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Abstract: We propose a Bayesian regression and multiple changepoint model
for reverse engineering gene regulatory networks from high-throughput gene ex-
pression profiles. We report results from a recently held international gene net-
work reconstruction competition, in which our method was objectively assessed
in a blind study. While we did not win the competition, the scores indicate that
the proposed method favourably compares with the majority of competing ap-
proaches and clearly belongs to the group of highest-ranked performers.
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1 Introduction

The objective of the highly topical field of systems biology is the reverse
engineering of molecular regulatory networks and signalling pathways from
high-throughput post-genomic data, and a flurry of activities in the statis-
tics and machine learning communities are currently aimed at solving this
problem. A variety of methods from statistics and machine learning have
been applied to this end. See e.g. Grzegorczyk et al. (2008) and Cantone
et al. (2009) for brief reviews. In the present paper, we propose a Bayesian
regression and multiple changepoint model, with Bayesian inference based
on reversible jump Markov chain Monte Carlo (RIMCMC) (Green, 1995).
We participated in a recently held gene regulatory network prediction com-
petition (DREAM 5), which assures that the comparative evaluation with
other methods was done objectively.
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2 Model

Multiple changepoints Let p be the number of target genes Whose ex-
M, is the set of parents (regulators) associated with target gene ¢ in the
gene regulatory network. We model the differences in the regulatory re-
lationships measured by different chips (assumed to be in some natural
order, e.g. a time series) with a multiple changepoint process. For each
target gene i, an unknown number k; of changepoints define k; + 1 non-
overlapping segments. Segment h € {1, .., k; +1} starts at changepoint £~
and stops before £, so that & = (€7,...,el1 el . €M) with 81 < ¢l
This changepoint process induces a partition of the chip ordering, y! =
(yi (1)) hlcrceh- The network structure M; remains the same for each seg-
ment h, but the other parameters of the model can vary.

Regression model: For all genes 4, the random variable Y;(t) refers to the
expression of gene ¢ on chip ¢t. Within any segment h, the expression of gene
i at chip t depends on the gene expression values on chip ¢ of a set R; of

m potential regulator genes (parents), with i ¢ R;. We define a regression
model by (a) the set of s; parents denoted by M; = {j1,...,Js; } C R;, and

(b) a set of parameters ((a};)jer,, or); aly € R, ol > 0. For all j #0, al; =0
if j ¢ M. For all genes i, for all chips t in segment h (¢!~ <t < &l'), the
random variable Y;(t) depends on the m variables {Y}(¢)},cr, according to

it = a10+z _az] jt +52‘(t) (1)

where the noise ¢; (¢ 1s assumed to be Gaussian with mean 0 and variance
(01?2, ei(t) ~ N(0, (07)?). We define a! = (a});cr,

Prior: The k;+1 segments are delimited by k; changepoints, where k; is dis-
tributed a priori as a truncated Poisson random variable with mean A and
maximum k = N —2: P(k;|\) « %l{kig} . Conditional on k; changepoints,
the changepoint positions vector & = (¢7, £}, ..., €5*1) takes non-overlapping
integer values, which we take to be uniformly distributed a priori. For all
genes i, the number s; of parents for node i follows a truncated Poisson
distribution with mean A and maximum 35 = 5: P(s;|A) « %]l{sigg}. Con-
ditional on s;, the prior for the parent set M; is a uniform distribution over
all parent sets with cardinality s;: P(M;||M;| =s;) = 1/(%,). The overall
prior on the network structures is given by marginalization:

PMilA) =377 P(Milsi) P(si[A) 2)

si=1

Condltlonal on the arent set M, of size s;, we assume for the prior distri-
bution P(al|M;,o! ?of the s; +1 regression coefficients for each segment h

a zero-mean multivariate Gaussian with covariance matrix (¢/)?%, r, where
following Andrieu and Doucet (1999) we set % an =07 2DT » (W) D, h( ), and
D,n(y) is the (&8 —€/1) x (s; + 1) matrix Whose first column is a vector
of 1 (for the constant in model (1)) and each (j + 1)** column contains

the observed values (y, (t)en—1_1<pcen_y for all regulatory genes j in M.
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Finally, the conjugate prior for the variance (¢*)? is the inverse gamma dis-
tribution, P((c)?) = ZG(vo,70). Following Lebre et al. (2010), we set the
hyperparameters for shape, vy = 0.5, and scale, vy = 0.05, to fixed values
that give a vague distribution. The terms A and A can be interpreted as
the expected number of changepoints and parents, respectively, and 62 is
the expected signal-to-noise ratio. These hyperparameters are drawn from
vague conjugate hyperpriors, which are in the (inverse) gamma distribution
family: P(A) = P(\) = Ga(0.5,1) and P(6%) = ZG(2,0.2).
Posterior: Equation (1) implies that

F h—1 . h F F
P(yzl‘gL "Ei , M, ailva'il) x exp | —

(¥ — D n(y)al)" (yl — D n(w)al)
kb : (3)

From Bayes theorem, the posterior is given by the following equation:
P(k,&, M, a,0, 7, A, 8%y) oc P(8*)P(N)P(A) [P (ks \)P(&:lki) P(Mi|A) )
i=1

ki

[T Poi*)Plaf M, [0, 6% Py 16] 7" 61 Mis ' [07])
Inference: An attractive feature of the chosen model is that the marginal-
ization over the parameters a and o in the posterior distribution of (4)
is analytically tractable: P(k,&, M\ A8%y) = [ P(k&M,a,0,\A,6%y)dado
See Andrieu and Doucet (1999), Lebre et al. (2010) for details and an ex-
plicit expression. The number of changepoints and their location, k, £, the
network structure M and the hyperparameters A, A and §2 can be sampled
from the posterior P(k,&, M, X, A, §%|y) with RIMCMC. A detailed descrip-
tion can be found in Lebre et al. (2010). The posterior probabilities of the
gene interactions submitted to DREAM are obtained from the posterior
sample of network structures M by marginalization.
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FIGURE 1. Areas under the precision recall (left) and ROC (right) curves ob-
tained on an in silico data set by all teams participating in the DREAM 5 com-
petition. The circles indicate the performance of our proposed method.

3 Simulations and Results

To assess the performance of the proposed method we participated in a
competition organised by the DREAM (Dialogue for Reverse Engineering
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TABLE 1. This table summarises the information about the DREAM 5 Network
Inference Challenge data sets. For each data set, we show which organism it came
from, how many genes were measured, how many of those genes were identified as
transcription factors (possibly regulatory genes) and how many chips (datapoints)
were included.

Data Set Organism Genes Transcription Factors Chips
1 Synthetic 1643 195 806
2 S. Aureus 2810 99 160
3 E. Coli 4511 334 805
4 S. Cerevisiae 5950 333 536

Assessments and Methods) consortium in autumn of 2010. The goal was to
reverse engineer gene regulatory networks from gene expression data sets.
Participants were given four microarray compendia and were challenged to
infer the structure of the underlying transcriptional regulatory networks.
The first compendium was based on an in-silico (i.e. simulated) network,
the other three compendia were obtained from microorganisms. Each com-
pendium consisted of hundreds of microarray experiments, which included
a wide range of genetic, drug, and environmental perturbations. More infor-
mation is available in Table 1 and at http://wiki.c2b2.columbia.edu/
dream/index.php/The_DREAM_Project. Network predictions were evalu-
ated by the organisers on a subset of known interactions for each organism,
or on the known network for the in-silico case (which is more objective).
Our method assumes an ordering of the microarray chips. While this con-
dition is naturally met for time course experiments, it does not hold for
the varying experimental conditions of the DREAM data. We therefore re-
sorted to the heuristic pre-processing step of mapping the high-dimensional
gene expression profiles onto a one-dimensional self-organising map (SOM)
initialized by the first principal component. We applied the software pack-
age som in R with default parameter settings. To reduce the computa-
tional complexity of the RIMCMC simulations we applied a pre-filtering
step based on TESLA (Ahmed and Xing, 2009), a time-varying network
inference method based on Ll-regularised linear regression. For each gene
we identified a set of 20 potential candidate regulators, based on the 20
regression coefficients with the largest modulus.

We assessed the convergence of our simulations with standard diagnostics
based on Gelman-Rubin potential scale reduction factors (PSRF). Owing
to unexpected downtime of the computer cluster we were using, only the
simulations on the first two data sets showed a sufficient degree of conver-
gence (PSRF< 1.2); for the latter data sets we submitted the results from
TESLA. The second data set was later removed from the evaluation by the
organisers. Figure 1 shows the results for the in silico data set obtained from
the rankings of interactions submitted by all participating teams, using two
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criteria: the area under the precision-recall curve (AUPRC), and the area
under the receiver-operator characteristic (AUROC) curve. As discussed
in Davis and Goadrich (2006), AUPRC gives a more faithful indication
of the network reconstruction accuracy than AUROC, and it is thus seen
that our method clearly lies in the group of the 5 top-ranked models. This
suggests that it compares favourably with the majority of existing schemes
and provides a useful tool for contemporary research in systems biology.
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