene Direct Interaction

actn→ prm Formstecher et al. (2005) Gene Via missing gene

exo70

prm↔ sls Sanchez et al. (1999); Form-

stecher et al. (2005)

Gene Via missing gene

exo70 and present

gene actn

sls→ up Sanchez et al. (1999); Protein Via missing gene

Formstecher et al. (2005) and Act88F

Gene
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Figure 4.14: True and reconstructed networks for a synthetic biology gene regulatory network in Sac-

charomyces cerevisiae (yeast). Top Row: True network as described in Cantone et al. (2009). 2nd

Row: Networks reconstructed using TSNI, a method based on ODEs. 3rd Row: Networks reconstructed

using Banjo, a conventional DBN. Bottom Row: Networks reconstructed using TVDBN-Bino-hard, ap-

plying a threshold of 0.75 on the marginal posterior probabilities of gene interactions to obtain an ab-

sence/presence value for each edge. All reconstructed networks were reconstructed from two gene

expression time series obtained with RT-PCR in two experimental conditions, reflecting the switch in the

carbon source from galactose (“switch on”) to glucose (“switch off”). The dashed lines in the true network

indicate protein-protein regulation. The dotted lines in the reconstructed networks indicate false positive

gene interactions. The networks found by Banjo and TSNI are reproduced from Cantone et al. (2009).
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Figure 4.15: Reconstruction of a gene regulatory network designed with synthetic bi-

ology in Saccharomyces cerevisiae. The network was reconstructed from two gene

expression time series obtained with RT-PCR in two experimental conditions, reflecting

the switch in the carbon source from galactose (“switch on”) to glucose (“switch off”).

The reconstruction accuracy of the methods proposed in Section 4.2 and Table 4.1,

where the legend is explained, is shown in terms of precision (vertical axis) - recall

(horizontal axis) curves. Results were averaged over 10 independent MCMC simula-

tions. For comparison, fixed precision/recall scores are shown for two state-of-the-art

methods, as reported in Cantone et al. (2009): Banjo, a conventional DBN, and TSNI,

a method based on ordinary differential equations (ODEs).

true networks, the reconstructed networks for TSNI and Banjo, as well as the recon-

structed networks using TVDBN-Bino-hard, where we have applied a threshold of

0.75 to the inferred marginal posterior probabilities of the gene interactions to obtain

absence/presence values for the edges.8

In our study, we merged the time series from the two experimental conditions un-

der exclusion of the boundary point9, and applied the non-homogeneous DBNs from

Table 4.1. Figures 4.12e and 4.12f show the inferred marginal posterior probabilities

of potential changepoints. The salient changepoint is at the boundary between the

“switch on” (galactose) and “switch off” (glucose) phases, confirming that the true

changepoint is consistently identified. However, in the absence of information sharing,

we observe additional spurious changepoints. These changepoints are successfully

suppressed with the proposed Bayesian information-coupling schemes, with the bino-

mial prior having a slightly stronger regularizing effect than the exponential one.

As described in Section 4.4, the Bayesian inference scheme provides a ranking

8Note that while our TVDBN methods are in principle capable of inferring the type of interaction
(activation or inhibition) by sampling regression weights, we have not investigated this for the purpose of
this work. Therefore in Figure 4.14, the arrows in the networks reconstructed using TVDBN-Bino-hard
only record the presence or absence of an interaction, and not its type.

9When merging two time series (x1, . . . ,xm) and (y1, . . . ,yn), only the pairs xi→ x j and yi→ y j are
presented to the DBN, while the pair xm→ y1 is excluded due to the obvious discontinuity.
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Figure 4.16: Effect of the hyperparameters on the reconstruction of a known gene regu-

latory network from synthetic biology in yeast. The reconstruction accuracy is measured

in terms of the average area under the precision - recall curve (AUPRC). Results were

averaged over 10 independent MCMC simulations. 4.16a: Variation of the hyperparam-

eter β for the exponential information sharing prior with hard coupling. 4.16b: Variation

of the level-2 hyperparameter κ for the exponential prior with soft coupling, where the

mean of the gamma distribution is kept fixed at µ = 5. 4.16c: Variation of hyperparam-

eters a and b for the binomial prior. 4.16d: Sampled distributions of hyperparameters a

and b for the binomial prior with hard coupling. These distributions were obtained from

the sampled values of the level-2 hyperparameters α, α, γ, γ using a kernel density

estimator with the beta distribution from equation (4.17).
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of the potential gene interactions in terms of their marginal posterior probabilities.

From this ranking we computed the precision-recall curves (Davis and Goadrich, 2006)

shown in Figure 4.15. By using information sharing, our non-homogeneous DBN

outperforms Banjo and TSNI both in the “switch on” and the “switch off” phase. The

information sharing methods also perform better than TVDBN-0 on the “switch off”

data, but are slightly worse on the “switch on” data. Cantone et al. (2009) showed that

in general, the reconstruction accuracy on the “switch off” data is poorer than on the

“switch on” data . This lends credence to our results, suggesting that the proposed

Bayesian regularization and information sharing schemes substantially improve the

gene network reconstruction accuracy on the poorer time series segment, at the cost of

a slightly degraded performance on the stronger one. Overall, the effect of information

sharing is a performance improvement, as shown by the average areas under the PR

curves, averaged over both phases (“switch on and off”): TVDBN-0= 0.68, TVDBN-

Exp-hard= 0.74, TVDBN-Exp-soft= 0.74, TVDBN-Bino-hard= 0.76, TVDBN-Bino-

soft= 0.75.

We complete our investigation of the yeast network by providing an analysis of

the network reconstruction performance (in terms of average area under the PR curve)

as the hyperparameters vary. This is analogous to the evaluation we performed in

Section 4.5.1 on simulated data. The results are shown in Figure 4.16. As expected,

higher values of the hyperparameter β, which correspond to stronger coupling, result

in a better performance (Figure 4.16a). Figure 4.16b shows the effect of different

values for κ in Equation (4.9). There is no discernible trend, which suggests that the

strength of the coupling scheme does not matter much for this application, and that

when moving closer to the hard coupling scheme (higher κ while keeping the mean

µ of the gamma distribution fixed), the network reconstruction performance does not

change significantly. The results obtained with the binomial prior demonstrate that, for

this application, encouraging agreement related to the presence of interactions is more

important than agreement related to the absence of interactions (Figure 4.16c). Figure

4.16d confirms that our sampled hyperparameters a and b are in the correct range for

optimal network reconstruction.

4.7 Discussion
In this chapter, I have looked at sequential information sharing in detail, and inves-

tigated four different formulations for the information sharing prior: an exponential

prior with hard or soft information coupling among nodes, and a binomial prior with
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hard or soft information coupling among nodes.

Note that the model of Robinson and Hartemink (2009, 2010) is conceptually simi-

lar to the exponential information sharing prior with hard coupling described in Section

4.2.2. By including three alternative information sharing schemes, we have extended

the model of Robinson and Hartemink (2009, 2010) in two further respects:

1) We allow for different penalties between edges and non-edges. The method in

Robinson and Hartemink (2009, 2010) simply penalizes the number of different edges,

i.e. the Hamming distance, between two adjacent structures. This corresponds to the

approach taken for the exponential prior in Sections 4.2.2 and 4.2.3. The inclusion

of an extra edge leads to the same penalty as the deletion of an existing edge. This

might not always be appropriate. Removing a rate-limiting reaction step of a critical

signalling pathway is a more substantial change than including some redundant bypass

pathway. Our two models based on the binomial prior (Sections 4.2.4 and 4.2.5) allow

for that by introducing different prior penalties for the deviation between edges and

for the deviation between non-edges. In Section 5 we have experimentally shown that

an information sharing approach based on different penalties for edges and non-edges

can outperform the simpler approach when the number of changes among segments is

small, but non-zero.

2) We allow for different nodes of the network to have different penalty terms. The

model in Robinson and Hartemink (2009, 2010) has a single hyperparameter for pe-

nalizing differences between structures: λs. This might not be appropriate if different

subnetworks are conserved to a different degree. For instance, we would assume that

molecular network substructures related to generic functionality, e.g. to maintain an

essential baseline metabolism, are conserved to a greater extent than more peripheral

pathways. By introducing node-dependent hyperparameters, the priors described in

Sections 4.2.3 and 4.2.5 generalize the approach in Robinson and Hartemink (2009,

2010) by allowing different parts of the network to be conserved during the temporal

process to a different extent.

A further difference to Robinson and Hartemink (2009, 2010) merits some addi-

tional discussion. In our model, the changepoints are node-dependent. This gives us

extra model flexibility, which is biologically motivated: on infection of an organism

by a pathogen, genes involved in defence pathways are likely to be up-regulated, while

others are not. Hence, it is plausible that different genes respond to changes in the en-

vironment differently, and this is directly incorporated in our model. In Robinson and

Hartemink (2010), node-specific changepoints can be obtained indirectly: the calcu-
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lation of the sufficient statistics for computing the marginal likelihood depends on the

intervals during which each parent set is active. The marginal likelihood is recomputed

for epochs, where an epoch is the union of consecutive time intervals during which a

node-dependent substructure does not change. Since these unions of sets can be differ-

ent for different nodes, the model does allow different changepoint sets to be associated

with different nodes. However, there is a considerable price to pay for that: a change-

point in Robinson and Hartemink (2010) is intrinsically associated with a structure

change, whereas in our model, a changepoint can be related to either a structure or a

parameter change, or both. This gives us extra model flexibility, which is important for

systems biology: when adapting to environmental change, several molecular interac-

tions in signalling pathways may be up- or down-regulated, rather than switched on or

off altogether.

An evaluation on simulated data has demonstrated that the proposed Bayesian reg-

ularization and sequential information sharing schemes lead to an improved perfor-

mance over Lèbre (2007) and Lèbre et al. (2010). We have carried out a comparative

evaluation of four different information coupling schemes: a binomial versus an expo-

nential prior, and hard versus soft information coupling. This comparison has revealed

that the binomial prior allows for more consistent inference of the right level of infor-

mation sharing, while the exponential prior tends to enforce overly-strong information

sharing. The difference between hard and soft information coupling seems negligible

in the scenarios we investigated. A detailed investigation of the hyperparameter in-

ference has allowed us to improve the MCMC sampler for better convergence, and to

explore the limitations of the exponential information sharing prior.

The application of our method to gene expression time series taken during the

life cycle of Drosophila melanogaster has revealed better agreement with known mor-

phogenic transitions than the methods of Robinson and Hartemink (2009, 2010) and

Ahmed and Xing (2009), and we have been able to identify several gene and protein

interactions that are known from the literature. In an application to data from a topical

study in synthetic biology (Cantone et al., 2009), our methods have outperformed two

established network reconstruction methods from computational systems biology, and

information sharing has allowed us to reconstruct the true underlying gene network

with higher overall precision and recall than would have been possible without it.

We have investigated the performance of our methods on datasets which arise from

gene regulatory networks with temporal changes in the structure of the network. There

are several special cases of this situation which merit further discussion. The sim-
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plest case occurs when the changes of the underlying process are limited to parameter

changes, and the true structure of the network remains constant. We have shown in

Section 4.5.1 that our methods can deal with this situation effectively thanks to infor-

mation sharing among segments. A more complicated case could involve a reoccurring

event that causes certain gene interactions to switch on or off, leading to repeated net-

work structures. For example, in a circadian clock system such as Locke et al. (2006);

Pokhilko et al. (2010), the absence of sunlight might deactivate the interaction between

two genes in the network, causing its structure to change from A to B10. If gene expres-

sion levels are measured both during the day and at night for three days, then we will

observe a sequence like ABABAB. While our methods can in principle represent re-

peated segments, the multiple changepoint process was not designed with this in mind.

A better model for repeated segments might be a Hidden Markov Model (HMM),

where each hidden state corresponds to a network structure, and transitions between

states correspond to changes in the structure, in the same vein as applied to changing

tree structures in phylogeny (Husmeier and McGuire, 2003). The disadvantage of us-

ing HMMs is that they impose a geometric distribution on the segment lengths, and

in that respect our changepoint process is more flexible. To have the same flexibility

with HMMs, model extensions along the lines of hierarchical HMMs or HMMs with

weighting times could be pursued, as known from speech processing, but this would

come at significantly increased computational costs. Hence, this approach only appears

to make sense if there is strong prior indication that repetitions occur.

An interesting topic for future work is to investigate other functional forms of the

information sharing mechanism. In our work, we have investigated four different mod-

els, based on an exponential versus binomial distribution, with or without gene-specific

hyperparameters. It has recently come to our attention that Wang et al. (2011) have

experimented with a different approach, which effectively combines our exponential

prior with an additional factor that encourages network sparsity. Sparsity in our model

is encouraged by the truncated Poisson prior of equation (3.4), as explained in the

paragraph under equation (3.30). It would be interesting to explore the effect of the ad-

ditional factor used in equation (7) of Wang et al. (2011) in the context of gene network

reconstruction.

Reconstructing gene regulatory networks from transcriptional profiles remains a

challenging problem, which a flurry of ongoing methodological developments in the

10Note that our definition of a deactivated gene interaction includes interactions that no longer occur
because one of the interacting genes is no longer expressed.
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computational systems biology community are trying to address. I believe that our

work adds a valuable contribution to this field, by presenting a consistent and flexible

Bayesian model for the case where the network structures change over time.



Chapter 5

ODE network parameter inference

using adaptive gradient matching

Note: Section 5.5 is partly based on the extended conference abstract “Parameter

Inference in Mechanistic Models of Cellular Regulation and Signalling Pathways using

Gradient Matching” (Dondelinger et al., 2012c), although the simulation results have

been updated since the publication of that abstract.

5.1 Introduction
The previous chapters of this thesis have mainly been concerned with structure infer-

ence in biological networks. The interactions among entities in the networks have been

the main focus of study, with the parameters either integrated out, or treated as infor-

mative by-products of the network inference. I have shown that this approach leads to

robust models for determining the network structure from data. Once a network struc-

ture has been inferred, systems biologists may use the information gleaned from it to

build a mechanistic model that allows them to make predictions about the dynamics

of the system. These models will have many unknown parameters, which need to be

determined before any predictions can be made. For this reason, I will now shift the

focus from probabilistic models for network structure inference, to mechanistic models

for network parameter inference. In particular, I want to look at systems of ordinary

differential equations (ODEs), and how we can efficiently infer the parameters that

govern their behaviour from data.

In many domains of applications, ordinary differential equations (ODEs) are a use-

ful tool for modelling the behaviour of a system. Systems where they have been applied

range from physics and engineering to ecology (Lotka, 1932), and recently, systems

135
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biology (see e.g. De Jong, 2002). In systems biology, ODEs have been used to describe

the dynamics of pathways and gene regulatory interactions in the cell (Pokhilko et al.,

2010). Frequently, molecular biologists will have sufficient knowledge about a system

to define the equations that govern its behaviour, but there will be uncertainty about

the kinetic or thermodynamic parameters. A common way to resolve this uncertainty

is to use some form of parameter inference based on the available experimental data

(Ashyraliyev et al., 2009). Previous approaches to parameter inference in ODEs have

ranged from maximum likelihood over variational approximations to Markov Chain

Monte Carlo (MCMC). Generally, all of these approaches involve explicitly solving

the ODE system at each inference step to evaluate how well the inferred parameter

values match the data. As this incurs a computational cost at each step, which grows

linearly with the dataset size and size of the system, alternatives have been developed

that avoid explicitly solving the system of differential equations (Varah, 1982; Poyton

et al., 2006; Ramsay et al., 2007; Calderhead et al., 2008). These alternatives work

by interpolating the signal from the observed experimental data and calculating the

gradients, to which the ODE system can then be fitted directly.

One recent approach is described in Calderhead et al. (2008). This approach uses

Gaussian Processes (GPs) to model the experimental data, which has the advantage

that all the parameters can be inferred from the data. A disadvantage of the method

proposed in Calderhead et al. (2008) is that the hyperparameters of the Gaussian pro-

cess are inferred based on the data alone, without any rectifying feedback mechanism

from the ODE system. This falls short of related previous approaches, like Ramsay

et al. (2007). While the approach in Calderhead et al. (2008) generally works well for

the limiting case of zero noise, we have observed that it tends to lead to rather poor

parameter estimation from data subject to noise. In the present chapter, I propose an

improved inference scheme, which I call adaptive gradient matching (AGM). In this

scheme, both the hyperparameters of the Gaussian process as well as the ODE param-

eters are jointly and consistently inferred from the posterior distribution, leading to an

essential information coupling between both, by taking account of their correlation.

The scheme is adaptive, in that unlike in Calderhead et al. (2008), the GP is adapted

during the inference based on information from the ODE system. I demonstrate that

this leads to a significant improvement in the robustness with respect to noise.

I will describe the original scheme from Calderhead et al. (2008) in more detail

in Section 5.2.1, and present our adaptive gradient matching approach to solving the

problems with this scheme in Section 5.2.2. Section 5.3 describes the sampling pro-
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Figure 5.1: Graphical representation of the explicit ODE integration model (a), and

the Calderhead et al. (2008) and adaptive gradient matching models (b). This figure

has been adapted from Calderhead et al. (2008). Note that graphically, the models in

Sections 5.2.1 and 5.2.2 are identical; the difference is in the inference scheme. Dashed

lines denote the product of experts combination of gradient models, as in Calderhead

et al. (2008).

cedure, and Section 5.4.1 describes three models that we used for benchmarking the

performance of adaptive gradient matching. In Section 5.4.2, I describe the effect of

different covariance functions for the GP. Our experiments and results for parameter

inference on the benchmark models are described in Section 5.4.3, while results for

speed and computational complexity are presented in Section 5.4.4. Finally, Section

5.5 describes an application to a detailed model of the JAK/STAT pathway. The chapter

concludes with a discussion in Section 5.6.
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5.2 Method

5.2.1 Original Proposal by Calderhead et al. (2008)

Consider a set of T arbitrary time points t1 < .. . < tT , and a sequence of noisy obser-

vations Y = (y(t1), ...,y(tT )),

y(t) = x(t)+ ε(t) (5.1)

of a K-dimensional process X = (x(t1), ...,x(tT )), dim[x(t)] = dim[y(t)] = dim[ε(t)] =
K, whose evolution is defined by a system of K ordinary differential equations (ODEs):

ẋ(t) =
dx(t)

dt
= f(x(t),θθθ, t); x(t1) = x1 (5.2)

with parameter vector θθθ of length P, and ε is a multivariate Gaussian noise process

ε ∼ N (0,D), where Dik = σ2
kδik, i.e. for simplicity we assume the covariance matrix

D to be diagonal:

P(Y|X,σσσ) = ∏
k

∏
t

P(yk(t)|xk(t),σk) = ∏
k

∏
t

N (yk(t)|xk(t),σ2
k) (5.3)

The matrices X and Y are of dimension K-by-T . Let xk and yk denote T -dimensional

column vectors that contain the kth row of the matrices X and Y, respectively. Hence,

xk and yk represent the respective time series of the kth state.

Given that any inference based on an explicit numerical integration of the differ-

ential equations, as pursued in Vyshemirsky and Girolami (2008), tends to incur high

computational costs, an alternative approach based on non-parametric Bayesian mod-

elling with Gaussian processes was proposed in Calderhead et al. (2008). The idea is

to put a Gaussian process prior on xk,

p(xk|φφφk) = N (xk|0,Cφk) (5.4)

where Cφk denotes a positive definite matrix of covariance functions with hyperparam-

eters φφφk. Assuming additive Gaussian noise with a state-specific error variance σ2
k , we

get:

p(yk|xk,σk) = N (yk|xk,σ
2
kI) (5.5)

p(yk|φφφk,σk) =
∫

p(yk|xk,σk)p(xk|φφφk)dxk

=
∫

N (yk|xk,σ
2
kI)N (xk|0,Cφk)dxk = N (yk|0,Cφk +σ

2
kI) (5.6)
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The conditional distribution for the state derivatives is given by

p(ẋk|xk,φφφ) = N (mk,Ak) (5.7)

where

mk =
′CφkCφk

−1xk; Ak = C′′φk
− ′CφkCφk

−1C′φk
(5.8)

Here, the matrix C′′
φk

denotes the auto-covariance for each state derivative, and the ma-

trices C′
φk

and ′Cφk denote the cross-covariances between the kth state and its deriva-

tive. A derivation can be found in Rasmussen and Williams (2006), from which we

can derive that:

C′φk
(i, j) =

dK (xk,ti,xk,t j)

dxk,ti
(5.9)

′Cφk(i, j) =
dK (xk,ti,xk,t j)

dxk,t j

(5.10)

C′′φk
(i, j) =

d2K (xk,ti,xk,t j)

dxk,tidxk,t j

(5.11)

where xk,ti = xk(ti), xk,t j = xk(t j) and K (xk,ti,xk,t j) is the chosen covariance function

for the Gaussian process. Specific expressions for the two kernel functions considered

in this work can be found in Section 5.2.3.

Assuming additive Gaussian noise with a state-specific error variance γk, one gets

from (5.2):

p(ẋk|X,θθθ,γk) = N (fk(X,θθθ),γkI) (5.12)

where where fk(X,θθθ) = {fk(xk(t),θθθ, t)}t∈1:T . Next, the approach taken in Calderhead

et al. (2008) is to combine (5.7) and (5.12) with a product of experts approach:

p(θθθ,γγγ|X,φφφ) =
∫

p(Ẋ,θθθ,γγγ|X,φφφ)dẊ (5.13)

∝ p(θθθ)p(γγγ)
∫

p(Ẋ,X,φφφ|θθθ,γγγ)dẊ

∝ p(θθθ)p(γγγ)∏
k

∫
p(ẋk|xk,φφφ)p(ẋk|X,θθθ,γk)dẋk

= p(θθθ)p(γγγ)∏
k

∫
N (ẋk|mk,Ak)N (ẋk|fk(X,θθθ),γkI)dẋk

∝
p(θθθ)p(γγγ)
∏k Z(γk)

exp

{
−1

2 ∑
k
(fk−mk)

T(Ak + γkI)−1(fk−mk)

}

where p(θθθ) and p(γγγ) are the prior distributions on θθθ and γγγ, Z(γk) = |2π(Ak + γkI)|1/2

and we have defined γγγ= (γ1, . . . ,γK) and fk = fk(X,θθθ). We can view γk as the mismatch
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between the ODE and Gaussian process parts of the model. In Calderhead et al. (2008)

and in our work, γk is inferred from the data, based on the intuition that there will

always be some mismatch between the specified ODE system and the Gaussian process

fit to the data in realistic applications. This could potentially lead to non-identifiability

issues: high values of the mismatch parameter can give more weight to the GP fit, while

low values give more weight to the ODE system. Thus, if there is no clear optimal

posterior mode for γk, the likelihood landscape could present a valley, with smooth

transitions between two regimes of equal likelihood. As an alternative to inferring γk

from the data, one can view it as a tuning parameter during inference, starting off at

a larger value to allow for exploration of the model space, and then gradually being

constrained towards zero to enforce agreement between the ODE system and the GP

model. This approach has been pursued in Campbell and Steele (2012), as discussed

in Section 5.6.

Inference is based on sampling the parameters of the ODEs θθθ, the hyperparameters

of the Gaussian process φφφ, the noise variances γγγ,σσσ, and the state variables X from the

posterior distribution p(θθθ,γγγ,φφφ,σσσ,X|Y) with the following Gibbs sampling procedure:

φφφ,σσσ ∼ p∗(φφφ,σσσ|Y) (5.14)

X ∼ p(X|Y,σσσ,φφφ) (5.15)

θθθ,γγγ ∼ p(θθθ,γγγ|X,φφφ) (5.16)

The distribution in the last sampling step, (5.16), is given by (5.13). Note that p(φφφ,σσσ|Y)=∫
p(Ẋ,φφφ,σσσ,θθθ,γγγ|Y)dẊdθθθdγγγ is analytically intractable. Calderhead et al. (2008) there-

fore approximate p(φφφ,σσσ|Y) by a distribution derived from a standard Gaussian process

that is decoupled from the rest of the model. We call this p∗(φφφ,σσσ|Y). This distribu-

tion does not have a standard form, and sampling from it directly is infeasible. Hence,

MCMC with the Metropolis-Hastings algorithm (Hastings, 1970) is used. The sam-

pling steps (5.14) and (5.15) are broken up into the contributions from the individual

states k:

φφφk,σk ∼ p∗(φφφk,σk|yk) ∝ p(yk|φφφk,σk)p(φφφk)p(σk)

= N (yk|0,σ2
kI+Cφk)p(φφφk)p(σk) (5.17)

xk ∼ p(xk|yk,σk,φφφk) = N (xk|µµµk,ΣΣΣk) (5.18)

where µµµk = Cφk(Cφk +σ2
kI)−1yk and ΣΣΣk = σ2

kCφk(Cφk +σ2
kI)−1. Equation (5.18) fol-

lows from p(xk|yk,σk,φφφk) = p(yk|xk,σk)p(xk|φφφk)/p(yk|σk,φφφk), equations (5.4–5.6)
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are well-established results for Gaussian distributions. Sampling of the vector of latent

variables xk in (5.18) follows directly from a multivariate Gaussian distribution. For

sampling φφφk and σk in (5.17), one again has to resort to MCMC. The overall MCMC

scheme then iteratively loops through the steps (5.14–5.16) until some convergence

criterion has been met.1 However, the approximation in equation (5.14) of the sam-

pling scheme introduces a certain weakness: the parameters of the ODE systems, θθθ,γγγ,

which are sampled in the third step of the Gibbs sampling routine (5.16), never feed

back into the first and second steps, (5.14–5.15). This implies that θθθ,γγγ have no bearing

on the inference of the state variables X; these state variables are solely inferred from

the observed data via a standard Gaussian process interpolation, (5.14–5.15).

To paraphrase this: the method proposed in Calderhead et al. (2008) is a two-step

procedure, in which first an interpolation problem is solved, corresponding to (5.14–

5.15), and then the parameters of the ODEs are inferred by matching the derivatives of

the interpolant with those predicted from the ODEs, via (5.16). This falls short of the

method proposed in Ramsay et al. (2007), where the interpolation fits both the noisy

data and the derivatives from the ODEs simultaneously, allowing the system of ODEs

to feed back onto the interpolation.

5.2.2 Adaptive Gradient Matching

In order to address the issues with the model described in the previous section, we

need to close the feedback loop between interpolation and parameter estimation of

the ODEs. We will develop a new method, which we call adaptive gradient matching

(AGM). The new method will have the same graphical structure (shown in Figure 5.1)

as the model in the previous section. The innovation of AGM is a mathematically more

consistent formulation of the inference procedure that allows us to jointly estimate all

parameters of the model, and thereby close the feedback loop.

Following Calderhead et al. (2008), we combine (5.7) and (5.12) with a product of

experts approach:

p(ẋk|X,θθθ,φφφ,γk) ∝ p(ẋk|xk,φφφ)p(ẋk|X,θθθ,γk)

= N (ẋk|mk,Ak)N (ẋk|fk(X,θθθ),γkI) (5.19)

1Note that the method proposed in Calderhead et al. (2008) slightly deviates from the summary
given here in that the definition (5.8) is modified as follows: mk = ′Cφk [Cφk + σ2

kI]−1xk and Ak =
C′′

φk
− ′Cφk [Cφk +σ2

kI]−1C′
φk

, which leads to the dependence of (5.13) on σσσ. However, this modification,
which is motivated by including information from the data Y, is methodologically inconsistent.
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We obtain for the joint distribution:

p(Ẋ,X,θθθ,φφφ,γγγ) = p(Ẋ|X,θθθ,φφφ,γγγ)p(X|φφφ)p(θθθ)p(φφφ)p(γγγ)

= p(θθθ)p(φφφ)p(γγγ)∏
k

p(ẋk|X,θθθ,φφφ,γk)p(xk|φφφk) (5.20)

Inserting (5.4) and (5.13), we get:

p(Ẋ,X,θθθ,φφφ,γγγ) ∝ p(θθθ)p(φφφ)p(γγγ)∏
k

N (ẋk|mk,Ak)

N (ẋk|fk(X,θθθ),γkI)N (xk|0,Cφk) (5.21)

The marginalization over the state derivatives Ẋ

p(X,θθθ,φφφ,γγγ) =
∫

p(Ẋ,X,θθθ,φφφ,γγγ)dẊ (5.22)

∝ p(θθθ)p(φφφ)p(γγγ)∏
k

N (xk|0,Cφk)∫
N (ẋk|mk,Ak)N (ẋk|fk(X,θθθ),γkI)dẋk

is analytically tractable and yields:

p(X,θθθ,φφφ,γγγ) ∝ p(θθθ)p(φφφ)p(γγγ)p(X|θθθ,φφφ,γγγ) (5.23)

∝ ∏
k

N (xk|0,Cφk)exp
[
− 1

2
(fk−mk)

T(Ak + γkI)−1(fk−mk)
]

∝ exp

[
−1

2 ∑
k

(
xTk C−1

φk
xk +(fk−mk)

T(Ak + γkI)−1(fk−mk)
)]

where, as before, we use fk as shorthand for fk(X,θθθ, t), and mk and Ak were defined in

(5.8). Note that this distribution is a complicated function of the states X, owing to the

nonlinear dependence via fk = fk(X,θθθ, t). For the joint probability distribution of the

whole system we obtain:

p(Y,X,θθθ,φφφ,γγγ,σσσ) = p(Y|X,σσσ)p(X|θθθ,φφφ,γγγ)p(θθθ)p(φφφ)p(γγγ)p(σσσ) (5.24)

where the first factor, p(Y|X,σσσ), was defined in (5.3), and the second factor is given by

(5.23). Note that the functional form of the second term is defined up to an unknown

normalization constant. To bypass the problem of normalizing the distribution (5.23),

we follow a Metropolis-Hastings scheme. Denote by q1(σσσ), q2(φφφ), q3(xk) , q4(θθθ) and

q5(γγγ) the proposal distributions for the inferred parameters. We propose new values

from these distributions; q1 and q5 are sparse exponential distributions with λ = 10 to

ensure small noise values and q2, q3 and q4 are uniform distributions over the intervals
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[0,100], [0,10] and [0,20], respectively. These proposal distributions correspond to the

prior distributions for the parameters in our model, except for σσσ where we use a sparse

gamma prior Γ(1,1), and θθθ, where we have imposed a gamma distribution Γ(4,0.5) as

a prior to encode our prior belief about parameter values, which is that most parameters

will be > 0 and < 5.

We then accept or reject these proposal moves according to the standard Metropolis-

Hastings criterion (Hastings, 1970):

Paccept =

{
1,

p(Y, X̃, θ̃, φ̃, γ̃, σ̃)

p(Y,X,θθθ,φφφ,γγγ,σσσ)

q1(σσσ)q2(φφφ)q4(θθθ)q5(γγγ)∏k q3(xk)

q1(σ̃)q2(φ̃)q4(θ̃)q5(γ̃)∏k q3(x̃k)

}
(5.25)

For improved mixing and convergence, it is advisable to not propose all moves simul-

taneously, but to apply a blocking strategy and employ a Gibbs sampling scheme. We

do not make that explicit in our notation, though. The effect of (5.25) is that the param-

eters θθθ have an influence on the acceptance probabilities for X. This mechanism closes

the feedback loop, with the system of ODEs acting back in an adaptive manner on the

interpolants xk via the parameters θθθ. In this way, we address the main shortcoming of

the method proposed in Calderhead et al. (2008).

5.2.3 Covariance Functions and Derivatives

The flexibility and dynamics of a Gaussian process response model depend on the

choice of covariance function. In this work, we considered two alternatives: the radial

basis covariance function, and the sigmoid covariance function. For other possible

choices of covariance functions and more information on this topic, see Chapter 4 in

Rasmussen and Williams (2006).

The radial basis function (RBF) covariance function is defined as:

Krb f (t, t ′) = σ
2
rb f exp(−0.5∗ (t− t ′)2/l2) (5.26)

with hyperparameters σ2
rb f and l2 (variance and characteristic lengthscale). This

is probably the most well-known covariance functions for Gaussian processes. It is

infinitely differentiable, and results in a response that is very smooth.

The sigmoid covariance function is defined as:

Ksig(t, t ′) = σ
2
sig arcsin

(
a+b∗ t ∗ t ′√

(a+b∗ t ∗ t +1)(a+b∗ t ′ ∗ t ′+1)

)
(5.27)
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with hyperparameters σ2
sig, a and b. This is also sometimes known as the “neu-

ral network” covariance function, because it arises from a neural network with one

hidden layer. For the derivation, see Chapter 4 in Rasmussen and Williams (2006).

This covariance function has the advantage that it is non-stationary, and so can model

dynamics with varying length-scale. In particular, the sigmoid covariance function is

well-suited for modelling signals with high variance close to zero, and low variance

further away from zero. This can be advantageous for modelling biological systems

that start in a perturbed state before eventually reaching a steady state with saturation.

In order to calculate the auto- and cross-covariance matrices in Equation (5.8), we

require the partial and full derivatives of these functions. For the RBF covariance

function, we obtain:

dKrb f (t, t ′)
dt

= −(t− t ′)
l2 Krb f (t, t ′) (5.28)

dKrb f (t, t ′)
dt ′

=
(t− t ′)

l2 Krb f (t, t ′) (5.29)

d2Krb f (t, t ′)
dtdt ′

=

(
1
l2 −

(t− t ′)2

l4

)
Krb f (t, t ′) (5.30)

For the sigmoid covariance function, we obtain:

dKsig(t, t ′)
dt

=
σ2

sig√
1−Z2

dZ
dt

(5.31)

dKsig(t, t ′)
dt ′

=
σ2

sig√
1−Z2

dZ
dt ′

(5.32)

d2Ksig(t, t ′)
dtdt ′

=
σ2

sig√
1−Z2

(
Z

1−Z2
dZ
dt ′

dZ
dt

+
d2Z
dtdt ′

)
(5.33)

where:

Z =
a+b∗ t ∗ t ′

Znorm
(5.34)

with Znorm =
√

(a+b∗ t ∗ t +1)(a+b∗ t ′ ∗ t ′+1), and we have:

dZ
dt

= b
(

t ′

Znorm
− tZ

a+b∗ t ∗ t +1

)
(5.35)

dZ
dt ′

= b
(

x
Znorm

− t ′Z
a+b∗ t ′ ∗ t ′+1

)
(5.36)

d2Z
dtdt ′

= b
(

1
Znorm

− bt ′t ′

(a+b∗ t ′ ∗ t ′+1)Znorm
− t

(a+b∗ t ∗ t +1)
dZ
dt ′

)
(5.37)
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5.3 Sampling Setup

For running simulations with the model in Calderhead et al. (2008), we make use of

the Matlab code provided by the authors. Our adaptive gradient matching model was

implemented in R, where we followed the sampling scheme from Calderhead et al.

(2008) whenever possible. Like Calderhead et al., we used population MCMC (Jasra

et al., 2007) to deal with the potentially rugged likelihood landscapes of the non-linear

ODE systems. For all MCMC simulations in this paper, we ran 10 chains at different

temperatures, which we tuned during the burn-in phase to achieve an acceptance rate

of 0.25 for exchange moves. Similarly, proposal widths for all parameters and hyper-

parameters were tuned to achieve an acceptance rate of 0.25. We initialised X and φφφ

using a GP regression fit to the data Y. To obtain the regression fit, φφφ was optimised

for maximum likelihood, using scaled conjugate gradients. I implemented this pro-

cedure with help of the R package gptk, extended with my own code to include the

sigmoidal covariance function. The same initial GP hyperparameters were used for

the Calderhead et al. model and for our improved gradient matching model. All other

parameters were initialised by drawing samples from the prior distributions defined in

Section 5.2.2.

The sampling of the hyperparameters φφφ and the latent variables X warrants fur-

ther explanation. Although we could in principle propose new values for X and φφφ by

sampling them alternately from the prior, or from some other distribution, e.g. via a

random walk, this is highly inefficient due to the strong coupling between them. To

avoid this problem, we apply a whitening of the prior, following Murray and Adams

(2010). We introduce an independent Gaussian vector ν, and update the hyperparam-

eters φφφ for fixed ν instead of fixed X, by using the transformation X = LCφk
ν, where

LCφk
LT

Cφk
= Cφk . Since ν and φφφ are independent, this scheme removes the problems

created by strong coupling. Furthermore, these updates will change both X and φφφ; in

effect, we are now treating the latent variables as ancillary to the GP hyperparameters.

For the GP methods, the choice of covariance function can be important, as the

GP needs to be able to fit the dynamics of the data. For the PIF4/5 model and the

Lotka-Volterra model described in Section 5.4.1, we used the radial basis function

covariance function (Equation (5.26)), which provided a good fit. However, this co-

variance function does not provide a good fit for data from the model for the signal

transduction cascade (also described in Section 5.4.2). We therefore switched to the

sigmoid covariance function (Equation (5.27)). Note that in general the sigmoid co-
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variance function gives good regression fits for all models (see Section 5.4.2). Both of

these covariance functions are defined in Section 5.2.3, along with their derivatives.

In addition to the scheme described in Section 5.2.2, we also implemented a sam-

pler which uses the explicit integration of the ODE system. This sampler is based

on the same population MCMC setup as above, but samples from the distribution:

P(Y,θθθ∗,σσσ) = P(Y|θθθ∗,σσσ)P(θθθ∗)P(σσσ), where θθθ
∗ is the parameter vector for the ODE

system, augmented with the initial concentrations for each species, and P(θθθ∗) and P(σσσ)

are the priors defined in Section 5.2.2. Then we have P(Y|θθθ∗,σσσ)=∏k ∏t P(yk(t)|θθθ∗,σk),

with P(yk(t)|θθθ∗,σk) =N (yk(t)|xk(t,θθθ
∗),σ2

k) where xk(t,θθθ
∗) is the solution of the ODE

system for species k at time t, given θθθ
∗. Parameters corresponding to the initial concen-

trations are initialised using the observed concentrations at time t = 0 for each species.

5.4 Three benchmark ODE Systems

In this section, I present three small-to-medium-sized ODE models of biological sys-

tems, and use them to benchmark the parameter inference methods from this chapter.

5.4.1 ODE Model Description

The PIF4/5 model. We apply our GP parameter inference method to a model for gene

regulation of genes PIF4 and PIF5 by TOC1 in the circadian clock gene regulatory

network of Arabidopsis thaliana. The overall network is represented by the Locke

2-loop model (Locke et al., 2005), with fixed parameters that were originally inferred

following Pokhilko et al. (2010). Only the parameters involved in regulation of PIF4

and PIF5 are inferred from the data using the methods described in this chapter. We

simplify the model to represent genes PIF4 and PIF5 as a combined gene PIF4/5.

We are interested in the promoter strength s, the rate constant Kd and Hill coefficient

h of the regulation by TOC1, and the degradation rate d of the PIF4/5 mRNA. The

regulation process is represented by the following ODE:

d[PIF4/5]
dt

= s ·
Kh

d

Kh
d +[TOC1]h

−d · [PIF4/5] (5.38)

where [PIF4/5] and [TOC1] represent the concentration of PIF4/5 and TOC1, respec-

tively.

For the experiments presented in this chapter, data were generated with parameters

{s = 1,Kd = 0.46,h = 2,d = 1}, which generates concentrations that are close to real-

life measurements of PIF4 and PIF5. For each dataset, we simulated data over the



5.4. Three benchmark ODE Systems 147

interval [0,24] with sampling intervals in {1,2,4}. The initial value for the PIF4/5

concentration was taken from a measurement of Arabidopsis gene expressions at the

beginning of the day, and was set to 0.386. We applied additive white Gaussian noise

with standard deviation in {0,0.1} to the time courses.

The Lotka-Volterra model. The Lotka-Volterra model is a 2-equation system that

was originally developed for modelling predator-prey interaction in ecology (Lotka,

1932). There are two species, a prey species S (the ’sheep’) and a predator species

W (the ’wolves’). The dynamics of their interactions are described by the following

system of two ODEs:

d[S]
dt

= [S] · (α−β · [W ]) (5.39)

d[W ]

dt
= −[W ] · (γ−δ · [S])

This system is of interest because it is periodic for most parameter settings, and there

are non-linear interactions between the two species.

For the experiments presented in this chapter, data were generated with parameters

{α = 2,β = 1,γ = 4,δ = 1}, which generates stable oscillations. For each dataset, we

simulated data over the interval [0,2] with sampling intervals of 0.25. The initial values

for the prey species S and the predator species W were set at [S] = 5 and [W ] = 3. We

applied additive white Gaussian noise with standard deviation in {0,0.1,0.5} to the

time courses.

The signal transduction cascade. Our third and final model is a model of a signal

transduction cascade that was described in Vyshemirsky and Girolami (2008) (Model

1). At the top of the cascade we have protein S, which can degrade into Sd . S activates

protein R into active state Rpp by first binding to it to form RS, which is then activated

to turn into Rpp. Rpp can degrade back into R, and RS can separate back into S and R.

The model is described by the following system of five ODEs:

d[S]
dt

= −k1 · [S]− k2 · [S] · [R]+ k3 · [RS]

d[Sd]

dt
= k1 · [S]

d[R]
dt

= −k2 · [S] · [R]+ k3 · [RS]+
V · [Rpp]

Km+[Rpp]
d[RS]

dt
= k2 · [S] · [R]− k3 · [RS]− k4 · [RS]

d[Rpp]
dt

= k4 · [RS]− V · [Rpp]
Km+[Rpp]

(5.40)
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This system is of interest as it represents a realistic and commonly-used formulation

of signal transduction as an ODE system, using mass action and Michaelis-Menten

kinetics.

For the experiments presented in this chapter, data were generated with parameters

{k1 = 0.07,k2 = 0.6,k3 = 0.05,k4 = 0.3,V = 0.017,Km= 0.3}, following Vyshemirsky

and Girolami (2008). For each dataset, we simulated data over the interval [0,100]

and took samples at time points {0,1,2,4,5,7,10,15,20,30,40,50,60,80,100}. This

means that we sampled more timepoints during the earlier part of the timeseries, where

the dynamics tend to be faster. We also followed Vyshemirsky and Girolami (2008) in

setting the initial values for 5 species: {[S] = 1, [Sd] = 0, [R] = 1, [RS] = 0, [Rpp] = 0}.
We applied additive white Gaussian noise with standard deviation in {0,0.1} to the

time courses.
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Figure 5.2: GP Regression fits to PIF4/5 expression levels, using the RBF and the

sigmoidal covariance function. The crosses represent the data points, the solid line

is the GP mean. Top Row: Gaussian noise with standard deviation 0. Bottom Row:

Gaussian noise with standard deviation 0.1.

5.4.2 GP Covariance Function Comparison

The two covariance functions used in this work are the RBF (radial basis function)

covariance function Krb f (t, t ′) defined in Equation (5.26), and the sigmoid covariance

function Ksig(t, t ′) defined in Equation (5.27). Figures 5.2 - 5.4 show a comparison of
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Figure 5.3: GP Regression fits to predator and prey concentrations in the Lotka-Volterra

model, using the RBF and the sigmoidal covariance function. The crosses represent

the data points, the solid line is the GP mean. Gaussian noise with standard deviation

0.1 was applied. Top Row: Prey species. Bottom Row: Predator Species.

the GP regression fits (using maximum likelihood, as described in Section 5.3) to data

from the different model systems. We see that the sigmoid covariance function always

provides a good fit, while the RBF covariance function breaks down for some of the

species in the signal transduction cascade. This is due to the fact that the RBF covari-

ance function assumes a fixed lengthscale l2, while the sigmoid covariance function is

non-stationary and can deal with varying lengthscales.

5.4.3 Parameter Inference Results

We use the three benchmark systems described in Section 5.4 to analyse the perfor-

mance of our adaptive gradient matching, and to provide a thorough comparison with

both the method by Calderhead et al. (2008), and the sampler which explicitly solves

the ODE system, as described in Section 5.3.2 We generated data from each system

using the R package deSolve (Soetaert et al., 2010) for numerically integrating the

systems of differential equations. See Section 5.4.1 for the parameter and initial con-

centration settings. We then added white Gaussian observation noise to the datasets.

2Note that due to the higher computational cost involved, we could only apply the explicit solver to
the Lotka-Volterra model and the signal transduction cascade. Applying it to the PIF4/5 system would
have required solving the entire 14-equation system of the Locke 2-loop model at each step, which was
not feasible with the time and resources at our disposal.
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Figure 5.4: GP Regression fits to species concentrations in the signal transduction

pathway, using the RBF and the sigmoidal covariance function. The crosses represent

the data points, the solid line is the GP mean. Gaussian noise with standard deviation

0.1 was applied. From top to bottom, the rows show species S, dS, R, RS and Rpp.
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Figure 5.5: PIF4/5 expression levels with varying sampling intervals and observational

noise. We show the true (noiseless) expression values, the sampled latent variables

(triangles) and the expression profile simulated using the sampled θθθ values (circles).

Error bars show one standard deviation. First and Third Column: Calderhead et al.

Model. Second and Fourth Column: Adaptive gradient matching.

For the PIF4/5 system and the signal transduction cascade, we added noise with stan-

dard deviation ∈ {0,0.1}, and for the Lotka-Volterra system we added noise with stan-

dard deviation ∈ {0,0.1,0.5}. The additional noise level for the Lotka-Volterra system

reflects the higher amplitude of the signal in this system.

We generated 10 datasets for each noise level and system, before applying the

parameter inference methods. Convergence was monitored via diagnostic plots and the

Gelman and Rubin potential scale reduction factor (PSRF) (Gelman and Rubin, 1992).

A PSRF < 1.1 was taken as an indication of sufficient convergence. We collected

1000 samples at intervals of 100 steps from the converged chains. Samples from all

10 independent datasets were pooled to obtain the final predictions. Note that we were

unable to obtain a PSRF < 1.1 for the Calderhead et al. model in the presence of non-

zero Gaussian observation noise; in this case, we resorted to running the MCMC chains

for 200,000 steps, which corresponds to roughly twice the number of steps that it took

adaptive gradient matching to reach convergence, before taking samples as described

above.

Figure 5.5 shows the results for the PIF4/5 system. The data used for the parameter

inference was sampled at intervals ∈ {1,2,4} timesteps, where 4 is a realistic sampling
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Figure 5.6: Lotka-Volterra concentrations for the prey species with varying observa-

tional noise. We show the true (noiseless) expression values, the sampled latent vari-

ables (triangles) and the expression profile simulated using the sampled θθθ values (cir-

cles). Error bars show one standard deviation. Top Row: Calderhead et al. Model.

Middle Row: Adaptive gradient matching. Bottom Row: Explicit ODE integration.

interval for actual measurements. We compare the method in Calderhead et al. (2008)

with our adaptive gradient matching technique. We see that when there is no noise, the

two methods perform equally well, but as soon as we introduce noise into the system,

the predictions by the Calderhead et al. method become unreliable.

Figures 5.6 and 5.7 show the results for the Lotka-Volterra system, for the prey

and predator species, respectively. The data used for the parameter inference was

sampled at intervals of 0.25 timesteps. Again the method by Calderhead et al. showed

a deteriorated performance in the presence of noise. For noise levels 0 and 0.1, adaptive

gradient matching performed as well as the MCMC with explicit ODE integration, and

for the highest noise level of 0.5, the performance of adaptive gradient matching is still

competitive.

Finally, Figure 5.8 shows the results for the signal transduction cascade. Figure 5.8

only shows the predictions for Rpp, which represents the activated protein complex,

and is arguably the central species in this system. Predictions for the other species can
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Figure 5.7: Lotka-Volterra concentrations for the predator species with varying obser-

vational noise. We show the true (noiseless) expression values, the sampled latent

variables (triangles) and the expression profile simulated using the sampled θθθ values

(circles). Error bars show one standard deviation. Top Row: Calderhead et al. Model.

Middle Row: Adaptive gradient matching. Bottom Row: Explicit ODE integration.
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Figure 5.8: Expression levels of activated protein complex Rpp in the signal transduc-

tion pathway, with varying observational noise. Expression levels for other species in

the system can be found in the supplementary material. We show the true (noiseless)

expression values, the sampled latent variables (triangles) and the expression profile

simulated using the sampled θθθ values (circles). Error bars show one standard devia-

tion. The boxplots give an idea of the distribution of the sampled parameters, where the

true parameter value is marked with an X. The horizontal bar shows the median, the box

margins show the 25th and 75th percentiles, the whiskers indicate data within 2 times

the interquartile range, and circles are outliers. Top Row: Calderhead et al. Model.

Middle Row: Adaptive gradient matching. Bottom Row: Explicit ODE integration.
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Figure 5.9: Expression levels of species other than Rpp in the signal transduction path-

way, with no observational noise. We show the true (noiseless) expression values, the

sampled latent variables (triangles) and the expression profile simulated using the sam-

pled θθθ values (circles). Error bars show one standard deviation. Top Row: Calderhead

et al. Model. Middle Row: Adaptive gradient matching. Bottom Row: Explicit ODE

integration.

be found in Figures 5.9 (no noise) and 5.10 (Gaussian noise with standard deviation

0.1). Figure 5.8 also includes boxplots for the sampled parameters. For the last two

parameters, we present the ratio V/Km, as this is the crucial quantity that determines

reconstruction accuracy. Once again, our adaptive gradient matching easily outper-

forms the method by Calderhead et al., and remains competitive with the explicit ODE

integration in the presence of noise. Note that even though the ratio V/Km is overesti-

mated by our method for noise level 0.1, the sampled parameters still result in a good

fit to the observed data.

5.4.4 Speed and Computational Complexity

In Calderhead et al. (2008), the authors demonstrate that the moves of their sampler

scale with O(NT 3), due to the requirement of inverting a T xT data matrix N times

(where T is the length of the input time series and N is the number of species in the

system). We can make a similar argument for adaptive gradient matching. The dom-

inant computational cost for each sampling step comes from Equation (5.23), which

requires inverting two T xT data matrices. Thus the complexity of each sampling step is
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Figure 5.10: Expression levels of species other than Rpp in the signal transduction path-

way, with observational noise with standard deviation 0.1. We show the true (noiseless)

expression values, the sampled latent variables (triangles) and the expression profile

simulated using the sampled θθθ values (circles). Error bars show one standard devia-

tion. Top Row: Calderhead et al. Model. Middle Row: Adaptive gradient matching.

Bottom Row: Explicit ODE integration.

O(2NT 3)=O(NT 3) when the sampling is done for all N species3. Hence each MCMC

move using adaptive gradient matching has the same computational complexity as a

move in Calderhead et al. (2008).

What will matter most in practice is how long each method takes to converge.

Although it is difficult to prove convergence, we can get an indication by using the

potential scale reduction factor (PSRF) as a convergence diagnostic, as described in

Section 5.4.3. For convenience, we will refer to an MCMC run as converged if the

PSRF is ≤ 1.1. Figure 5.11 compares the explicit ODE integration with the model

by Calderhead et al. (2008), and with adaptive gradient matching in terms of compu-

tational time for 1e5 iterations (in seconds) and number of MCMC iterations before

reaching convergence. We used the signal transduction cascade described in Section

5.4 as the test model. Each method was run 10 times using 10 different data instantia-

tions (adding Gaussian observation noise with standard deviation 0.1). We see that, as

expected, adaptive gradient matching and the method in Calderhead et al. (2008) are

3Note that in practice the inverted matrices can be cached, so we only have to invert both matrices for
MCMC moves that change the GP hyperparameters. Therefore we should not expect the computational
costs to be double those of Calderhead et al. (2008).
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Figure 5.11: Computational efficiency of the different methods: Explicit ODE Integra-

tion, Calderhead et al. (2008) and adaptive gradient matching (AGM). We use param-

eter inference for the signal transduction model as a test case. Left: Time taken for

1e5 MCMC iterations. Right: Number of MCMC iterations to convergence. Note that

Calderhead et al. (2008) did not achieve convergence in any of the runs. The horizontal

bar of the boxplots shows the median, the box margins show the 25th and 75th per-

centiles, the whiskers indicate data within 2 times the interquartile range, and circles

are outliers.

both faster than explicit ODE integration for a fixed number of iterations. Furthermore,

adaptive gradient matching is only marginally slower than the method in Calderhead

et al. (2008). We see that the method in Calderhead et al. (2008) does not converge

for any of the runs, confirming our observation from Section 5.4.3. Adaptive gradient

matching, on the other hand, converges in fewer iterations than explicit ODE integra-

tion. This can be explained by the difference in the dimensionality of the parameter

space; as we have pointed out in Section 5.3, to integrate the ODE system, we also

need to infer the initial concentrations for each species, in effect increasing the number

of parameters. Adaptive gradient matching avoids having to infer the initial concen-

trations by effectively profiling over them, which, along with the treatment of latent

variables X as ancillary variables (see Section 5.3), leads to fast convergence.

5.5 Application to the JAK/STAT Pathway

In this section, we apply our improved parameter inference method to a realistic model

of interleukin-6 signalling in the JAK/STAT signalling pathway. This model was com-
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piled by Roberta Cretella at the University of Glasgow, based on the current knowledge

in the literature.

5.5.1 ODE Model Description

We analyse a model for interleukin-6 signalling (IL-6) in vascular endothelial cells.

IL-6 binds to a receptor on the plasma membrane, activating the JAK/STAT pathway

(Heinrich et al., 1998). The receptor is phosphorylated, creating docking sites for

signalling molecules like STAT3. STAT3 binds to the phosphorylated receptor and is

phosphorylated itself. Phosphorylated STAT3 molecules are released from the recep-

tor, dimerize and then migrate to the nucleus to trigger mRNA transcription of target

proteins like SOCS3. SOCS3 acts as a feedback mechanism for the signalling pathway:

it binds to active receptors to prevent STAT3 activation and to provide a signal termi-

nation. See Figure 5.12 for a schematic representation of this pathway. The model we

consider is a complex system comprising 13 species and 19 parameters. The dynam-

ics of the system are described by mass-action kinetics, with non-linear interactions

among species. Under the assumption of full observation of all species, we can de-

compose the system into 13 subsystems, one per species. This simplifies inference,

and allows us to investigate the local identifiability of parameters in this model. The

full system of ODEs looks as follows:

d[R]
dt

=−k f
1 [R]+ kb

1[R
∗]+ k11[SOCS3.R∗]+ k14[SOCS3.STAT 3.R∗]

(5.41)

d[R∗]
dt

= k f
1 [R]− kb

1[R
∗]− k f

2 [STAT 3][R∗]+ kb
2[STAT 3.R∗]+ (5.42)

k3[STAT 3.R∗]− k f
10[SOCS3][R∗]+ kb

10[SOCS3.R∗]

d[STAT 3]
dt

=−k f
2 [STAT 3][R∗]+ kb

2[STAT 3.R∗]+ k14[SOCS3.STAT 3.R∗]+

2k7[2STAT 3∗ N] (5.43)

d[STAT 3.R∗]
dt

= k f
2 [STAT 3][R∗]− kb

2[STAT 3.R∗]− k13[SOCS3][STAT 3.R∗]−

k3[STAT 3.R∗] (5.44)

d[STAT 3∗]
dt

=−2k f
4 [STAT 3∗][STAT 3∗]+2kb

4[2STAT 3∗ C]+ k3[STAT 3.R∗]

(5.45)
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Figure 5.12: Schematic representation of interleukin-6 (IL-6) signalling in the JAK/STAT

pathway. For a detailed description of this system, see Section 5.5.1. Note that the

protein JAK is not modelled in the ODE system, but is assumed to be always present.
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d[2STAT 3∗ C]

dt
= k f

4 [STAT 3∗][STAT 3∗]− kb
4[2STAT 3∗ C]− k5[2STAT 3∗ C]

(5.46)

d[SOCS3]
dt

= k11[SOCS3.R∗]− k12[SOCS3]− k13[SOCS3][STAT 3.R∗]+

k9[SOCS3mRNA]+ k14[SOCS3.STAT 3.R∗]−

k f
10[SOCS3][R∗]+ kb

10[SOCS3.R∗] (5.47)

d[SOCS3.R∗]
dt

=−k11[SOCS3.R∗]+ k f
10[SOCS3][R∗]− kb

10[SOCS3.R∗] (5.48)

d[2STAT 3∗ N]

dt
=−k f

6 [2STAT 3∗ N][P300]+ kb
6[2STAT 3∗ N.P300]+ (5.49)

k5[2STAT 3∗ C]− k7[2STAT 3∗ N]+ k8[2STAT 3∗ N.P300]

d[P300]
dt

=−k f
6 [2STAT 3∗ N][P300]+ kb

6[2STAT 3∗ N.P300]+ (5.50)

k8[2STAT 3∗ N.P300]

d[2STAT 3∗ N.P300]
dt

= k f
6 [2STAT 3∗ N][P300]− kb

6[2STAT 3∗ N.P300]− (5.51)

k8[2STAT 3∗ N.P300]

d[SOCS3.STAT 3.R∗]
dt

=−k14[SOCS3.STAT 3.R∗]+ k13[SOCS3][STAT 3.R∗] (5.52)

d[SOCS3mRNA]
dt

=−k9[SOCS3mRNA]+ k8[2STAT 3∗ N.P300] (5.53)

5.5.2 Subsystem Inference

Trying to do parameter inference on the whole JAK/STAT system is very challenging.

In our preliminary runs, even running the MCMC simulation for two weeks non-stop

did not allow us to reach convergence (see Section 5.5.3.1), possibly due to the highly

complex posterior landscape created by an ODE system with 19 parameters and 13

species. Note that this weakness is not particular to adaptive gradient matching; most

methods based on MCMC would have difficulty to reach convergence.

It is therefore necessary to break up the inference task in some way. We decided

that the most natural way to break up the inference would be to treat each equation

as its own ODE subsystem. Georgoulas et al. (2012) describe a subsystem approach

for parameter inference that works as follows: first a Gaussian process is fitted to the

existing data for the trajectory of each species. These Gaussian processes are then used

as the input to each subsystem that models part of the whole ODE system. Inference

is done in parallel in the subsystems, and the resulting parameter samples are used to
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generate new estimates for the trajectories. These new estimates are then again used

as inputs for parameter inference in the subsystems, and the process is repeated until it

converges.

In theory we could do parameter inference in the same way, using the parameters

inferred from the previous cycle through the subsystems to obtain the trajectories that

form the inputs for the next cycle. However, in this work, I have not investigated

the latter approach; instead I have assumed that we already have the trajectories that

are needed as inputs for each subsystem, and I have investigated the feasibility of

inferring the subsystem parameters from these perfect inputs. As we will see, this is a

challenging problem on its own, and it encounters one of the problems that Georgoulas

et al. (2012) mention in their discussion, to do with parameters that are shared among

subsystems.

When you treat each equation as a subsystem, some of the ODE parameters become

unidentifiable; only the sum of the parameters remains identifiable. We therefore have

to reparameterise the system as follows:

d[R]
dt

=−k f
1 [R]+ kb

1[R
∗]+ k11[SOCS3.R∗]+ k14[SOCS3.STAT 3.R∗]

(5.54)

d[R∗]
dt

= k f
1 [R]− kb

1[R
∗]− k f

2 [STAT 3][R∗]+kb
2+3[STAT3.R∗]−

k f
10[SOCS3][R∗]+ kb

10[SOCS3.R∗] (5.55)

d[STAT 3]
dt

=−k f
2 [STAT 3][R∗]+ kb

2[STAT 3.R∗]+ k14[SOCS3.STAT 3.R∗]+

2k7[2STAT 3∗ N] (5.56)

d[STAT 3.R∗]
dt

= k f
2 [STAT 3][R∗]−kb

2+3[STAT3.R∗]− k13[SOCS3][STAT 3.R∗]

(5.57)

d[STAT 3∗]
dt

=−2k f
4 [STAT 3∗][STAT 3∗]+2kb

4[2STAT 3∗ C]+ k3[STAT 3.R∗]

(5.58)

d[2STAT 3∗ C]

dt
= k f

4 [STAT 3∗][STAT 3∗]−kb
4+5[2STAT3∗ C] (5.59)
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d[SOCS3]
dt

= kb
11+10[SOCS3.R∗]− k12[SOCS3]− k13[SOCS3][STAT 3.R∗]+

k9[SOCS3mRNA]+ k14[SOCS3.STAT 3.R∗]− k f
10[SOCS3][R∗]

(5.60)

d[SOCS3.R∗]
dt

=−kb
11+10[SOCS3.R∗]+ k f

10[SOCS3][R∗] (5.61)

d[2STAT 3∗ N]

dt
=−k f

6 [2STAT 3∗ N][P300]+kb
6+8[2STAT3∗ N.P300]+

k5[2STAT 3∗ C]− k7[2STAT 3∗ N] (5.62)

d[P300]
dt

=−k f
6 [2STAT 3∗ N][P300]+kb

6+8[2STAT3∗ N.P300] (5.63)

d[2STAT 3∗ N.P300]
dt

= k f
6 [2STAT 3∗ N][P300]−kb

6+8[2STAT3∗ N.P300] (5.64)

d[SOCS3.STAT 3.R∗]
dt

=−k14[SOCS3.STAT 3.R∗]+ k13[SOCS3][STAT 3.R∗] (5.65)

d[SOCS3mRNA]
dt

=−k9[SOCS3mRNA]+ k8[2STAT 3∗ N.P300] (5.66)

where the parts that have changed have been highlighted in bold red. This repa-

rameterisation introduces 3 new parameters: kb
2+3, kb

4+5 and kb
11+10, and replaces kb

6

by kb
6+8, where the sub- and superscripts indicate which parameters from the original

system have been summed. This brings the total number of parameters to 22.

We generate simulation data using the parameter settings:

{k f
1 = 0.1,kb

1 = 0.1,k11 = 0.003,k14 = 0.03,k f
2 = 0.08,kb

2 = 0.008,k3 = 0.4,k10 f =

0.5,k10b = 0.1,k7 = 0.005,k13 = 0.02,k9 = 0.01,k f
4 = 0.2,kb

4 = 0.01,k5 = 0.5,k12 =

0.005,k f
6 = 0.003,kb

6+8 = 0.013,k8 = 0.01,kb
2+3 = 0.408,kb

4+5 = 0.51,kb
11+10 = 0.103},

which give realistic behaviour for the system. We record 18 datapoints at time

points which give greater weight to the intimal period where more variability is present:

{0,10,20,30,40,50,60,80,100,120,180,240,300,360,420,480,540,600}.
The initial concentrations for the 13 species at time point 0 are:

{[R] = 4, [R∗] = 0, [STAT 3] = 100, [STAT 3.R∗] = 0, [STAT 3∗] = 0, [2STAT 3∗ C] =

0, [SOCS3] = 0, [SOCS3.R∗] = 0, [2STAT 3∗ N] = 0, [P300] = 1, [2STAT 3∗ N.P300] =

0, [SOCS3.STAT 3.R∗] = 0.1, [SOCS3mRNA] = 0.1}.

5.5.3 Results

We apply the adaptive gradient matching method from Section 5.2.2 to the problem

of parameter inference in the JAK/STAT signalling pathway. We use the sigmoidal

kernel, as this empirically gave us the best results. Throughout this section, where the



5.5. Application to the JAK/STAT Pathway 163

subsystem approach is used, we assume that we have perfect inputs for each subsystem,

and only the subsystem parameters need to be inferred. We will show that even in this

optimistic scenario, we encounter certain problems related to the subsystem approach

that are hard to overcome.

5.5.3.1 Parameter Inference for the Complete System

We first tried to apply AGM to the whole system (i.e., we did not use the subsystem

approach). We ran five independent simulations to do convergence tests.

Figure 5.13 shows the convergence tests using scatterplots of the ODE parameters

and the potential scale reduction factor (PSRF) Gelman and Rubin (1992), as well as

an example trace of the log likelihood. For these simulations, we have chosen a burnin

period of 10 million iterations in order to be conservative, and we have sampled a

further 10000 iterations after burnin. As Figure 5.13 demonstrates, even an MCMC run

of that length, which took more than two weeks to run on a standard desktop computer,

did not converge. The PSRF values for all 22 parameters are very far from the value of

1.1 that is usually taken as indication of convergence. Furthermore, the log-likelihood

still seems to be increasing even after a long burnin phase. The scatterplots, which

show sampled values for three example parameters from two independent runs, reveal

that some of the sampled parameter distributions seem to have two modes in one run,

but only one mode in the other, another indication of insufficient convergence.

5.5.3.2 Perfect vs Noisy Observations

Figures 5.14 compares the predictions obtained by the sampled parameters, as well as

the latent variables sampled during the MCMC, in the case of perfect observations (no

noise) with the case of noisy observations, where we have added Gaussian noise with

standard deviation 0.05 to the subsystem species only. Here we only show the results

for a subset of species, for full results, see Appendix D. Figures 5.15 and 5.16 show the

distributions of the sampled parameters for a couple of example subsystems. Appendix

D contains the distributions of sampled parameters of the remaining subsystems.

We can see that the subsystem approach works as long as we assume perfect obser-

vation for the subsystem species, but breaks down when observation noise is added to

the system. The natural question to ask is what could be causing this breakdown. We

have done a perturbation study to elucidate this aspect.
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Figure 5.13: Convergence tests for inference on the complete JAK/STAT system. Top

Right: Potential scale reduction factor (PSRF) values for all 22 parameters. Top Left:

Trace of the (unnormalised) log likelihood after burnin. Bottom: Scatterplots showing

sampled values from three example parameters over two independent MCMC runs.

5.5.3.3 Perturbation Study

There are two likely factors that could be causing the breakdown in the face of noise:

1) the switch from a global approach to a subsystems approach, or 2) the use of gra-

dient matching as an approximation to solving the ODE system explicitly. To figure

out which is at fault, we proceeded as follows. For each of the 22 parameters, we in-

vestigated the effect of perturbing that parameter by setting it to a value on the interval

[0,1] while keeping the other parameters fixed at the true values, and calculating four

different likelihoods4:

• The global profile log likelihood, comparing data generated from the true ODE

system with data generated from the perturbed ODE system.

• The global gradient log likelihood, comparing gradients calculated using data

generated from the true ODE system with the gradients calculated using data

generated from the perturbed ODE system.

• The local profile log likelihood, comparing data generated from the true ODE

4We assume a Gaussian likelihood, and hence calculate the log likelihood via the mean squared
deviation of each species from the ODE solution using the original parameters.



5.5. Application to the JAK/STAT Pathway 165

0 100 200 300 400 500 600

0.
0

0.
4

0.
8

1.
2

Time

C
on

ce
nt

ra
tio

n

Species: R*

Param. Error: 0.001 0.001 0 0.243 0.01 0.009

0 100 200 300 400 500 600

0.
0

0.
4

0.
8

1.
2

Time

C
on

ce
nt

ra
tio

n

Species: R*

Param. Error: 0.009 0.009 0.006 0.057 0.002 0.155

0 100 200 300 400 500 600

0.
0

1.
0

2.
0

3.
0

Time

C
on

ce
nt

ra
tio

n

Species: STAT3.R*

Param. Error: 0 0 0

0 100 200 300 400 500 600

0.
0

1.
0

2.
0

3.
0

Time

C
on

ce
nt

ra
tio

n

Species: STAT3.R*

Param. Error: 0.004 0 0.098

0 100 200 300 400 500 600

0.
0

0.
5

1.
0

1.
5

Time

C
on

ce
nt

ra
tio

n

Species: SOCS3.R*

Param. Error: 0 0

0 100 200 300 400 500 600

0
1

2
3

4

Time

C
on

ce
nt

ra
tio

n

Species: SOCS3.R*

Param. Error: 0.009 0.001

Figure 5.14: Comparison of parameter inference with and without noise for species

2, 4 and 8. Left: Perfect Observations. Right: Noisy observations (Gaussian noise

with standard deviation 0.05). We present the true (solid line) and inferred (circles with

error bars) concentrations for each species in an idealised subsystems approach with

perfect inputs to each subsystem. We also show the latent variables sampled from the

posterior (triangles with error bars). The error bars show one standard deviation.
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Figure 5.15: STAT3 - Species 3. Left: Perfect Observations. Right: Noisy Observa-

tions. The histograms show the distribution of sampled parameters, the dashed line

is the gamma prior on the parameters, the vertical line indicates the true value of the

parameter. Note that some of the parameters of this subsystem have been omitted for

space reasons; for the remaining histograms, see Appendix D.
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Figure 5.16: SOCS3 - Species 7. Left: Perfect Observations. Right: Noisy Observa-

tions. The histograms show the distribution of sampled parameters, the dashed line

is the gamma prior on the parameters, the vertical line indicates the true value of the

parameter. Note that some of the parameters of this subsystem have been omitted for

space reasons; for the remaining histograms, see Appendix D.
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system with data generated from the perturbed ODE subsystem, conditional on

the concentrations of species outside the subsystem staying the same.

• The local gradient data log likelihood, comparing gradients calculated using data

generated from the true ODE system with gradients calculated using data gen-

erated from the perturbed ODE subsystem, conditional on the concentrations of

species outside the subsystem staying the same.

Note that although the first two likelihoods are called ’global’, we have nevertheless

only calculated them for a subsystem (i.e. one species), not for the whole system. They

are global in the sense that the whole ODE system is solved with the perturbed param-

eter value. The other likelihoods are local because the ODE system is only solved for

the subsystem species, and thus the solution is conditional on the other species staying

the same. This closely mimics what happens in the subsystem parameter inference

method.

Figures 5.17, 5.18 and 5.19 show the effect of the perturbations on a selection of

subsystems. Results for the remaining subsystems can be found in Appendix D; the

results are qualitatively similar. We can see that while there is almost no qualitative

difference between the profile log likelihood and the global log likelihood, there is

a significant difference between using the global likelihood and the local likelihood.

The likelihood landscape for the global log likelihood is very peaked at the correct

parameter values, while the landscape for the local log likelihood seems quite flat in

comparison. This explains why the parameter inference breaks down in the presence

of noise; the smaller peak will get lost among spurious peaks created by noisy data.

Why would the likelihood landscapes be flatter for a local solution? The answer

lies in the effect of the parameters. For a local solution, changing one parameter only

affects the subsystem species, and leaves the inputs to the subsystem unchanged. This

is not the case for a global solution; changing one parameter can have an effect on the

whole system, sometimes causing quite drastic changes in the inputs to the subsystem.

Naturally this will have an equally drastic effect on the likelihood landscape. Unfor-

tunately the problem cannot be solved by switching from a local to a global solution,

as the global approach is not compatible with doing inference in the subsystem only.

Therefore, as soon as we break the system up into subsystems, we will run into this

kind of problem.
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Figure 5.17: Profile and Gradient Likelihood Comparison of STAT3. From top to bottom:

Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Local, Gradient

Likelihood Local. The dashed vertical line denotes the true value of the parameter. Note

that some of the parameters of this subsystem have been omitted for space reasons;

for the remaining histograms, see Appendix D.
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Figure 5.18: Profile and Gradient Likelihood Comparison of SOCS3 (a). From top to

bottom: Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Local,

Gradient Likelihood Local. The dashed vertical line denotes the true value of the pa-

rameter. Note that some of the parameters of this subsystem have been omitted for

space reasons; for the remaining plots, see Appendix D.
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Figure 5.19: Profile and Gradient Likelihood Comparison of SOCS3 (b). Top Row:

Profile Likelihood Global, Gradient Likelihood Global. Bottom Row: Profile Likelihood

Local, Gradient Likelihood Local. The dashed vertical line denotes the true value of the

parameter. Note that some of the parameters of this subsystem have been omitted for

space reasons; for the remaining plots, see Appendix D.

5.6 Discussion

In this chapter, I have described an adaptive gradient matching approach for param-

eter inference in ODE systems based on Calderhead et al. (2008). Adaptive gradient

matching avoids the need for explicitly solving the ODE at each MCMC sampling

step, which significantly reduces the computational burden. In the method of Calder-

head et al., an adaptation of the ODE parameters has no influence on the inference of

the GP hyperparameters. This corresponds to a unidirectional information flow from

GP interpolation to parameter inference in the system of ODEs. We have developed

a methodological improvement that infers both GP hyperparameters and ODE param-

eters jointly from the posterior distribution, and where due to conditional dependence

between both groups, the latter may exert an influence on the former. This closes the

inference procedure by effectively introducing an important information feedback loop

from the ODE system back to the GP interpolation.

We have applied adaptive gradient matching to three model systems from ecology

and systems biology, and have demonstrated that our method outperforms Calderhead

et al. (2008) and performs on a par with a sampler which explicitly solves the ODE
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system at each step. Compared to explicitly solving the ODE system, our adaptive

gradient matching approach is up to an order of magnitude faster, where the speedup

in practice will depend on the size and stiffness of the ODE system. The method by

Calderhead et al. is asymptotically as fast as adaptive gradient matching, but tends

to be marginally faster per MCMC iteration in practice, as the inference of the latent

variables can be done in a Gibbs step, which is not possible if we want to jointly infer

the latent variables, GP hyperparameters and ODE parameters. However, we have

shown that at least for the benchmark systems considered in this chapter, the approach

of Calderhead et al. often fails to converge at all, thus rendering the computational

complexity and the speed per MCMC iteration moot.

A close relative of our work is the recently published method of functional tem-

pering (Campbell and Steele, 2012), which is based on the same gradient matching

paradigm as our approach, but uses B-splines instead of Gaussian processes for data

interpolation. The approach in Campbell and Steele (2012) has one vector of regular-

ization parameters, which corresponds to our hyperparameter vector γγγ and penalizes

the mismatch between the gradients. Our model additionally profits from the hyperpa-

rameters of the Gaussian process, φφφ, which define the flexibility of the interpolant and

are automatically inferred from the data, while in the model of Campbell and Steele

(2012) this flexibility is defined by the B-splines basis and has to be set in advance. An

interesting difference is the tempering scheme of Campbell and Steele (2012), which

applied to our model corresponds to gradually forcing γγγ to zero rather than inferring it

from the posterior distribution. A comparative evaluation is the subject of our future

research.

We have applied adaptive gradient matching to a more complex ODE model of

molecular signalling in the JAK/STAT pathway. Here, we have shown that while in-

ference for the full system is computationally not feasible, inference over subsystems

can be fruitful under certain conditions. If there is no observational noise, then un-

der the assumption of perfectly observed inputs to the subsystem, we can infer the

right parameters. However the subsystem approach is hampered by shallow likelihood

landscapes that make finding the true peak difficult in the presence of noise. A pure

subsystem approach is therefore of limited use when tackling complex ODE models;

more sophisticated approaches will be needed, possibly based on grouping parameters

or sampling subsystems to obtain a more peaked likelihood landscape.



Chapter 6

Conclusion and Further Work

This chapter serves to sum up the main outcomes of the thesis (Section 6.1), both

in terms of new models, techniques and insights (Subsection 6.1.1), and in terms of

applications to challenging real-world datasets (Subsection 6.1.2). I will also discuss

promising avenues for further research (Section 6.2).

6.1 Main Outcomes

6.1.1 Methodological Advances

In this thesis, I have covered a range of state-of-the-art network structure and parameter

inference techniques in different models, from regression methods and static Bayesian

networks (Chapter 2) over time-varying dynamic Bayesian networks (Chapters 3 and

4) to parameterised ODE systems (Chapter 5). The main methodological achievements

can be summed up as follows:

• Comparison of network reconstruction methods for species absence/presence

data in ecology. As described in Chapter 2, I compared the performance of

sparse Bayesian regression, lasso regression, graphical Gaussian models and

static Bayesian networks for reconstructing species interaction networks using

data from a realistic stochastic simulation model.

• Development of the spatial autocorrelation model for ecological species ab-

sence/presence data, and integration into the framework of regression and of

static Bayesian networks. As shown in Chapter 2, modelling the spatial autocor-

relation explicitly aids in the network reconstruction process by taking account

173



174 Chapter 6. Conclusion and Further Work

of the dependence that arises from using absence/presence data of species from

spatially-correlated neighbouring locations.

• Development of hierarchical global and sequential information sharing mod-

els for a non-homogeneous time-varying dynamic Bayesian network, as de-

scribed in Chapter 3. I compared the two types of information sharing with each

other, on both simulated data and real-world applications, and identified their

strengths and weaknesses, as well as showing that they improved on competing

approaches.

• Further development and comparison of different functional forms (exponential

versus binomial) and inter-node coupling strategies (soft versus hard) for the se-

quential information sharing priors. In Chapter 4, I presented a detailed compar-

ison of the different approaches in terms of network reconstruction performance,

and I investigated the effect of different hyperparameter settings. I highlighted

some problems with the exponential prior formulation, and pointed out how they

could be resolved by the binomial prior. Finally, I applied the sequential informa-

tion sharing approaches to two real-world gene expression datasets and showed

that they outperformed competing network reconstruction methods.

• Development of an improved MCMC sampler for the information sharing model.

In Chapter 4, I demonstrated that the standard sampler employed in Lèbre et al.

(2010) is not appropriate when used in conjunction with the hierarchical in-

formation sharing model, as it can get stuck in local optima. I described an

improved, randomised multi-segment network structure move that resolves this

difficulty, and leads to much better mixing and convergence.

• Improvement to the inference procedure in the Gaussian process ODE parameter

inference model of Calderhead et al. (2008), by reformulating it in a principled

way to allow for joint inference of the hyperparameters of the GP and the pa-

rameters of the ODE system. This allows the GP hyperparameters to be adapted

to the ODE parameters and vice-versa. I tested this adaptive gradient match-

ing approach using three small-to-medium sized ODE systems and compared it

with the approach in Calderhead et al. (2008) as well as with a method using

explicit integration of the ODE system. I showed that adaptive gradient match-

ing performs competitively, improving on Calderhead et al. (2008) in parameter

inference and on explicit integration in speed and computational complexity.
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Note that the improved MCMC sampler for inference of time-varying dynamic

Bayesian networks with information sharing, as described in Chapter 4, has been im-

plemented as the R software package EDISON, which is described in Appendix F and

is freely available on the Comprehensive R Archive Network (CRAN).

6.1.2 Real-World Applications

The application to real-world systems is an essential part of any research into new

statistical and machine learning methods. In order to demonstrate the viability of the

new methodologies described above, I have applied them to a broad selection of real-

world datasets:

• In Chapters 2, the network reconstruction methods have been applied to bird

species absence/presence data of 39 warbler species from the European Bird

Atlas (Hagemeijer and Blair, 1997), covering Europe west of 30◦E and including

all probable and confirmed breeding records. As described in that chapter, my

collaborator Ali Faisal dealt with the application to the bird data, with the final

research being the product of our collaboration and discussions.

• In Chapter 3, I used a collection of four gene expression datasets of nine circa-

dian clock genes in Arabidopsis thaliana (Mockler et al., 2007; Edwards et al.,

2006; Grzegorczyk et al., 2008a), obtained under different experimental condi-

tions, to test the global information sharing method for non-homogeneous dy-

namic Bayesian networks, and showed that information sharing leads to better

agreement among the reconstructed networks.

• In Chapter 3 and 4, I used gene expression measurements in Dropsophila melanogaster

(Arbeitman et al., 2002), from which we extracted a dataset of eleven wing mus-

cle genes, to demonstrate that sequential information sharing infers changepoint

locations that give better agreement with the known morphological changes than

competing methods, and that many of the retrieved gene interactions have been

described in the literature.

• In Chapter 4, I used gene expression data from a five-gene synthetic biology

network in Saccharomyces cerevisiae (Cantone et al., 2009) with known struc-

ture to demonstrate that sequential information sharing outperforms competing

methods in terms of network reconstruction accuracy.
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• Finally, in Chapter 5, I applied the adaptive gradient matching method for ODE

parameter inference to simulated time-course protein concentration data obtained

from a realistic model of the JAK/STAT pathway compiled from the literature.

In addition, I participated in the DREAM 5 Network Inference Challenge, where

my team used a variant of the model described in Chapter 3, as described in Appendix

C. The datasets for this challenge consisted of a large simulated gene expression

dataset, as well as gene expression data from Staphylococcus aureus, Saccharomyces

cerevisiae and Escherichia coli, varying in size, but each containing several hundred

measurements of several thousand genes. The competition organisers went on to pub-

lish a consortium paper in Nature Methods (Marbach et al., 2012), which includes a

contribution from my team.

6.2 Future Research Directions

The work in this thesis was motivated by the observation that network structure and

parameter inference is a crucial problem in biology. I have developed new techniques

that tackle important challenges such as inference of time-varying networks, and effi-

cient parameter inference in ODE systems. There are many other possible avenues for

research in network inference; here I will highlight a few that I consider important and

that are related to or arise from the ideas and methods described in this thesis.

Spatial models for species interaction networks in ecology. The work described

in Chapter 2 has highlighted the importance of proper spatial modelling when dealing

with species data in ecology. Modelling the spatial autocorrelation led to a significant

improvement in the network reconstruction performance. Our paper (Faisal et al.,

2010) has already been followed up by research done by another PhD student, Andrej

Adherhold (Aderhold et al., 2012), which shows that using a 2-dimensional spatial

model allows for reliable network inference in the presence of spatial heterogeneity.

Further research in this vein, allowing, for example, for non-rectangular segmentations,

is likely to produce even better spatial models.

New functional and structural forms for information sharing priors. In this thesis,

I have presented five different models for information sharing priors: the independent

edge prior for global information sharing (Chapter 3), and four hierarchical priors for
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sequential information sharing based on an exponential versus binomial distribution,

with or without gene-specific hyperparameters (Chapter 4). Wang et al. (2011) have

experimented with a different approach, which effectively combines the exponential

prior with an additional factor that encourages network sparsity. One could think of

other formulations that incorporate information sharing of networks aspects beyond

edge comparisons; for instance, conserving network motifs across network segments.

Global information sharing for data integration. In Chapter 3, I demonstrated the

usefulness of global information sharing for reconstructing networks from gene expres-

sion datasets obtained under different experimental conditions, a frequent problem in

systems biology. Although my subsequent research focused more on sequential infor-

mation sharing, the sequential information sharing priors that I developed in Chapter

4 could easily be adapted for the global case, by following a strategy similar to Werhli

and Husmeier (2008) and using a learned hypernetwork to encode common edges. In

fact, Penfold et al. (2012) recently presented a formulation that uses an exponential

prior in a hierarchical (or global) manner to learn networks from multiple perturbed

time-series using a Gaussian process model.

Information sharing in non-DBN models. The information sharing priors from Chap-

ters 3 and 4 are not exclusive to the dynamic Bayesian network model, and can in prin-

ciple be adapted for any network model with discrete edges. Information sharing can

also be of interest for non-Bayesian network models without discrete edges, such as

the graphical lasso (Meinshausen and Bühlmann, 2006). In Danaher et al. (2011), the

problem of conserving information while jointly estimating several graphical Gaussian

models was solved by introducing fused and group lasso penalties over the elements

of the precision matrix.

Online learning for time-varying networks. Online learning is an increasingly im-

portant topic in fields such as finance, where data may not always be available in batch

format. A recently published Masters thesis (Hongo, 2012) has built on the work de-

scribed in Chapters 3 and 4 to develop an online learning framework for learning time-

varying networks from financial data, using a particle filtering approach. The model

in Wang et al. (2011), mentioned above, also uses particle filtering to allow for online

learning.
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Modelling interventions in systems biology. Interventions on specific genes or

proteins are a useful tool for testing causal hypotheses in systems biology. Knock-

ing out a gene or inhibiting the binding activity of a protein allows direct observation

of the effect that this intervention has on the rest of the system. There already ex-

ist methods that take advantage of the extra information provided by interventions,

such as the nested effects models (Markowetz et al., 2005) described in Chapter 1 and

Appendix E. It should be possible to model interventions within the framework of

dynamic Bayesian networks, either by placing restrictions on allowed edges, or by the

use of appropriate priors, such as the one in Lo et al. (2012), which is very similar to

our global information sharing prior, and could be used to down-weight the probability

of edges that are inhibited by the intervention. This could lead to improved network

reconstruction accuracy when interventional data is available.

Improving scalability and computational complexity. For the network structure in-

ference methods considered in Chapters 2, 3 and 4, one could think of improving on

the exact but comparatively slow inference via RJMCMC, and using variational ap-

proximations to scale up to inference on larger gene networks. If one does not want to

abandon exact inference, then perhaps better variable selection techniques and faster-

converging samplers, such as e.g. Riemannian manifold Hamiltonian Monte Carlo

(Girolami and Calderhead, 2011) could be investigated. We have already shown in ap-

plying a variant of our model to the DREAM5 network inference challenge (as reported

in Appendix C) that with some restrictions on the possible parent sets, exact inference

is feasible for large datasets. As for the adaptive gradient matching method for ODE

parameter inference in Chapter 5, this method is already quite efficient compared to

a sampler using the explicit integration of the ODE system, but it could also benefit

from better samplers in the Hamiltonian Monte Carlo vein. Another area for devel-

opment would be finding a workable approach for splitting larger ODE systems into

subsystems, which would allow for solving the subsystems in parallel, as the results in

Chapter 5 have shown that the naive approach is insufficient.

Parameter inference in stochastic differential equations (SDEs). Parameter esti-

mation in stochastic differential equations suffers from similar problems to parameter

estimation in ODEs, but is intrinsically more difficult, because computing the likeli-

hood exactly would require the solution of path integrals, which are usually intractable.

Instead, Monte Carlo techniques are required to obtain the numerical solution of the
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SDE. One popular approach to parameter inference in SDEs is to use a Kalman filter,

a linear state space model with conditional Gaussian distributions for modelling the

noise and the dynamics of the unkown true states. A set of ODEs is used to determine

the first and second moments for the SDEs. See e.g. Møller et al. (2011). The ODEs

will in general be solved numerically, which leads immediately to the possibility of

applying adaptive gradient matching as described in Chapter 5. More involved would

be finding a way of translating the adaptive gradient matching approach to the SDE

setting directly.

Integration of probabilistic and mechanistic models. So far I have made the dis-

tinction between probabilistic models such as DBNs, that make simplifying assump-

tions (e.g. linearity) when modelling network dynamics, and mechanistic models such

as ODE systems that try to explicitly model the processes that generate these dynam-

ics. Ideally, one would like to combine both models under one framework, where

the simplifying assumptions of probabilistic methods can be used for modelling the

higher-level network dynamics, while the mechanistic model is used for represent-

ing the finer-grained interactions that we are most interested in. As pointed out in

Chapter 1, some efforts have already been made to combine mechanistic and proba-

bilistic aspects in one framework, most notably Äijö and Lähdesmäki (2009). In Liu

et al. (2012), ODEs are approximated by dynamic Bayesian networks, which allows

for easier inference. However, in some ways one would like to achieve the opposite;

start from a probabilistic model, and determine only the mechanistic equations that

govern system behaviour for a subsystem, where inputs to the subsystem would be de-

termined using the probabilistic model. This would allow one to more easily scale up

ODE models to very large systems, as only specific interactions of interest would have

to be modelled explicitly, with the increase in parameter space that that entails. Adap-

tive gradient matching as described in Chapter 5 might give an idea of how to achieve

this; if predictions from the Gaussian process could somehow be used as inputs, then

we could choose whether we want to learn ODE parameters for a given subsystem, or

whether we only wish to learn the Gaussian process model. While this is no doubt a

challenging research problem, I believe that solving it could lead to the creation of an

extremely useful model for systems biology.





Appendix A

Additional Results on the European

Bird Atlas Data

This appendix contains additional results on the application of network inference to

the European Bird Atlas Data, as described in Chapter 2. There results were origi-

nally included as supplementary material for the paper: ‘Inferring species interaction

networks from species abundance data: A comparative evaluation of various statisti-

cal and machine learning methods”, which appeared in Ecological Informatics (Faisal

et al., 2010). The work presented here was not done by me, but by Ali Faisal in collab-

oration with Colin Beale. It is included for completeness, as some sections of Chapter

2 refer to it, and because my work on the simulation study of ecological networks as

described in Chapter 2 formed the basis for some of the decisions taken when applying

the methods to the European Bird Atlas Data.

A.1 A priori network construction

To construct the a priori network, we used two sources: knowledge from the literature,

and expert judgement.

First, we searched the ecological literature using ISI Web of Knowledge 1 (accessed

on 10/5/09). For each species, we searched for all articles using the complete scientific

name. If more than 100 articles were returned, we refined the search adding the terms

’interaction’ or ’competition’. We studied all abstracts and identified papers contain-

ing information about interspecific interactions for detailed reading. We identified 30

interactions using this method.

1Found at http://www.isiwebofknowledge.com/.
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For the remaining 711 pairwise interactions we used our expert judgement to an-

swer the question: In areas where these species occur in close proximity, is it plausible

that one of the species would become more abundant or expand into different habitats

if the other species were absent? In cases where we considered this likely we recorded

an interaction in the network.

The final network can be found at http://www.bioss.ac.uk/students/frankd.

html.

A.2 Phylogenetic distance analysis

To calculate the phylogenetic distances between warbler species, we first needed to get

general information on warbler phylogeny. To that end, we searched the taxonomic

literature (e.g. Alstroem et al. (2006)) and ’Tree of Life’ servers (such as The Tree

of Life Web Project in Maddison et al. (2007)). A conservative consensus tree was

generated depicting relationships between the 39 warbler species as in Figure A.1.

As path lengths were unavailable we computed a range of distances using the

method advocated by Grafen (1989) with values of ρ of 1, 0.6 and 0.3. Although

correlations between the phylogenetic distance and recovered interaction scores were

not qualitatively different when these different distances were assumed, they are arbi-

trary choices none the less. Consequently, we repeated the correlation analysis using

Kendall’s τ as a measure of rank correlation that is unaffected by assumed branch

lengths. Again, results were qualitatively similar; they can be found in Table A.1.

For the correlation analyses we used only data from the upper triangle of the distance

matrices.

A.3 Ecological distance analysis

Ecological trait data for each of the 39 species is presented in Table A.2. From the
habitat and migration status data we generated indicator variables identifying species
with shared habitat and shared migration strategy. We combined these indicator vari-
ables with the morphological data and clutch size, centred and scaled each variable and
calculated the Euclidian distance. As with the phylogenetic distance analysis, we used
only data from the upper triangle of the distance matrix in correlation analyses.
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 C. cetti
 P. borealis
 P. trochilus
 P. collybita
 P. lorenzii
 P. bonelli
 P. sibilatrix
 P. inornatus
 P. trochiloides
 L. naevia
 L. lanceolata
 L. fluviatilis
 L. luscinioides
 H. polyglotta
 H. icterina
 H. olivetorum
 H. pallida
 H. caligata
 A. paludicola
 A. schoenobaenus
 A. melanopogon
 A. scirpaceus
 A. palustris
 A. dumetorum
 A. agricola
 A. arundinaceus
 S. borin
 S. atricapilla
 S. nisoria
 S. curruca
 S. hortensis
 S. communis
 S. consipcillata
 S. undata
 S. sarda
 S. rueppelli
 S. cantillans
 S. mystacea
 S. melanocephala

Figure A.1: Phylogenetic tree for the warbler species in our study.
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Network ρρρ Correlation

Basic

1 -0.12 (-0.18, -0.04)

0.6 -0.11 (-0.18, -0.04)

0.3 -0.12 (-0.19, -0.05)

Kendall’s τ -0.08

Spat. Autocorr

1 -0.12 (-0.19, -0.05)

0.6 -0.12 (-0.19, -0.05)

0.3 -0.12 (-0.19, -0.05)

Kendall’s τ -0.08

1 -0.14 (-0.21, -0.07)

Spat. Autocorr. and 0.6 -0.14 (-0.21, -0.07)

Bio-Climate Covariates 0.3 -0.12 (-0.22, -0.07)

Kendall’s τ -0.09

Table A.1: Correlation coefficients of reconstructed networks with the phylogenetic tree

whose branch lengths have been generated with different values of ρ, or with Kendall’s

τ. Numbers in brackets show the confidence intervals at 95%. None of the confidence

intervals includes zero, indicating that the correlations are significant.
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A priori net Phylogenetic Dist. Ecological Dist.

A priori net
1 0.38 0.08

(0.73, 0.02) (0.21, -0.05)

Phylogenetic Dist.
1 0.28

(0.21, 0.34)

Ecological Dist. 1

Table A.3: Results of comparison between the ecological measures represented by

the a priori interaction network, phylogenetic distance and ecological distance. A priori

comparisons made with logistic regression are the regression coefficient, other results

are Pearson’s correlation coefficients, all with 95% confidence intervals

A.4 Comparison of Ecological Measures

We have three different ecological indicators that we can compare our reconstructed

networks to: The a priori network, the phylogenetic distance and the ecological dis-

tance. The correlation of these indicators with the reconstructed networks presented

in Chapter 2 is always significant, but also far from perfect correlation. This can be

explained by the fact that these measures are not a true gold standard. In fact, each

measure captures different aspects of the true relationships between species. In Table

A.3 we present the correlation coefficients between the three ecological measures and

show that they are also small but (mostly) significant.

Another way to compare the ecological indicators is by taking the a priori net-

work as a gold standard, and calculating the AUC and TPFP5 values for the phylo-

genetic and ecological distance measures. In effect, we are treating these distance

measures as inverse edge scores. The results are shown in Table A.4. Again, The

scores are better than random expectation (AUC=0.5, TPFP5=0.05), but far from per-

fect (AUC=TPFP5=1.0). This indicates that the various measures capture relevant, but

only partial aspects of the unknown true interaction network.

A.5 Thresholding on Edge Interactions

To produce a single, interpretable network from the edge interaction strengths, we

need to set a threshold to discard edges with low values. Recall that the “interaction

strengths” are of different nature: marginal posterior probabilities for Bayesian net-
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AUC TPFP5

Phylogenetic Distance 0.79 0.37

Ecological Distance 0.67 0.22

Table A.4: Comparison between the ecological measures by computing AUC and

TPFP5 scores for phylogenetic and ecological distance measures, using the a priori

interaction network as a gold standard.
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(c) Consensus

Figure A.2: Distribution of edge strengths/posterior probabilities under the null hypoth-

esis, averaged over 15,210 random species interactions from permuted data.

works, and regularised regression coefficients for LASSO. We would like to map them

to p-values, which are more commonly used in statistics. To this end, we carried out

a randomisation test. The rows and columns of the original warbler data were per-

muted ten times, and on each of these replications we carried out the same inference

as for the original data. Since the permutation destroys all genuine associations among

the species, the distribution of “interaction strengths” represents the null hypothesis of

no species interaction. From this distribution, the p-value is easily computed as the

probability of exceeding a given threshold.

Figure A.2 shows the null distributions obtained for Bayesian networks (left panel),

LASSO (centre panel), and the consensus network (right panel). Table A.5 shows the

“interaction strengths” corresponding to p-values of 0.1 and 0.01. Note that the p-

values are used as descriptive measures, and no Bonferroni correction (which would

be too conservative) was carried out.
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Figure A.3: Consensus network recovered from the basic dataset (without spatial au-

tocorrelation or bio-climate covariates). The edges are pruned by placing a threshold

value of 0.5 on the consensus network, which corresponds to a p-value of 0.01. See

Section A.5 for a description of how these p-values were calculated. The boxes on the

right show unconnected species.

A.6 Recovered Networks

Figures A.3-A.5 shows the consensus networks that were recovered from the warbler

data. We get three different networks: one for the basic dataset, one for a dataset where

we have modelled spatial autocorrelation as described in Section 2.3.2.1, and one for

a dataset where we have included both spatial autocorrelation and two bio-climate

covariates: temperature and availability of water. Details on how the sparsity and the

correlation with the ecological measures vary for the different networks can be found

in the main thesis (Section 2.7).

A.7 Network Characterisation

Studies have shown that molecular regulatory networks have degree distributions that

approximately follow a power-law (Wagner, 2001; Guelzim et al., 2002; May, 2006).

Loosely speaking, this means that there are many nodes with only one or few con-
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Figure A.4: Consensus networks recovered from the dataset with spatial autocorrela-

tion included (but without bio-climate covariates). The edges are pruned by placing a

threshold value of 0.5 on the original consensus network, which corresponds to a p-

value of 0.01. See Section A.5 for a description of how these p-values were calculated.

The boxes on the right show unconnected species.
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Figure A.5: Consensus networks recovered from the dataset with both spatial auto-

correlation and bio-climate covariates included. The edges are pruned by placing a

threshold value of 0.5 on the original consensus network, which corresponds to a p-

value of 0.01. See Section A.5 for a description of how these p-values were calculated.

The boxes on the right show unconnected species.
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Figure A.6: Cumulative degree distribution for the consensus networks on the log-

linear scale as the threshold varies. (Top) Basic bird data, (Middle) Bird data with

spatial autocorrelation model added, (Bottom) Birds with spatial autocorrelation and

bio-climate covariates. From left to right the thresholds are set at p-values 0.2, 0.15,

0.1, 0.05, 0.02, and 0.01.
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Figure A.7: Cumulative degree distribution for the consensus networks on the log-log

scale as the threshold varies. (Top) Basic bird data, (Middle) Bird data with spatial au-

tocorrelation model added, (Bottom) Birds with spatial autocorrelation and bio-climate

covariates. From left to right the thresholds are set at p-values 0.2, 0.15, 0.1, 0.05,

0.02, and 0.01.
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Figure A.8: Variation of the clustering coefficient and network diameter for the consen-

sus networks as the threshold varies.

nections, but also some nodes with many more connections than the average degree.

Studies on food webs generally agree that the degree distribution is not Poisson (Proulx

et al., 2005), however they disagree on whether the degree distributions are best fit by

a power-law or by some other distribution. The existence of a variety of distributions

has been shown, including power-law, truncated power-law and exponential (Dunne

et al., 2002; Jordano et al., 2003; Laird and Jensen, 2006). In our study we observe

that the distributions are closer to linear on the log-linear plot of the cumulative degree

distribution (Fig. A.6), than on the log-log plot (Fig. A.7). Linearity on the log-log plot

would be characteristic of a power-law distribution, but linearity on the log-linear plot

shows that the network exhibits a near exponential distribution. The data also displays

the insensitivity of this behaviour to varying the threshold.

Figure A.8 shows the variation of the clustering coefficient and the network diam-

eter (characteristic path length) as the threshold varies. There is no discernible trend,

which may mean that these particular statistics are not useful characterisations of the

types of networks that we are considering.
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p-value BN LASSO Consensus

0.1 0.2 0.3 0.4

0.01 0.5 0.4 0.5

Table A.5: Mapping from p-value thresholds to edge strengths/posterior probabilities.



Appendix B

Additional Simulation Results for

Global Information Sharing

Note: The results in this appendix have been adapted from the paper ”Dynamic

Bayesian networks in molecular plant science: Inferring gene regulatory networks

from multiple gene expression time series” (Dondelinger et al., 2012a).

B.1 Motivation

This appendix contains additional network inference experiments using the model

from Chapter 3. More specifically, we test the global information sharing approach

(TVDBN-GI) from Section 3.3.2, and compare it with the model without information

sharing (TVDBN-0). The simulation model described below in Section B.2 is subtly

different from the one in Section 3.4, in that here the changes are not applied sequen-

tially, but are applied to the same underlying network for each new time series that is

generated. This results in a setup that is better described as several datasets recorded

under different conditions, rather than one time-varying dataset. However, the results

using this simulation model are qualitatively similar to those reported in Section 3.6.1,

in that TVDBN-GI outperforms TVDBN-0 due to the advantage conferred by infor-

mation sharing. For this reason, I have not included these results in Chapter 3.

B.2 Simulation Model

The simulation model produces a time series of data points, each of which represents

the normalised expression values of a gene. We start with a network M with the num-

195
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1 2

3 4

1 2

3 4

1 2

3 4

Original Network

Modification 1 Modification 2

Figure B.1: Simulation model process: The original network is modified to obtain two

new networks, each with a different change with respect to the original network.

ber of parents for each node drawn from a sparse Poisson prior (to keep the number of

interactions low). Each directed interaction from gene A (the parent) to gene B (the

child) has a weight that measures how much gene A will influence gene B. To ensure

that the expression values stay at equilibrium, we test if the absolute value of all eigen-

values of the matrix of weights is less than 1, and remove interactions randomly until

this condition is satisfied. The value xi(t) of each variable at time t is calculated using

a linear regression, as in Section 3.4.

To simulate measurements under different experimental conditions, we applied two

strategies: Changing the standard deviation σi of the noise in the regression in order to

reflect the fact that the measurement noise may vary across time, and using a modified

network that introduces a small number of changes with respect to the originally gen-

erated network (adding and removing interactions), reflecting the assumption that not

all pathways are active all of the time. Fig. B.1 shows an example network with four

nodes and the modified networks that have been generated from it.

For our experiments, we generated two kinds of datasets: One with long time se-

ries to test how well our methods can reconstruct the network when a lot of data is

available, and one which replicates the Arabidopsis data (see Section 3.5.3), to see

how the performance changes when there are fewer observations available. For the

long time series, we generated networks with 10 genes and time series with 50 time
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steps. We generated 10 different datasets under two conditions: In the first case we

did not modify the original network structure, while in the second case, we introduced

an average of two changes for the modified networks. We changed the noise level

for each network; we used σ = 1 as the starting value and added a value in the range

[−0.5,0.5], drawn from a uniform random distribution. For the Arabidopsis-like time

series, we generated networks with 9 genes and time series with 13 time steps. We

generated 4 different datasets under the same two conditions as before, and used the

same procedure to vary the noise levels.

B.3 Recovering Simulated Networks

Setup We used the simulation model presented in Section B.2 to generate time series

from an underlying network under two different conditions:

1. All time series are generated using the structure of the underlying network, but

varying the interaction weights and noise level.

2. Each time series is generated from a different network where we introduce a

small number of changes (10%) with respect to the structure of the underlying

network. We also vary the interaction weights and noise level.

The second condition should provide a more difficult inference problem than the

first one, since there is less scope for information sharing. For both cases, we generate

ten independent datasets, each with a different underlying network, to allow us to carry

out paired t-tests for significance.

Results We used three measures to evaluate the performance of our methods: The

area under the Receiver Operating Characteristic (ROC) curve, which plots the true

positive rate versus the false positive rate, the area under the precision-recall (PR)

curve, which plots precision (fraction of true positives out of detected interactions)

versus recall (fraction of true positives out of actual interactions; another name for the

true positive rate) and the true positive rate at a false positive rate of 5% (TPFP5).

We obtain the curves for the first two scores by varying a threshold on the marginal

posterior probability of the interactions, and by only keeping those interactions that

lie above the threshold at each point. The ROC curve will always be increasing from

(0,0) to (1,1), while the precision-recall curve does not have to follow such a clear
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Figure B.2: Same Structures: Comparison of network reconstruction performance us-

ing the DBN model with global information sharing (TVDBN-GI) and without information

sharing (TVDBN-0). Left Column: For each underlying network, we generated 10 time-

series of length 50 without changing the network structures. Right Column: For each

underlying network, we generated 4 time-series of length 13 without changing the net-

work structures. Top Row: Area under the ROC curve score. Middle Row: Area under

the precision-recall curve. Bottom Row: True positive rate at 5% false positives. In each

case, a score of 1 denotes perfect reconstruction of the network. Points with the same

symbol are the scores of networks reconstructed from different time series associated

with a single underlying network.
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Figure B.3: Different Structures: Comparison of network reconstruction performance

using the DBN model with global information sharing (TVDBN-GI) and without informa-

tion sharing (TVDBN-0). Left Column: For each underlying network, we generated 10

time-series of length 50, changing about 10% of the network structure each time. Right

Column: For each underlying network, we generated 4 time-series of length 13, chang-

ing about 10% of the network structure each time. Top Row: Area under the ROC curve

score. Middle Row: Area under the precision-recall curve. Bottom Row: True positive

rate at 5% false positives. In each case, a score of 1 denotes perfect reconstruction

of the network. Points with the same symbol are the scores of networks reconstructed

from different time series associated with a single underlying network.
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trend (although precision will generally decrease as recall increases). Taking the area

under the curve allows us to reduce the curve to one number that indicates the overall

performance1. A perfect score for all three methods is a score of 1, which means that

we always retrieve all of the true positives, and don’t retrieve any false positives at the

highest threshold.

These measures are interesting for different reasons: The ROC curve describes the

overall performance of the network reconstruction method over positives and nega-

tives, while the precision-recall curve is of practical interest because it does not include

the true negatives, and hence focuses on how well the true edges are reconstructed. The

TPFP5 score gives the fraction of true edges that we could expect to retrieve at a rea-

sonable fraction of false positives.

Looking at the comparison in Figs. B.2-B.3, it is clear that the global informa-

tion sharing model (TVDBN-GI) outperforms the DBN approach without information

sharing (TVDBN-0). In every case, there is a significant improvement in the score

when we apply information sharing. The improvement is most drastic when the un-

derlying network structure is unchanged (Fig. B.2). Applying small changes to the

network structure for each new simulated time-series (Fig. B.3) leads to a smaller, but

still significant improvement.

The relative performance between the model with and without information sharing

is similar whether we use long time series (left column in Figs. B.2-B.3) or time series

that have the same length as the Arabidopsis data (right column). The improvement

is larger for longer time series, however, most likely due to there being more datasets

available that can benefit from the information sharing (10 rather than 4). In absolute

terms, the performance increases when the time series are longer, which is reasonable

because it means that more data is available. Nevertheless, the performance with sim-

ulated time series of the same length as the Arabidopsis data is still reasonable, and

there is a definite increase in the accuracy of the reconstructed networks when using

information sharing. This is an encouraging finding, which motivates the application

of our method to the Arabidopsis gene expression time series in Chapter 3. Note that

for the latter, an objective evaluation in terms of network reconstruction scores was not

feasible owing to the lack of a proper gold standard.

We notice that overall the PR scores are less impressive than the ROC scores. This

is a consequence of the sparseness in the model; we have more non-interactions than
1In order to calculate the area, we need to interpolate to find additional points of the curve. For the

ROC curve, this is a straightforward linear interpolation, while for the precision-recall curve, we follow
Davis and Goadrich (2006).
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Figure B.4: Influence of the Number of Changes: We vary the number of changes

applied to each network from 0% to 20%. Network reconstruction performance is

measured using the area under the ROC curve (AUROC) score, Area under the

precision-recall curve (AUPRC) score, and the true positive rate at 5% false positives

(TPFP5).The boxplots show the difference of the network reconstruction scores with

global information sharing (TVDBN-GI) to those without (TVDBN-0); larger differences

indicate better performance of information sharing, 0 means they perform equally well.

The horizontal bar of each boxplot shows the median, the box margins show the 25th

and 75th percentiles, the whiskers indicate data within 2 times the interquartile range,

and circles are outliers.
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interactions in the simulated network, and our DBN model favours fewer interactions,

which means that we are more likely to detect true negatives correctly. This improves

the false positive rate, but has no effect on the precision, meaning that the PR curve is

not going to reflect this. This makes the PR curve (and the TPFP5 score) a better mea-

sure if we are more interested in the retrieved interactions than in the non-interactions.

The trend is the same, however, in that the improvement when using information shar-

ing is smaller (but still significant) when we apply small changes to the underlying

network before simulating the data.

Further simulations, where we increased the noise levels to σ = 2 and doubled the

number of changes in the network structure, showed that the benefit obtained through

information sharing is robust to noise, but does not persist when the number of changes

becomes too large, as could be expected. It is reasonable to ask how much of a topology

disturbance we can have while still getting a significant improvement with information

sharing. Fig. B.4 plots the difference in network reconstruction scores between no

information sharing and information sharing as the number of changes varies between

0% of the network and 20%. Note that the sparseness of gene regulatory networks

means that 20% of the network represents a sizeable portion of the gene interactions.

For example, if the original network has 10 genes, then 20% represents 20 interactions

that change, so on average each gene will change two of its regulators. The crossover

point where information sharing no longer gives a significant improvement seems to

be around 15% of the network changing.



Appendix C

DREAM 5

C.1 Introduction

Note: The material in this appendix is closely based on the conference paper ”A

Bayesian regression and multiple changepoint model for systems biology”, presented

at the International Workshop on Statistical Modelling 2011 (Dondelinger et al., 2011).

Most of the material has been reprinted verbatim.

In this appendix, I describe a Bayesian regression and multiple changepoint model,

with Bayesian inference based on reversible jump Markov chain Monte Carlo (RJM-

CMC) (Green, 1995). This work was done in collaboration with Andrej Aderhold at

Biomathematics and Statistics Scotland, Sophie Lèbre at the University of Strasbourg,

and Marco Grzegorczyk at the University of Dortmund. The model is essentially iden-

tical to the one described in Chapters 3 and 4, but instead of a regression based on the

previous timepoint, as in a DBN, the regression is based on the current timepoint. This

allows us to reconstruct networks from non-timecourse data. My team developed this

model to participate in a gene regulatory network prediction competition (DREAM

5), which ensured that the comparative evaluation with other methods was done ob-

jectively. A consortium paper about the challenge has since been published in Nature

Methods (Marbach et al., 2012), which includes a contribution from our team. Results

from the consortium paper are discussed at the end of the appendix in Section C.4.

C.2 Model

Multiple changepoints: Let p be the number of target genes, whose expression values

y = {yi(t)}1≤i≤p,1≤t≤N are measured on N separate chips. Mi is the set of parents (reg-

ulators) associated with target gene i in the gene regulatory network. We model the

203
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differences in the regulatory relationships measured by different chips (assumed to be

in some natural order, e.g. a time series) with a multiple changepoint process. For each

target gene i, an unknown number ki of changepoints define ki+1 non-overlapping seg-

ments. Segment h ∈ {1, ..,ki + 1} starts at changepoint ξ
h−1
i and stops before ξh

i , so

that ξi = (ξ0
i , ...,ξ

h−1
i ,ξh

i , ...,ξ
ki+1
i ) with ξ

h−1
i < ξh

i .

This changepoint process induces a partition of the chip ordering, yh
i =(yi(t))ξ

h−1
i ≤t<ξh

i
.

The network structure Mi remains the same for each segment h, but the other parame-

ters of the model can vary.

Regression model: For all genes i, the random variable Yi(t) refers to the expres-

sion of gene i on chip t. Within any segment h, the expression of gene i at chip t

depends on the gene expression values on chip t of a set Ri of m potential regulator

genes (parents), with i /∈ Ri. We define a regression model by (a) the set of si parents

denoted by Mi = { j1, ..., jsi} ⊆ Ri, and (b) a set of parameters ((ah
i j) j∈Ri , σh

i ); ah
i j ∈ R, σh

i > 0.

For all j 6= 0, ah
i j = 0 if j /∈Mi. For all genes i, for all chips t in segment h (ξ

h−1
i ≤ t < ξh

i ),

the random variable Yi(t) depends on the m variables {Yj(t)} j∈Ri according to

Yi(t) = ah
i0 +∑ j∈Mi

ah
i j Y j(t) + εi(t) (C.1)

where the noise εi(t) is assumed to be Gaussian with mean 0 and variance (σh
i )

2, εi(t)∼
N(0,(σh

i )
2). We define ah

i = (ah
i j) j∈Ri .

Prior: The ki+1 segments are delimited by ki changepoints, where ki is distributed

a priori as a truncated Poisson random variable with mean λ and maximum k = N−2:

P(ki|λ) ∝
λki
ki!

1l{ki≤k} . Conditional on ki changepoints, the changepoint positions vector

ξi = (ξ0
i ,ξ

1
i , ...,ξ

ki+1
i ) takes non-overlapping integer values, which we take to be uniformly

distributed a priori. For all genes i, the number si of parents for node i follows a

truncated Poisson distribution1 with mean Λ and maximum s = 5: P(si|Λ) ∝
Λsi
si!

1l{si≤s}.

Conditional on si, the prior for the parent set Mi is a uniform distribution over all

parent sets with cardinality si: P(Mi
∣∣|Mi|= si) = 1/( p

si). The overall prior on the network

structures is given by marginalization:

P(Mi|Λ) = ∑
s
si=1 P(Mi|si)P(si|Λ) (C.2)

Conditional on the parent set Mi of size si, we assume for the prior distribution
P(ah

i |Mi,σ
h
i ) of the si + 1 regression coefficients for each segment h a zero-mean

multivariate Gaussian with covariance matrix (σh
i )

2Σah
i
, where following Andrieu and

Doucet (1999) we set Σ
−1
ah

i
= δ−2D†

ah
i
(y)Dah

i
(y), and Dah

i
(y) is the (ξh

i − ξ
h−1
i )× (si + 1) matrix

1A restrictive Poisson prior encourages sparsity of the network, and is therefore comparable to a
sparse exponential prior, or an approach based on the LASSO.
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whose first column is a vector of 1 (for the constant in model (C.1)) and each ( j+1)th

column contains the observed values (y j(t))ξ
h−1
i −1≤t<ξh

i −1 for all regulatory genes j in Mi.

Finally, the conjugate prior for the variance (σh
i )

2 is the inverse gamma distribution,

P((σh
i )

2) = I G(υ0,γ0). Following Lèbre et al. (2010), we set the hyperparameters for

shape, υ0 = 0.5, and scale, γ0 = 0.05, to fixed values that give a vague distribution.

The terms λ and Λ can be interpreted as the expected number of changepoints and

parents, respectively, and δ2 is the expected signal-to-noise ratio. These hyperparam-

eters are drawn from vague conjugate hyperpriors, which are in the (inverse) gamma

distribution family: P(Λ) = P(λ) = Ga(0.5,1) and P(δ2) = I G(2,0.2).

Posterior: Equation (C.1) implies that

P(yh
i |ξh−1

i ,ξh
i ,Mi,ah

i ,σ
h
i ) ∝ exp

(
−
(yh

i −Dah
i
(y)ah

i )
† (yh

i −Dah
i
(y)ah

i )

2(σh
i )

2

)
(C.3)

From Bayes theorem, the posterior is given by the following equation:

P(k,ξ,M ,a,σ,λ,Λ,δ2|y) ∝ P(δ2)P(λ)P(Λ)
p

∏
i=1

P(ki|λ)P(ξi|ki)P(Mi|Λ) (C.4)

ki

∏
h=1

P([σh
i ]

2)P(ah
i |Mi, [σ

h
i ]

2,δ2)P(yh
i |ξh−1

i ,ξh
i ,Mi,ah

i , [σ
h
i ]

2)

Inference: An attractive feature of the chosen model is that the marginalization

over the parameters a and σ in the posterior distribution of (C.4) is analytically tractable:

P(k,ξ,M ,λ,Λ,δ2|y) =
∫

P(k,ξ,M ,a,σ,λ,Λ,δ2|y)dadσ See Andrieu and Doucet (1999), Lèbre et

al. (2010) for details and an explicit expression. The number of changepoints and their

location, k, ξ, the network structure M and the hyperparameters λ, Λ and δ2 can be

sampled from the posterior P(k,ξ,M ,λ,Λ,δ2|y) with RJMCMC. A detailed description

can be found in Lèbre et al. (2010). The posterior probabilities of the gene interactions

submitted to DREAM are obtained from the posterior sample of network structures M
by marginalization.

C.3 Simulations and Result

To assess the performance of the proposed method we participated in a competition

organised by the DREAM (Dialogue for Reverse Engineering Assessments and Meth-

ods) consortium in autumn of 2010. The goal was to reverse engineer gene regulatory

networks from gene expression data sets. Participants were given four microarray

compendia and were challenged to infer the structure of the underlying transcrip-

tional regulatory networks. The first compendium was based on an in-silico (i.e.
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Figure C.1: Areas under the precision recall (left) and ROC (right) curves obtained on

an in silico data set by all teams participating in the DREAM 5 competition. The circles

indicate the performance of our proposed method.

simulated) network, the other three compendia were obtained from microorganisms.

Each compendium consisted of hundreds of microarray experiments, which included

a wide range of genetic, drug, and environmental perturbations. More information

is available in Table C.1 and at http://wiki.c2b2.columbia.edu/dream/index.

php/The_DREAM_Project. Network predictions were evaluated by the organisers on

a subset of known interactions for each organism, or on the known network for the

in-silico case (which is more objective).

Our method assumes an ordering of the microarray chips. While this condition is

naturally met for time course experiments, it does not hold for the varying experimental

conditions of the DREAM data. We therefore resorted to the heuristic pre-processing

step of mapping the high-dimensional gene expression profiles onto a one-dimensional

self-organising map (SOM) initialized by the first principal component. We applied the

software package som in R with default parameter settings. To reduce the computa-

tional complexity of the RJMCMC simulations we applied a pre-filtering step based

on TESLA (Ahmed and Xing, 2009), a time-varying network inference method based

on L1-regularised linear regression. For each gene we identified a set of 20 potential

candidate regulators, based on the 20 regression coefficients with the largest modulus.

We assessed the convergence of our simulations with standard diagnostics based on

Gelman-Rubin potential scale reduction factors (PSRF). Owing to unexpected down-

time of the computer cluster we were using, only the simulations on the first two data

sets showed a sufficient degree of convergence (PSRF≤ 1.2); for the latter data sets
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Table C.1: This table summarises the information about the DREAM 5 Network Infer-

ence Challenge data sets. For each data set, we show which organism it came from,

how many genes were measured, how many of those genes were identified as tran-

scription factors (possibly regulatory genes) and how many chips (datapoints) were

included.

Data Set Organism Genes Transcription Factors Chips

1 Synthetic 1643 195 806

2 S. Aureus 2810 99 160

3 E. Coli 4511 334 805

4 S. Cerevisiae 5950 333 536

we submitted the results from TESLA. The second data set was later removed from

the evaluation by the organisers. Figure C.1 shows the results for the in silico data set

obtained from the rankings of interactions submitted by all participating teams, using

two criteria: the area under the precision-recall curve (AUPRC), and the area under

the receiver-operator characteristic (AUROC) curve. As discussed in Davis and Goad-

rich (2006), AUPRC gives a more faithful indication of the network reconstruction

accuracy than AUROC, and it is thus seen that our method clearly lies in the group of

the 5 top-ranked models. This suggests that it compares favourably with the majority

of existing schemes and provides a useful tool for contemporary research in systems

biology.

C.4 Consortium Paper and DREAM 5 Outcomes

Following the DREAM 5 Network Inference Challenge, the challenge organisers went

on to publish a consortium paper in Nature Methods (Marbach et al., 2012), which in-

cludes a contribution from my team. To sum up the paper briefly, they compared over

30 network inference methods (the participating teams plus some off-the-shelf meth-

ods) on the four datasets, and showed that while no single method gave the best per-

formance on all datasets, they could achieve robust performance by combining several

inference methods. Subsequent experiments showed that of 53 previously unknown

regulatory interactions that were predicted with high confidence, 23 could be experi-

mentally validated. More details can be found in Marbach et al. (2012).
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These findings indicate that our approach of combining two methods (TESLA

for pre-selection, followed by the Bayesian regression and changepoint model) has

promise, in that it leverages the strengths of these two approaches. In general, regres-

sion methods performed quite well on the simulated data. The best performance over-

all was achieved by two novel methods, one based on random forests, and the other

based on ANOVA. Our method performed third best out of the regression methods,

improving on several LASSO-based methods. One of the regression methods that con-

sistently outperformed our method employed the group lasso (Yuan and Lin, 2005) to

combine steady-state and time-series data, indicating that perhaps our pre-processing

could have been improved by a better grouping. The organisers note, however, that no

single class of methods seemed to give best performance, and that performance seemed

implementation-dependent.

Participation in this challenge proved to be a very valuable experience, in that it

allowed us to compare our methods to the state-of-the-art in a real-world situation, and

showed that we can perform competitively with the best the field has to offer. By taking

part in DREAM 5, we not only proved that our methods work, but we also contributed

to the ongoing effort to improve network inference and to learn more about the problem

itself. At the same time, the challenge highlighted the inherent difficulty of network

inference (even the best combined predictor only achieved a precision of about 50%),

which indicates that there is much work yet to be done.



Appendix D

Parameter Inference in the JAK/STAT

pathway

This appendix contains additional results on ODE parameter inference in the JAK/STAT

pathway. These are the results for all 13 species, which have been omitted from Chap-

ter 5 in favour of only including a selection of example species to illustrate each ob-

servation. This was done to keep the presentation clear and concise. Here I present

the full results for completeness. Section D.1 shows the complete results for parameter

inference using AGM with the sigmoid kernel. Section D.2 shows the full results of

the perturbation study described in Chapter 5, Section 5.5.3.3. The dataset used for all

the experiments in this appendix is identical to the one presented in Chapter 5, Section

5.5.

D.1 Full Results for Sampled Parameters

This section shows the full results for sampled parameters using AGM that have been

omitted from Chapter 5 for conciseness and clarity of presentation.

D.1.1 Perfect Observation (No Noise)

For data with no added Gaussian observation noise, Figures D.1-D.13 show the pre-

dictions obtained by the sampled parameters, as well as the latent variables sampled

during the MCMC run, compared to the true noiseless profile for that species. They

also show the distributions of the sampled parameters.

209
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Figure D.1: R - Species 1, Noise 0. True (solid line), inferred (circles with error bars)

and sampled latent (triangles with error bars) concentrations for each species in an

idealised subsystems approach with perfect inputs to each subsystem. The error bars

show one standard deviation. Histograms show the distribution of sampled parameters,

the dashed line is the gamma prior on the parameters, the horizontal line indicates the

true value of the parameter.
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Figure D.2: R* - Species 2, Noise 0. True (solid line), inferred (circles with error bars)

and sampled latent (triangles with error bars) concentrations for each species in an

idealised subsystems approach with perfect inputs to each subsystem. The error bars

show one standard deviation. Histograms show the distribution of sampled parameters,

the dashed line is the gamma prior on the parameters, the horizontal line indicates the

true value of the parameter.
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Figure D.3: STAT3 - Species 3, Noise 0. True (solid line), inferred (circles with error bars)

and sampled latent (triangles with error bars) concentrations for each species in an

idealised subsystems approach with perfect inputs to each subsystem. The error bars

show one standard deviation. Histograms show the distribution of sampled parameters,

the dashed line is the gamma prior on the parameters, the horizontal line indicates the

true value of the parameter.
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Figure D.4: STAT3.R* - Species 4, Noise 0. True (solid line), inferred (circles with error

bars) and sampled latent (triangles with error bars) concentrations for each species in

an idealised subsystems approach with perfect inputs to each subsystem. The error

bars show one standard deviation. Histograms show the distribution of sampled pa-

rameters, the dashed line is the gamma prior on the parameters, the horizontal line

indicates the true value of the parameter.
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Figure D.5: STAT3* - Species 5, Noise 0. True (solid line), inferred (circles with error

bars) and sampled latent (triangles with error bars) concentrations for each species in

an idealised subsystems approach with perfect inputs to each subsystem. The error

bars show one standard deviation. Histograms show the distribution of sampled pa-

rameters, the dashed line is the gamma prior on the parameters, the horizontal line

indicates the true value of the parameter.
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Figure D.6: 2-STAT3* C - Species 6, Noise 0. True (solid line), inferred (circles with er-

ror bars) and sampled latent (triangles with error bars) concentrations for each species

in an idealised subsystems approach with perfect inputs to each subsystem. The er-

ror bars show one standard deviation. Histograms show the distribution of sampled

parameters, the dashed line is the gamma prior on the parameters, the horizontal line

indicates the true value of the parameter.



216 Appendix D. Parameter Inference in the JAK/STAT pathway

0 100 200 300 400 500 600

0.
0

0.
4

0.
8

Time
C

on
ce

nt
ra

tio
n

Species: SOCS3

Param. Error: 0 0.026 0 0 0 0.001

Parameter: k14 Species: SOCS3

Parameter Value

D
en

si
ty

0.00 0.02 0.04 0.06 0.08

0
20

40
60

80

Parameter: k10f Species: SOCS3

Parameter Value

D
en

si
ty

0.0 0.5 1.0 1.5
0

1
2

3
4

Parameter: k13 Species: SOCS3

Parameter Value

D
en

si
ty

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0
20

60
10

0

Parameter: k9 Species: SOCS3

Parameter Value

D
en

si
ty

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0
50

10
0

15
0

20
0

Parameter: k12 Species: SOCS3

Parameter Value

D
en

si
ty

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0
20

40
60

80

Parameter: k11+k10b Species: SOCS3

Parameter Value

D
en

si
ty

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0
5

10
15

Figure D.7: SOCS3 - Species 7, Noise 0. True (solid line), inferred (circles with error

bars) and sampled latent (triangles with error bars) concentrations for each species in

an idealised subsystems approach with perfect inputs to each subsystem. The error

bars show one standard deviation. Histograms show the distribution of sampled pa-

rameters, the dashed line is the gamma prior on the parameters, the horizontal line

indicates the true value of the parameter.
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Figure D.8: SOCS3.R* - Species 8, Noise 0. True (solid line), inferred (circles with error

bars) and sampled latent (triangles with error bars) concentrations for each species in

an idealised subsystems approach with perfect inputs to each subsystem. The error

bars show one standard deviation. Histograms show the distribution of sampled pa-

rameters, the dashed line is the gamma prior on the parameters, the horizontal line

indicates the true value of the parameter.
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Figure D.9: 2-STAT3* N - Species 9, Noise 0. True (solid line), inferred (circles with er-

ror bars) and sampled latent (triangles with error bars) concentrations for each species

in an idealised subsystems approach with perfect inputs to each subsystem. The er-

ror bars show one standard deviation. Histograms show the distribution of sampled

parameters, the dashed line is the gamma prior on the parameters, the horizontal line

indicates the true value of the parameter.
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Figure D.10: P300 - Species 10, Noise 0. True (solid line), inferred (circles with error

bars) and sampled latent (triangles with error bars) concentrations for each species in

an idealised subsystems approach with perfect inputs to each subsystem. The error

bars show one standard deviation. Histograms show the distribution of sampled pa-

rameters, the dashed line is the gamma prior on the parameters, the horizontal line

indicates the true value of the parameter.
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Figure D.11: 2-STAT3* N.P300 - Species 11, Noise 0. True (solid line), inferred (circles

with error bars) and sampled latent (triangles with error bars) concentrations for each

species in an idealised subsystems approach with perfect inputs to each subsystem.

The error bars show one standard deviation. Histograms show the distribution of sam-

pled parameters, the dashed line is the gamma prior on the parameters, the horizontal

line indicates the true value of the parameter.
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Figure D.12: SOCS3.STAT3.R* - Species 12, Noise 0. True (solid line), inferred (circles

with error bars) and sampled latent (triangles with error bars) concentrations for each

species in an idealised subsystems approach with perfect inputs to each subsystem.

The error bars show one standard deviation. Histograms show the distribution of sam-

pled parameters, the dashed line is the gamma prior on the parameters, the horizontal

line indicates the true value of the parameter.
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Figure D.13: SOCS3mRNA - Species 13, Noise 0. True (solid line), inferred (circles

with error bars) and sampled latent (triangles with error bars) concentrations for each

species in an idealised subsystems approach with perfect inputs to each subsystem.

The error bars show one standard deviation. Histograms show the distribution of sam-

pled parameters, the dashed line is the gamma prior on the parameters, the horizontal

line indicates the true value of the parameter.



D.1. Full Results for Sampled Parameters 223

D.1.2 Noisy Observations

For data with Gaussian observation noise with std. dev. 0.05, Figures D.14-D.26 show

the predictions obtained by the sampled parameters, as well as the latent variables

sampled during the MCMC run, compared to the true noiseless profile for that species.

They also show the distributions of the sampled parameters.
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Figure D.14: R - Species 1, Noise 0.05. True (solid line), inferred (circles with error bars)

and sampled latent (triangles with error bars) concentrations for each species in an

idealised subsystems approach with perfect inputs to each subsystem. The error bars

show one standard deviation. Histograms show the distribution of sampled parameters,

the dashed line is the gamma prior on the parameters, the horizontal line indicates the

true value of the parameter.
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Figure D.15: R* - Species 2, Noise 0.05. True (solid line), inferred (circles with error

bars) and sampled latent (triangles with error bars) concentrations for each species in

an idealised subsystems approach with perfect inputs to each subsystem. The error

bars show one standard deviation. Histograms show the distribution of sampled pa-

rameters, the dashed line is the gamma prior on the parameters, the horizontal line

indicates the true value of the parameter.



D.1. Full Results for Sampled Parameters 225

0 100 200 300 400 500 600
0

20
40

60
80

Time

C
on

ce
nt

ra
tio

n

Species: STAT3

Param. Error: 0.002 0.002 0.037 0

Parameter: k14 Species: STAT3

Parameter Value

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
2

4
6

8
12

Parameter: k2f Species: STAT3

Parameter Value

D
en

si
ty

0.00 0.02 0.04 0.06 0.08

0
5

10
15

Parameter: k2b Species: STAT3

Parameter Value

D
en

si
ty

0.0 0.1 0.2 0.3 0.4

0.
0

1.
0

2.
0

3.
0

Parameter: k7 Species: STAT3

Parameter Value

D
en

si
ty

0.002 0.003 0.004 0.005 0.006 0.007

0
40

0
80

0
12

00

Figure D.16: STAT3 - Species 3, Noise 0.05. True (solid line), inferred (circles with error

bars) and sampled latent (triangles with error bars) concentrations for each species in

an idealised subsystems approach with perfect inputs to each subsystem. The error

bars show one standard deviation. Histograms show the distribution of sampled pa-

rameters, the dashed line is the gamma prior on the parameters, the horizontal line

indicates the true value of the parameter.
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Figure D.17: STAT3.R* - Species 4, Noise 0.05. True (solid line), inferred (circles with er-

ror bars) and sampled latent (triangles with error bars) concentrations for each species

in an idealised subsystems approach with perfect inputs to each subsystem. The er-

ror bars show one standard deviation. Histograms show the distribution of sampled

parameters, the dashed line is the gamma prior on the parameters, the horizontal line

indicates the true value of the parameter.
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Figure D.18: STAT3* - Species 5, Noise 0.05. True (solid line), inferred (circles with er-

ror bars) and sampled latent (triangles with error bars) concentrations for each species

in an idealised subsystems approach with perfect inputs to each subsystem. The er-

ror bars show one standard deviation. Histograms show the distribution of sampled

parameters, the dashed line is the gamma prior on the parameters, the horizontal line

indicates the true value of the parameter.
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Figure D.19: 2-STAT3* C - Species 6, Noise 0.05. True (solid line), inferred (circles

with error bars) and sampled latent (triangles with error bars) concentrations for each

species in a n idealised subsystems approach with perfect inputs to each subsystem.

The error bars show one standard deviation. Histograms show the distribution of sam-

pled parameters, the dashed line is the gamma prior on the parameters, the horizontal

line indicates the true value of the parameter.



D.1. Full Results for Sampled Parameters 229

0 100 200 300 400 500 600

0.
0

0.
4

0.
8

Time

C
on

ce
nt

ra
tio

n

Species: SOCS3

Param. Error: 0.001 0.208 0 0 0 0.008

Parameter: k14 Species: SOCS3

Parameter Value

D
en

si
ty

0.00 0.01 0.02 0.03 0.04 0.05

0
40

80
12

0

Parameter: k10f Species: SOCS3

Parameter Value
D

en
si

ty

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8
12

Parameter: k13 Species: SOCS3

Parameter Value

D
en

si
ty

0.000 0.005 0.010 0.015 0.020 0.025

0
10

0
20

0
30

0
40

0

Parameter: k9 Species: SOCS3

Parameter Value

D
en

si
ty

0.000 0.002 0.004 0.006 0.008 0.010 0.012

0
20

0
40

0
60

0
80

0

Parameter: k12 Species: SOCS3

Parameter Value

D
en

si
ty

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0
40

80
12

0

Parameter: k11+k10b Species: SOCS3

Parameter Value

D
en

si
ty

0.00 0.02 0.04 0.06 0.08

0
20

40
60

Figure D.20: SOCS3 - Species 7, Noise 0.05. True (solid line), inferred (circles with er-

ror bars) and sampled latent (triangles with error bars) concentrations for each species

in an idealised subsystems approach with perfect inputs to each subsystem. The er-

ror bars show one standard deviation. Histograms show the distribution of sampled

parameters, the dashed line is the gamma prior on the parameters, the horizontal line

indicates the true value of the parameter.
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Figure D.21: SOCS3.R* - Species 8, Noise 0.05. True (solid line), inferred (circles

with error bars) and sampled latent (triangles with error bars) concentrations for each

species in an idealised subsystems approach with perfect inputs to each subsystem.

The error bars show one standard deviation. Histograms show the distribution of sam-

pled parameters, the dashed line is the gamma prior on the parameters, the horizontal

line indicates the true value of the parameter.
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Figure D.22: 2-STAT3* N - Species 9, Noise 0.05. True (solid line), inferred (circles

with error bars) and sampled latent (triangles with error bars) concentrations for each

species in an idealised subsystems approach with perfect inputs to each subsystem.

The error bars show one standard deviation. Histograms show the distribution of sam-

pled parameters, the dashed line is the gamma prior on the parameters, the horizontal

line indicates the true value of the parameter.
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Figure D.23: P300 - Species 10, Noise 0.05. True (solid line), inferred (circles with error

bars) and sampled latent (triangles with error bars) concentrations for each species in

an idealised subsystems approach with perfect inputs to each subsystem. The error

bars show one standard deviation. Histograms show the distribution of sampled pa-

rameters, the dashed line is the gamma prior on the parameters, the horizontal line

indicates the true value of the parameter.
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Figure D.24: 2-STAT3* N.P300 - Species 11, Noise 0.05. True (solid line), inferred (cir-

cles with error bars) and sampled latent (triangles with error bars) concentrations for

each species in an idealised subsystems approach with perfect inputs to each subsys-

tem. The error bars show one standard deviation. Histograms show the distribution

of sampled parameters, the dashed line is the gamma prior on the parameters, the

horizontal line indicates the true value of the parameter.
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Figure D.25: SOCS3.STAT3.R* - Species 12, Noise 0.05. True (solid line), inferred (cir-

cles with error bars) and sampled latent (triangles with error bars) concentrations for

each species in an idealised subsystems approach with perfect inputs to each subsys-

tem. The error bars show one standard deviation. Histograms show the distribution

of sampled parameters, the dashed line is the gamma prior on the parameters, the

horizontal line indicates the true value of the parameter.
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Figure D.26: SOCS3mRNA - Species 13, Noise 0.05. True (solid line), inferred (circles

with error bars) and sampled latent (triangles with error bars) concentrations for each

species in an idealised subsystems approach with perfect inputs to each subsystem.

The error bars show one standard deviation. Histograms show the distribution of sam-

pled parameters, the dashed line is the gamma prior on the parameters, the horizontal

line indicates the true value of the parameter.
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D.2 Perturbation Experiments

As described in Chapter 5, for each of the 22 parameters of the JAK/STAT system, I in-

vestigated the effect of perturbing the parameters by setting the parameter to a value on

the interval [0,1] while keeping the other parameters fixed at the true values, and calcu-

lating four different likelihoods: The global profile log likelihood, the global gradient

log likelihood, the local profile log likelihood and the local gradient log likelihood.

See Section 5.5.3.3 for a description of these quantities. Below I present the full com-

parison of the four likelihoods under perturbation for each species/subsystem and each

parameter.
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Figure D.27: Profile and Gradient Likelihood Comparison of Species 1. From top to

bottom: Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Local,

Gradient Likelihood Local. The dashed vertical line denotes the true value of the pa-

rameter.
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Figure D.28: Profile and Gradient Likelihood Comparison of Species 2 (a). From top

to bottom: Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Lo-

cal, Gradient Likelihood Local. The dashed vertical line denotes the true value of the

parameter.
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Figure D.29: Profile and Gradient Likelihood Comparison of Species 2 (b). From top

to bottom: Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Lo-

cal, Gradient Likelihood Local. The dashed vertical line denotes the true value of the

parameter.
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Figure D.30: Profile and Gradient Likelihood Comparison of Species 3. From top to

bottom: Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Local,

Gradient Likelihood Local. The dashed vertical line denotes the true value of the pa-

rameter.



240 Appendix D. Parameter Inference in the JAK/STAT pathway

0.0 0.2 0.4 0.6 0.8 1.0

−
4

0
2

4
6

8

Global Solution

k2f

P
ro

fil
e 

Lo
g 

Li
ke

lih
oo

d

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Global Solution

k13

P
ro

fil
e 

Lo
g 

Li
ke

lih
oo

d

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
20

Global Solution

k2b+k3

P
ro

fil
e 

Lo
g 

Li
ke

lih
oo

d

0.0 0.2 0.4 0.6 0.8 1.0

4
6

8
10

14

Global Solution

k2f

G
ra

di
en

t L
og

 L
ik

el
ih

oo
d

0.0 0.2 0.4 0.6 0.8 1.0

10
12

14
16

18

Global Solution

k13

G
ra

di
en

t L
og

 L
ik

el
ih

oo
d

0.0 0.2 0.4 0.6 0.8 1.0

5
10

15
20

25

Global Solution

k2b+k3

G
ra

di
en

t L
og

 L
ik

el
ih

oo
d

0.0 0.2 0.4 0.6 0.8 1.0

−
10

−
5

0
5

Submodel Solution

k2f

P
ro

fil
e 

Lo
g 

Li
ke

lih
oo

d

0.0 0.2 0.4 0.6 0.8 1.0

−
4

0
2

4
6

8

Submodel Solution

k13

P
ro

fil
e 

Lo
g 

Li
ke

lih
oo

d

0.0 0.2 0.4 0.6 0.8 1.0

−
15

−
5

0
5

Submodel Solution

k2b+k3

P
ro

fil
e 

Lo
g 

Li
ke

lih
oo

d

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

10

Submodel Solution

k2f

G
ra

di
en

t L
og

 L
ik

el
ih

oo
d

0.0 0.2 0.4 0.6 0.8 1.0

6
7

8
9

10

Submodel Solution

k13

G
ra

di
en

t L
og

 L
ik

el
ih

oo
d

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

10

Submodel Solution

k2b+k3

G
ra

di
en

t L
og

 L
ik

el
ih

oo
d

Figure D.31: Profile and Gradient Likelihood Comparison of Species 4. From top to

bottom: Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Local,

Gradient Likelihood Local. The dashed vertical line denotes the true value of the pa-

rameter.
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Figure D.32: Profile and Gradient Likelihood Comparison of Species 5. From top to

bottom: Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Local,

Gradient Likelihood Local. The dashed vertical line denotes the true value of the pa-

rameter.
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Figure D.33: Profile and Gradient Likelihood Comparison of Species 6. From top to

bottom: Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Local,

Gradient Likelihood Local. The dashed vertical line denotes the true value of the pa-

rameter.
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Figure D.34: Profile and Gradient Likelihood Comparison of Species 7 (a). From top

to bottom: Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Lo-

cal, Gradient Likelihood Local. The dashed vertical line denotes the true value of the

parameter.



244 Appendix D. Parameter Inference in the JAK/STAT pathway

0.0 0.2 0.4 0.6 0.8 1.0

−
1

1
2

3
4

5
6

Global Solution

k9

P
ro

fil
e 

Lo
g 

Li
ke

lih
oo

d

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

4

Global Solution

k12

P
ro

fil
e 

Lo
g 

Li
ke

lih
oo

d

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

Global Solution

k11+k10b

P
ro

fil
e 

Lo
g 

Li
ke

lih
oo

d

0.0 0.2 0.4 0.6 0.8 1.0

10
12

14
16

Global Solution

k9

G
ra

di
en

t L
og

 L
ik

el
ih

oo
d

0.0 0.2 0.4 0.6 0.8 1.0

10
11

12
13

14

Global Solution

k12

G
ra

di
en

t L
og

 L
ik

el
ih

oo
d

0.0 0.2 0.4 0.6 0.8 1.0

10
20

30
40

Global Solution

k11+k10b

G
ra

di
en

t L
og

 L
ik

el
ih

oo
d

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

10
15

Submodel Solution

k9

P
ro

fil
e 

Lo
g 

Li
ke

lih
oo

d

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

10
15

Submodel Solution

k12

P
ro

fil
e 

Lo
g 

Li
ke

lih
oo

d

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
5

10
Submodel Solution

k11+k10b

P
ro

fil
e 

Lo
g 

Li
ke

lih
oo

d

0.0 0.2 0.4 0.6 0.8 1.0

5
10

15
20

Submodel Solution

k9

G
ra

di
en

t L
og

 L
ik

el
ih

oo
d

0.0 0.2 0.4 0.6 0.8 1.0

10
15

20

Submodel Solution

k12

G
ra

di
en

t L
og

 L
ik

el
ih

oo
d

0.0 0.2 0.4 0.6 0.8 1.0

5
10

15
20

Submodel Solution

k11+k10b

G
ra

di
en

t L
og

 L
ik

el
ih

oo
d

Figure D.35: Profile and Gradient Likelihood Comparison of Species 7 (b). From top

to bottom: Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Lo-

cal, Gradient Likelihood Local. The dashed vertical line denotes the true value of the

parameter.
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Figure D.36: Profile and Gradient Likelihood Comparison of Species 8. From top to

bottom: Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Local,

Gradient Likelihood Local. The dashed vertical line denotes the true value of the pa-

rameter.
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Figure D.37: Profile and Gradient Likelihood Comparison of Species 9. From top to

bottom: Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Local,

Gradient Likelihood Local. The dashed vertical line denotes the true value of the pa-

rameter.
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Figure D.38: Profile and Gradient Likelihood Comparison of Species 10. From top to

bottom: Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Local,

Gradient Likelihood Local. The dashed vertical line denotes the true value of the pa-

rameter.
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Figure D.39: Profile and Gradient Likelihood Comparison of Species 11. From top to

bottom: Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Local,

Gradient Likelihood Local. The dashed vertical line denotes the true value of the pa-

rameter.
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Figure D.40: Profile and Gradient Likelihood Comparison of Species 12. From top to

bottom: Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Local,

Gradient Likelihood Local. The dashed vertical line denotes the true value of the pa-

rameter.
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Figure D.41: Profile and Gradient Likelihood Comparison of Species 13. From top to

bottom: Profile Likelihood Global, Gradient Likelihood Global, Profile Likelihood Local,

Gradient Likelihood Local. The dashed vertical line denotes the true value of the pa-

rameter.



Appendix E

Nested Effects Models for Gene

Regulatory Networks

E.1 Introduction

This project was motivated by work in Liu et al. (2008) on Pectobacterium atrosep-

ticum (Pba), a plant pathogen which attacks the potato plant by synthesising plant cell

wall degrading enzymes. The bacteria coordinate their attack on a plant via a regula-

tory mechanism called quorum sensing. In quorum sensing, the bacteria communicate

via signalling molecules that allow them to determine when a critical population den-

sity has been reached, at which point they attack.

Liu et al. found that Pba uses quorum sensing to make an attack on the plant’s

defences while simultaneously attacking the cell wall. They showed that genes within

the quorum sensing regulon also regulate virulence. Following up on this study, Kuang

Lin at BioSS worked on applying various methods from computational statistics and

machine learning to reconstruct possible gene regulatory networks from gene expres-

sion profiles of Pba. His work has been published in Lin et al. (2010); here I will only

describe the results that were contributed by my own sub-project.

The data consisted of mRNA expression profiles for 9 knock-out mutations. The

knock-outs were obtained via transposon mutagenesis, whereby transposons are in-

serted into the chromosome using a plasmid vector. This insertion disrupts function of

an existent gene, creating the knock-out mutation. In this case the 8 genes expM, hor,

hrpL, expI, expR, aepA, virR and virS were knocked out. The ninth mutation was a

double knockout of virR and expM. Both wild type and mutants were grown under the

same conditions and were then used to inoculate sterilised potato tubers. 12 hours after
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inoculation, the mRNA levels were measured using microarrays, and relative gene ex-

pression levels with respect to the wild type were obtained. These measurements were

further preprocessed to remove outliers and achieve normalisation.

While most of Lin et al. (2010) deals with determining the relationship between

clusters of genes measured in the microarray experiment, it is also interesting to look

at the relationship between the genes that were knocked out, which were known (or at

least suspected) to be regulators of the other genes. The question here is whether these

knocked-out genes are regulators of each other as well, and what their interactions are.

In other words, we want to construct a gene regulation network of the knocked-out

genes. As it happens, nested effect models are the perfect method for determining this.

E.2 Methodology

General Framework Nested effect models (NEMs) are a model for determining the

relationship between genes. Rather than looking at the expression levels of these regu-

lating genes (called S-genes for signalling genes), NEMs look at the effect that knock-

ing out each of these genes has on the expression levels of the genes that they regulate

(called E-genes for effect reporting genes).

This means that we need two sets of parameters for a NEM: A network hypothesis

Φ, that describes the relationship between the S-genes, and a model Θ for the regula-

tion of the E-genes, where θi = j if E-gene i is regulated by S-gene j. We assume that

an E-gene can only be regulated by one S-gene and use model averaging to account for

all possibilities.

Using Bayes’ theorem, the score for a network hypothesis given data D is:

P(Φ|D) =
P(D|Φ)P(Φ)

P(D)
(E.1)

If we assume that the observations of each E-gene, the parameters θi and the knock-

out experiments are independent, then the likelihood P(D|Φ) for a dataset consisting

of m E-genes and n S-genes decomposes as:

P(D|Φ) =
m

∏
i=1

n

∑
j=1

n

∏
k=1

P(Dik|Φ,θi = j)P(θi = j|Φ) (E.2)

where P(Dik|Φ,θi = j) is the likelihood of the effect observed at E-gene i when

knocking out S-gene k and P(θi = j|Φ) is the prior probability of E-gene i being reg-
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ulated by S-gene j. More details can be found in Markowetz et al. (2005) and Fröhlich

et al. (2008).

Modelling Effects In order to find the likelihood of observing an effect at E-gene i

when knocking out S-gene k, Markowetz et al. (2005, 2007) first used a discretisation

scheme based on thresholding to transform the continuous expression values of the E-

genes into binary indicators. Then they calculated the likelihood based on the expected

false positive and false negative rates. This has the potential to lose information, and

also requires both positive and negative controls to estimate the error rates, which may

not always be available.

Fröhlich et al. (2008) developed an alternative method which uses p-values that

correspond to the likelihood of an E-gene i being differentially expressed when S-gene

k is knocked out. They obtain the raw p-value using limma (Smyth et al., 2004), and

fit a three-component Beta-uniform mixture (BUM) model to those values. The BUM

model consists of a uniform distribution (reflecting the null hypothesis) and two Beta

distributions such that:

P(Dik) = π1k +π2kBeta(Dik,αk,1)+π3kBeta(Dik,1,βk) (E.3)

where Dik is the p-value of Ei at knockout Sk, the π∗k are the mixing coefficients

and we have the constraints that αk < 1 and βk > 2. If π̂ = P(Dik = 1) is the maximum

uniform part of the model, then we have:

P(Dik|Φ,θi) =

{
P(Dik)−π̂

1−π̂
if Φ predicts an effect

1 otherwise
(E.4)

A Priori Filtering of Effects A typical microarray experiment can measure the ex-

pression levels of thousands of genes, not all of which will be affected by the knockout

of an S-gene. For that reason, it makes sense to apply an a priori filtering step to re-

move E-genes that only show random effects. Fröhlich et al. (2008) use a scheme that

finds patterns of differentially expressed genes that are statistically significant. Given

the multiple-testing corrected p-value pk of an E-gene expression level in experiment

k, and a false positive rate α, we can set:

bk =

{
1 if pk < α

0 otherwise
(E.5)
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If sk is the number of significant genes in experiment k, then the probability of

observing a pattern b = {b1, ...,bn} under the null hypothesis H0 is:

P(b|H0) =
n

∏
k
(bkα

sk

M
+(1−bk)(1−α)

M− sk

M
) (E.6)

where M is the total number of E-genes. This allows us to calculate the number of

times that we should expect to see b by chance. Using a binomial test, we can calculate

the statistical significance of seeing b more often than expected, and keep only those

effects which show a significant pattern.

Network Inference Methods We now know how to calculate the likelihood for a

given network hypothesis. Unfortunately, unless the number of S-genes is very small,

it is impractical to score all possible network structures. To circumvent this problem,

Markowetz et al. (2007) developed a method based on scoring networks consisting of

triples and combining them, while Froehlich et al. developed two alternative methods:

a greedy hillclimbing approach, and a method he called module networks which relies

on hierarchical clustering (Fröhlich et al., 2008).

In the triples approach, we consider all possible triples of S-genes and score the

networks that can be formed using only three nodes. Then we select the highest-scoring

network for each triple and use model averaging to combine them into a complete

networks. We calculate the frequency of each edge and include all the edges whose

frequency exceeds a certain threshold.

Greedy hillclimbing is a more basic approach where we simply start from a network

(usually with no edges) and at each step add the edge that gives the biggest improve-

ment to the score. If no more improvements are possible, the algorithm terminates.

This only gives us a local optimum, so it is usually advisable to use bootstrapping

(repeat the greedy hillclimbing algorithm several time, each time sampling with re-

placement from the E-genes) to get a measure of the confidence we have in each edge.

The module networks method starts out by creating a hierarchical clustering of

the gene expression profiles using a standard clustering method (Froehlich suggests

average linkage). Then, starting from the top, we look for clusters containing at most

4 S-genes. When the network has been decomposed into non-overlapping clusters (or

modules) of at most 4 S-genes, we find the highest-scoring network for each cluster

using an exhaustive search. Finally, the modules are connected using a constrained

greedy hillclimbing approach, which only adds edges between S-genes in different

modules.
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E.3 Experiments and Results

Simulation As we saw in section E.2, there is more than one way of using NEMs,

and it is not immediately obvious which method is the most reliable. For that rea-

son, I started off by doing a small simulation study to compare the most promising

approaches: using triples vs using a greedy search with bootstrapping, with or without

a priori filtering of effects. I took one of the networks that had been inferred from

the data (the one shown in figure E.3a, in fact), and used this as the underlying net-

work for a simulation. The advantage of this approach, other than its simplicity, is that

we can evaluate the performance of the NEMs on a realistic network, rather than the

transitively closed ideal networks of Fröhlich et al. (2008).

Like Froehlich et al., we sample p values for each knockout from the mixture dis-

tribution in equation E.3. Each S-gene is linked to 100 E-genes. The p values for

E-genes where we do not expect an effect due to the network structure are sampled

from the uniform distribution. There is a slight subtlety in when to expect an effect

if there are different paths between two S-genes (e.g. between expM and aepA in the

network we use here). If one path is disabled by a network, do we expect to see an ef-

fect downstream (AND-model) or will the signal simply travel via the alternative path

(OR-model)? We chose to go with the AND-model.

For each S-gene where one would expect an effect, we calculate the probability of

observing that effect, based on the distance of the current S-gene to the knockout gene.

The observed effects are sampled from the beta distributions according to the mixing

coefficients π1k and π2k, while for unobserved effects we sample from the uniform

distribution. For each knockout, all parameters are drawn from the same ranges as in

Fröhlich et al. (2008), and for each E-gene a small amount of Gaussian noise is added

to these parameters.

Figure E.1 shows the results of the simulation study. There is no significant differ-

ence between the two optimization schemes: triples versus greedy search, whereas the

filtered versus unfiltered scheme shows a significant difference (at the 0.05 significance

level). Surprisingly, the effect of filtering is not consistent, leading to an improvement

in the performance of the triple method, but a deterioration in the performance of the

greedy search. Given these inconsistencies, we decided to apply all four methods to

the real data.
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Figure E.1: ROC curves showing the performance of NEMs on simulation data when

using different optimization schemes.

Microarray Data The networks found by the different methods are shown in Figures

E.2 and E.3. Because of the intrinsic symmetries of the scoring scheme, NEMs cannot

distinguish between two network structures that are equivalent after transitive closure.

This implies that the network structures in Figures E.2a and E.2b are score equivalent,

that is, they cannot be distinguished on the basis of the inference scheme. As such, the

method only infers regulatory hierarchies rather than actual interaction networks.

To resolve ambiguities, and make the networks interpretable, I only present the

transitive reduction of each graph, that is, the most parsimonious graph of an equiva-

lence class. This means that whenever two nodes are connected by a path, an interac-

tion via a shortcut path is supported by the data as well.

Figures E.2 and E.3 show the networks obtained with different network inference

schemes and different pre-filtering methods. The amount of variation between the

graphs gives an indication of the robustness of the inference scheme. In one of the

networks we removed the virS data from the dataset; this was due to the fact that virS

knockout experiment was carried out under different conditions, which might add an

unwanted source of noise.

Unlike for the simulated data, we do not have a gold standard for evaluating how

well the true network is predicted using NEMs. However, the literature tells us that

there is evidence for some of the regulatory interactions that were predicted. The

current knowledge, summarised in Figure 5 in Liu et al. Liu et al. (2008), shows that

expI is upstream of both virR and aepA in the regulatory hierarchy. Figures E.2 and

E.3 suggest that this order is, in fact, consistently predicted by all the graphs learned

in our study.

Moreover, in none of the predicted networks does the double knockout expI/virR
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expI
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(a) Filtered Greedy Full

expI

aepA

expR

hor

virR virR_expI
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(b) Filtered Greedy Reduced

Figure E.2: Filtered Greedy Full - This figure shows the network obtained using a greedy

search with bootstrapping, where only the edges that were present in all the bootstrap

samples have been retained. The set of effector genes used for the search has been

pre-filtered to retain only those genes that show a non-random expression pattern over

all knock-outs. The genes virS and expM are not included in this network for visibility

purposes (expM was a universal regulator, and virS was regulated by every other node).

Because of the nature of NEMs, the full network in (a) is transitively closed. This is not

a realistic assumption in most pathways. For that reason, (b) is a transitive reduction of

(a) where shortcuts have been eliminated. This makes it easier to interpret the graph,

but one should keep in mind that this is only an approximation, and that some of the

edges that have been eliminated may have been true interactions.

appear above both the individual knock-outs expI and virR. This can only be explained

by some antagonism between expI and virR, which is again in agreement with the

regulatory structure reported in Liu et al. (2008). There are also some interesting de-

viations, though. Liu et al. predict expM to be quite low in the regulatory hierarchy.

However, all the graphs learned in our study concur in predicting expM to be at the

top of the regulatory hierarchy. This finding might point to some flaws in the current

hypotheses about the regulatory mechanisms in Pba, indicating that it may be possible

to obtain a revised and improved model of gene regulatory interactions using NEMs or

other network inference methods.

A comparison of the predicted graphs points to some disagreement between them.

This is an inevitable consequence of the noise in the data, the complexity of the infer-

ence problem, and the different nature of the approaches adopted for dealing with both.

This work is one of the first studies to investigate the robustness of learning NEMs from

real data, and provides insight into the degree of variation in graph structure that results
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Figure E.3: (a) is a transitive reduction of the network found using the same method

as for figure E.2b, but excluding the virS knockout data. There was reason to believe

that the virS data could affect filtering (and possibly network construction) because it

was generated under different conditions than the other knock-outs, which might lead

to spurious effects. (b) is a transitive reduction of the network found using the same

method as for figure E.2b, but without filtering the genes. (c) is a transitive reduction

of the network found using the triples scoring method. For this graph, only edges with

100% support have been retained. The same gene filtering method as for figure E.2b

has been applied. (d) is a transitive reduction of the network found using the same

method as for (c), but without filtering the genes. For this network, it was possible to

retain all edges with more than 50% support (because it was sparser than the network

in (c) ).
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from a variation of the learning algorithm and prefiltering scheme.

E.4 Conclusions

The Pba dataset was ideally suited for the NEM, in that it consisted of microarray

measurements of knockout mutants. This made it easy to apply NEMs; however, the

difficulty was in deciding which variant of the NEM method to apply. The simulation

did not show a clear preference, indicating that the differences in accuracy between dif-

ferent methods were small. Since the networks produced vary quite a bit, this variation

is probably mainly due to different treatment of the noise in the data.

Nevertheless, we managed to reproduce some of the interactions that have been

reported in the literature. The relationships that seem to contradict the literature, such

as the regulatory role of expM, may yet be demonstrated, or they may be due to some

limitation of NEMs that can be overcome with more sophisticated techniques. In either

case, further experiments could probably confirm or deny these relationships.





Appendix F

Software Package EDISON

F.1 Description

As part of the work described in Chapters 3 and 4, I developed an R software pack-

age for dynamic Bayesian network inference. The software package EDISON (Es-

timation of Directed Interactions from Sequences Of Nonhomogeneous gene expres-

sion) enables the reconstruction of time-varying gene regulatory networks from non-

homogeneous gene expression data, using hierarchical sequential information sharing

priors.

F.2 Features

EDISON offers the following functionalities to researchers interested in the recon-

struction of time-varying networks:

Network Reconstruction. The software runs reversible-jump MCMC simulations

of the hierarchical Bayesian model and returns the sampled gene networks. These can

then be processed further using the evaluation functions of the package.

Changepoint Detection. Along with the sampled networks, the software also re-

turns the sampled changepoints for each gene. The changepoint densities, both for

individual genes and for the whole network, can be calculated using the evaluation

functions.

Information Sharing. I included four varieties of information sharing between

successive networks in this release: Exponential versus binomial priors with hard cou-

pling (shared hyperparameters) or soft coupling (gene-specific hyperparameters with

common hyperprior) among genes. The package also gives the option of no informa-
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tion sharing, in which case the model is essentially equivalent to ARTIVA in Lèbre

et al. (2010).

Convergence Monitoring. MCMC convergence is monitored using the potential

scale reduction factor (Gelman and Rubin, 1992).

Network Generation. The package includes functions for generating sequences

of random networks with structure changes, and simulating data from them by using a

regression model.

F.3 Implementation and Use

The software package is implemented in R, and will run under Window, Linux or OS
X in the presence of an installation of R 2.13.1 or later. A simple example for using
the software follows:

> library(’EDISON’)

> dataset <- simulateNetwork(l=30, cps=c(10, 20))

> results <- EDISON.run(dataset, num.iter=1e5, information.sharing=’bino_hard’)

> cps <- calculateCPProbabilities(results)

> networks <- calculateEdgeProbabilites(results)

Here, dataset is a dataset of length 30 with changepoints at timepoints 10 and 20,

simulated from random networks with the default size of 10 nodes and default num-

ber of 2 network structure changes per node at each changepoint. Variable results

will contain the network and changepoint samples collected during the 1e5 RJMCMC

simulation steps, and cps and networks contain the marginal posterior probabilities

of the changepoints and interactions in the gene network, respectively. One can apply

a threshold to the latter to obtain a discrete network.

The R code has been made publicly available on the Comprehensive R Archive Net-

work (CRAN). Software and documentation can be found at http://cran.r-project.

org/web/packages/EDISON/.
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Husmeier, D., Dondelinger, F., and Lèbre, S. (2010). Inter-time segment information
sharing for non-homogeneous dynamic Bayesian networks. In Lafferty, J. e. a.,
editor, Proceedings of the twenty-fourth annual conference on Neural Information
Processing Systems (NIPS), volume 23, pages 901–909. Curran Associates.

Husmeier, D., Dybowski, R., and Roberts, S. (2005). Probabilistic Modeling in Bioin-
formatics and Medical Informatics. Advanced Information and Knowledge Process-
ing. Springer, New York.

Husmeier, D. and McGuire, G. (2003). Detecting recombination in 4-taxa DNA se-
quence alignments with Bayesian hidden Markov models and Markov chain Monte
Carlo. Molecular Biology and Evolution, 20(3):315–337.

Ings, T. C., Montoya, J. M., Bascompte, J., Bluthgen, N., Brown, L., Dormann, C. F.,
Edwards, F., Figueroa, D., Jacob, U., Jones, J. I., Lauridsen, R. B., Ledger, M. E.,
Lewis, H. M., Olesen, J. M., van Veen, F. J. F., Warren, P. H., and Woodward, G.
(2009). Review: Ecological networks beyond food webs. J. Anim. Ecol., 78:253–
269.



270 Bibliography

Jasra, A., Stephens, D., and Holmes, C. (2007). On population-based simulation for
static inference. Statistics and Computing, 17(3):263–279.

Jordano, P., Bascompte, J., and Olesen, J. (2003). Invariant properties in coevolution-
ary networks of plant-animal interactions. Ecol. Lett., 6(1):69–81.

Kolar, M., Song, L., and Xing, E. (2009). Sparsistent learning of varying-coefficient
models with structural changes. In Bengio, Y., Schuurmans, D., Lafferty, J.,
Williams, C. K. I., and Culotta, A., editors, Advances in Neural Information Pro-
cessing Systems (NIPS), volume 22, pages 1006–1014.

La Sorte, F. A., Lee, T. M., Wilman, H., and Jetz, W. (2009). Disparities between
observed and predicted impacts of climate change on winter bird assemblages. Pro-
ceedings of the Royal Society B, 276(1670):3167.
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Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable
selection with the lasso. The Annals of Statistics, 34(3):1436–1462.

Memmott, J. (1999). The structure of a plant-pollinator food web. Ecology Letters,
2(5):276–280.

Memmott, J., Fowler, S., Paynter, Q., Sheppard, A., and Syrett, P. (2000). The inverte-
brate fauna on broom, Cytisus scoparius, in two native and two exotic habitats. Acta
Oecol., 21(3):213–222.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U.
(2002). Network motifs: simple building blocks of complex networks. Science,
298(5594):824.



Bibliography 273

Mockler, T., Michael, T., Priest, H., Shen, R., Sullivan, C., Givan, S., McEntee, C.,
Kay, S., and Chory, J. (2007). The diurnal project: Diurnal and circadian expression
profiling, model-based pattern matching and promoter analysis. Cold Spring Harbor
Symposia on Quantitative Biology, 72:353–363.

Møller, J., Madsen, H., and Carstensen, J. (2011). Parameter estimation in a simple
stochastic differential equation for phytoplankton modelling. Ecological Modelling,
222(11):1793–1799.

Montana, E. and Littleton, J. (2004). Characterization of a hypercontraction-induced
myopathy in Drosophila caused by mutations in mhc. The Journal of Cell Biology,
164(7):1045.

Murphy, K. and Mian, S. (1999). Modelling gene expression data using dynamic
Bayesian networks. University of California, Berkeley.

Murray, I. and Adams, R. (2010). Slice sampling covariance hyperparameters of latent
Gaussian models. In Advances in Neural Information Processing Systems (NIPS),
volume 23.

Murray Jr, B. G. (1988). Interspecific territoriality in Acrocephalus: A critical review.
Ornis Scand., 19(4):309–313.

Needham, C., Bradford, J., Bulpitt, A., and Westhead, D. (2007). A primer on learning
in Bayesian networks for computational biology. PLoS Comput. Biol., 3(8):1409–
1416.

New, M., Hulme, M., and Jones, P. (1999). Representing twentieth-century space–
time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial
climatology. J. Climate, 12(3):829–856.

Nobile, A. and Fearnside, A. (2007). Bayesian finite mixtures with an unknown num-
ber of components: the allocation sampler. Stat. Comput., 17(2):147–162.

Nodelman, U., Shelton, C., and Koller, D. (2002). Learning continuous time Bayesian
networks. In Proceedings of the Nineteenth conference on Uncertainty in Artificial
Intelligence, pages 451–458. Morgan Kaufmann Publishers Inc.

Nongthomba, U., Cummins, M., Clark, S., Vigoreaux, J., and Sparrow, J. (2003). Sup-
pression of muscle hypercontraction by mutations in the myosin heavy chain gene
of Drosophila melanogaster. Genetics, 164(1):209.

Oates, C., Hennessy, B., Lu, Y., Mills, G., and Mukherjee, S. (2012a). Network in-
ference using steady-state data and Goldbeter–koshland kinetics. Bioinformatics,
28(18):2342–2348.

Oates, C., Hill, S., Mukherjee, S., et al. (2012b). Comment on ’large-scale dynamic
gene regulatory network inference combining differential equation models with lo-
cal dynamic Bayesian network analysis’. arXiv preprint arXiv:1201.3380.



274 Bibliography

Opgen-Rhein, R. and Strimmer, K. (2007). From correlation to causation networks: a
simple approximate learning algorithm and its application to high-dimensional plant
gene expression data. BMC Syst. Biol., 1(37).

Park, T. and Casella, G. (2008). The Bayesian Lasso. J. Am. Stat. Assoc.,
103(482):681–686.

Parkhurst, S. and Ish-Horowicz, D. (1991). wimp, a dominant maternal-effect muta-
tion, reduces transcription of a specific subset of segmentation genes in Drosophila.
Genes & Development, 5(3):341.

Pearl, J. (1985). Bayesian networks: A model of self-activated memory for evidential
reasoning. In Proceedings of the 7th Conference of the Cognitive Science Society.

Pearl, J. (2000). Causality: models, reasoning and inference, volume 29. Cambridge
Univ Press.

Penfold, C., Buchanan-Wollaston, V., Denby, K., and Wild, D. (2012). Nonparametric
Bayesian inference for perturbed and orthologous gene regulatory networks. Bioin-
formatics, 28(12):i233–i241.

Perrin, B., Ralaivola, L., Mazurie, A. E., Bottani, S., Mallet, J., and d’Alch Buc, F.
(2003). Gene network inference using dynamic Bayesian networks. Bioinformatics,
19.

Pokhilko, A., Hodge, S., Stratford, K., Knox, K., Edwards, K., Thomson, A., Mizuno,
T., and Millar, A. (2010). Data assimilation constrains new connections and compo-
nents in a complex, eukaryotic circadian clock model. Molecular Systems Biology,
6(1).

Poyton, A., Varziri, M., McAuley, K., McLellan, P., and Ramsay, J. (2006). Parameter
estimation in continuous-time dynamic models using principal differential analysis.
Computers & Chemical Engineering, 30(4):698–708.

Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and
Solomon, A. M. (1992). A global biome model based on plant physiology and
dominance, soil properties and climate. Journal of Biogeography, 19(2):117–134.

Prill, R. J., Marbach, D., Saez-Rodriguez, J., Sorger, P. K., Alexopoulos, L. G., Xue,
X., Clarke, N. D., Altan-Bonnet, G., and Stolovitzky, G. (2010). Towards a rigorous
assessment of systems biology models: The DREAM3 challenges. PLoS ONE,
5(2):e9202.

Proulx, S., Promislow, D., and Phillips, P. (2005). Network thinking in ecology and
evolution. Trends Ecol. Evol., 20(6):345–353.

Punskaya, E., Andrieu, C., Doucet, A., and Fitzgerald, W. (2002). Bayesian curve
fitting using MCMC with applications to signal segmentation. IEEE Transactions
on Signal Processing, 50(3):747–758.



Bibliography 275

Ramsay, J., Hooker, G., Campbell, D., and Cao, J. (2007). Parameter estimation for
differential equations: a generalized smoothing approach. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 69(5):741–796.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine
Learning. MIT Press.
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Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., and Prentice, I. C. (2005).
Climate change threats to plant diversity in Europe. Proceedings of the National
Academy of Sciences, 102(23):8245.



Bibliography 277

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. J. Roy. Stat.
Soc. B, 58(1):267–288.

Tipping, M. (2001). Sparse Bayesian learning and the relevance vector machine.
JMLR, 1(3):211–244.

Tipping, M. and Faul, A. (2003). Fast marginal likelihood maximisation for sparse
Bayesian models. In Bishop, C. M. and Frey, B. J., editors, Proceedings of the
International Workshop on Artificial Intelligence and Statistics, volume 9.

Tirelli, T., Pozzi, L., and Pessani, D. (2009). Use of different approaches to model pres-
ence/absence of Salmo marmoratus in Piedmont (Northwestern Italy). Ecological
Informatics, 4(4):234–242.

Titsias, M. and Lázaro-Gredilla, M. (2011). Spike and slab variational inference for
multi-task and multiple kernel learning. In Advances in Neural Information Pro-
cessing Systems (NIPS), volume 24.

Tong, A. H. Y., Drees, B., Nardelli, G., Bader, G. D., Brannetti, B., Castagnoli, L.,
Evangelista, M., Ferracuti, S., Nelson, B., Paoluzi, S., Quondam, M., Zucconi, A.,
Hogue, C. W. V., Fields, S., Boone, C., and Cesareni, G. (2002). A Combined
Experimental and Computational Strategy to Define Protein Interaction Networks
for Peptide Recognition Modules. Science, 295(5553):321–324.

Toni, T., Welch, D., Strelkowa, N., Ipsen, A., and Stumpf, M. (2009). Approximate
Bayesian computation scheme for parameter inference and model selection in dy-
namical systems. Journal of the Royal Society Interface, 6(31):187–202.

Valiente, G. (2002). Algorithms on trees and graphs. Springer Verlag.

van Someren, E. P., Vaes, B. L. T., Steegenga, W. T., Sijbers, A. M., Dechering, K. J.,
and Reinders, M. J. T. (2006). Least absolute regression network analysis of the
murine osterblast differentiation network. Bioinformatics, 22(4):477–484.

van Veen, F. J., Brandon, C. E., and Godfray, H. C. (2009). A positive trait-mediated
indirect effect involving the natural enemies of competing herbivores. Oecologia,
160(1):195–205.

Varah, J. (1982). A spline least squares method for numerical parameter estimation in
differential equations. SIAM Journal on Scientific and Statistical Computing, 3:28.

Vázquez, D. P. and Simberloff, D. (2002). Ecological specialization and susceptibility
to disturbance: Conjectures and refutations. The American Naturalist, 159(6):606–
623.

Vyshemirsky, V. and Girolami, M. (2008). Bayesian ranking of biochemical system
models. Bioinformatics, 24(6):833–839.

Wagner, A. (2001). The yeast protein interaction network evolves rapidly and contains
few redundant duplicate genes. Mol. Biol. Evol., 18(7):1283–1292.



278 Bibliography

Wang, Z., Kuruoglu, E., Yang, X., Xu, Y., and Huang, T. (2011). Time varying dynamic
Bayesian network for non-stationary events modeling and online inference. IEEE
Transactions on Signal Processing, 4(59).

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ’small-world’ networks.
Nature, 393(6684):440–442.

Watts, M. and Worner, S. (2008). Comparing ensemble and cascaded neural networks
that combine biotic and abiotic variables to predict insect species distribution. Eco-
logical Informatics, 3(6):354–366.

Wei, Z. and Li, H. (2007). A Markov random field model for network-based analysis
of genomic data. Bioinformatics, 23(12):1537.

Werhli, A. and Husmeier, D. (2007). Reconstructing gene regulatory networks with
Bayesian networks by combining expression data with multiple sources of prior
knowledge. Stat. Appl. Genet. Mol. Biol., 6(1):Article 15.

Werhli, A. V., Grzegorczyk, M., and Husmeier, D. (2006). Comparative evaluation
of reverse engineering gene regulatory networks with relevance networks, graphical
Gaussian models and Bayesian networks. Bioinformatics, 22:2523–2531.

Werhli, A. V. and Husmeier, D. (2008). Gene regulatory network reconstruction by
Bayesian integration of prior knowledge and/or different experimental conditions.
Journal of Bioinformatics and Computational Biology, 6(3):543–572.

Werner, E. E. and Peacor, S. D. (2003). A review of trait-mediated indirect interactions
in ecological communities. Ecology, 84(5):1083–1100.

Werner, T. (2010). Next generation sequencing in functional genomics. Briefings in
bioinformatics, 11(5):499–511.

Whittaker, J. (1990). Graphical models in applied multivariate statistics. Wiley New
York.

Williams, P. M. (1995). Bayesian regularization and pruning using a Laplace prior.
Neural Comput., 7:117–143.

Williams, R. and Martinez, N. (2000). Simple rules yield complex food webs. Nature,
404(6774):180–183.

Xuan, X. and Murphy, K. (2007). Modeling changing dependency structure in mul-
tivariate time series. In Ghahramani, Z., editor, Proceedings of the 24th Annual
International Conference on Machine Learning (ICML 2007), pages 1055–1062.
Omnipress.

Yeung, K., Dombek, K., Lo, K., Mittler, J., Zhu, J., Schadt, E., Bumgarner, R., and
Raftery, A. (2011). Construction of regulatory networks using expression time-
series data of a genotyped population. Proceedings of the National Academy of
Sciences, 108(48):19436–19441.



Bibliography 279

Yuan, M. and Lin, Y. (2005). Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68(1):49–67.

Zellner, A. (1986). On assessing prior distributions and Bayesian regression analysis
with g-prior distributions. In Goel, P. and Zellner, A., editors, Bayesian Inference
and Decision Techniques, pages 233–243. Elsevier.

Zhao, W., Serpedin, E., and Dougherty, E. (2006). Inferring gene regulatory networks
from time series data using the minimum description length principle. Bioinformat-
ics, 22(17):2129.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(2):301–320.


	PhD coversheet April 2012
	thesis_FD

