The θ-Join as a Join with θ

Jules Desharnais ${ }^{1}$ and Bernhard Möller ${ }^{2}$
${ }^{1}$ Université Laval, Québec
${ }^{2}$ Universität Augsburg

Abstract

We present an algebra for the classical database operators. Contrary to most approaches we use (inner) join and projection as the basic operators. Theta joins result by representing theta as a database table itself and defining theta-join as a join with that table. The same technique works for selection. With this, (point-free) proofs of the standard optimisation laws become very simple and uniform. The approach also applies to proving join/projection laws for preference queries. Extending the earlier approach of [16], we replace disjointness assumptions on the table types by suitable consistency conditions. Selected results have been machine-verified using the CalcCheck tool.

1 Introduction

The paper deals with an algebra for the classical operators of relational algebra as used in databases. While in most approaches the join operator is defined as a combination of direct product, selection and projection, we take a different approach, using (inner) join and projection as the basic operators. Theta joins are incorporated by simply representing (mathematically) theta as a database table itself and defining theta-join as a join with that table. The same can be done with selection by representing the corresponding condition as the table of all tuples that satisfy it. With this, (point-free) proofs of the standard laws become very simple and uniform. The approach is also suitable for proving join/projection laws for preference queries.

The paper builds upon [16]. While many of the laws there required disjointness of the types of the tables involved, we are here more general and replace disjointness of types by suitable consistency conditions. Technically, we extend the techniques there by deploying variants of the split and glue operators introduced in $[3,4]$. This allows point-free formulations of the new conditions and corresponding point-free proofs of the ensuing laws. Selected results have been machine-verified using the CalcCheck tool [9,10].

2 Preliminaries

Our approach is based on the algebra of binary relations, see e.g. [17]. A binary relation between sets M and N is a subset $R \subseteq M \times N$. We denote the empty relation \emptyset by 0 and the universal relation $M \times N$ by $\mathrm{T}_{M \times N}$, omitting the subscript
when it is clear from the context. Domain, codomain and relational composition ; are defined as usual, the latter binding stronger than union and intersection. The converse of R is $R^{\smile} \subseteq N \times M$, given by $R^{\smile}=\{(y, x) \mid(x, y) \in R\}$.

If $M=N$ then R is called homogeneous. In this case there is the identity relation $1_{M}=\{(x, x) \mid x \in M\}$, which is neutral w.r.t. ; . If M is clear from the context we omit the subscript M.

A test over M is a sub-identity $P \subseteq 1$ which encodes the subset $\{x \mid(x, x) \in$ $P\}$. The negation $\neg P$ of test P is the complement of P relative to 1 , i.e., $1-P$, where - is set difference. It encodes the complement of the set encoded by P. When convenient we do not distinguish between tests and the encoded sets.

Domain and codomain can be encoded as the tests

$$
\begin{equation*}
\left\ulcorner R=R ; \mathrm{\top}_{N \times M} \cap 1_{M}, \quad R=\mathrm{\top}_{M \times N} ; R \cap 1_{N}\right. \tag{1}
\end{equation*}
$$

We list a few properties of domain; symmetric ones hold for the codomain operator which, however, we do not use in this paper. For proofs see [6].

Lemma 2.1 Consider relations R, S and test P.

1. $\ulcorner(R \cup S)=\ulcorner R \cup\ulcorner S$. Hence \ulcorner is isotone, i.e., monotonically increasing, w.r.t. \subseteq.
2. $\ulcorner R ; R=R$ and $\neg\ulcorner; R=0$.
3. $\ulcorner P=P$
(stability)
4. $\ulcorner R=0 \Leftrightarrow R=0$.
5. $\ulcorner(P ; R)=P ;\ulcorner R$.
(full strictness)
6. $\ulcorner(R ; S)=\ulcorner(R ;\ulcorner S)$. (import/export)
7. $R ; P \cap S=(R \cap S) ; P=R \cap S ; P$.
(locality)

3 Typed Tuples

In this section we present the formal model of database objects as typed tuples. The types represent attributes, i.e., columns of a database relation. Conceptually and notationally, we largely base on [11].

Definition 3.1 Let \mathcal{A} be a set of attribute names and $\left(D_{A}\right)_{A \in \mathcal{A}}$ be a family of nonempty sets, where for $A \in \mathcal{A}$ the set D_{A} is called the domain of A.

1. The set $\mathcal{U}={ }_{d f} \bigcup_{A \in \mathcal{A}} D_{A}$ is called the universe.
2. A type T is a subset $T \subseteq \mathcal{A}$.
3. A T-tuple is a mapping $t: T \rightarrow \mathcal{U}$ where $\forall A \in T: t(A) \in D_{A}$. For $T=\emptyset$ the only T-tuple is the empty mapping \emptyset.
4. The domain D_{T} for a type T is the set of all T-tuples, i.e., the Cartesian product $D_{T}=\prod_{A \in T} D_{A}$.
5. For a T-tuple t and a sub-type $T^{\prime} \subseteq T$ we define the projection $\pi_{T^{\prime}}(t)$ to T^{\prime} as the restriction of the mapping t to T^{\prime}. By this $\pi_{\emptyset}(t)=\emptyset$. Projections π are not to be confused with the Cartesian product operator Π.
6. A set of tuples of the same type is called a table and is relationally encoded as a test.
7. For a tuple t and a table P of T-tuples we introduce the abbreviations

$$
t:: T \Leftrightarrow_{d f} t \in D_{T}, \quad P:: T \Leftrightarrow_{d f} P \subseteq D_{T} .
$$

Definition 3.2 Two tuples t_{i} :: $T_{i}(i=1,2)$ are called matching, in signs $t_{1} \# t_{2}$, iff $\pi_{T}\left(t_{1}\right)=\pi_{T}\left(t_{2}\right)$, where $T={ }_{d f} T_{1} \cap T_{2}$. In this case we define $t_{1} \bowtie t_{2}={ }_{d f} t_{1} \cup t_{2}$. The join of nonmatching tuples is undefined. If $T=\emptyset$, i.e., the types T_{i} are disjoint, then the t_{i} are trivially matching. The empty tuple \emptyset matches every tuple and hence is the neutral element of \bowtie.

The join of two types T_{1}, T_{2} is the union of their attributes, i.e., $T_{1} \bowtie T_{2}={ }_{d f}$ $T_{1} \cup T_{2}$. For tables $P_{i}:: T_{i}(i=1,2)$, the join \bowtie, binding stronger than union and intersection, is defined as the set of all matching combinations of P_{i}-tuples:

$$
\begin{aligned}
P_{1} \bowtie P_{2} & ={ }_{d f}\left\{t:: T_{1} \bowtie T_{2} \mid \pi_{T_{i}}(t) \in P_{i}(i=1,2)\right\} \\
& =\left\{t_{1} \bowtie t_{2} \mid t_{i} \in P_{i}(i=1,2), t_{1} \# t_{2}\right\} .
\end{aligned}
$$

When we want to avoid numerical indices we use the convention that table P has type T_{P}, etc. The table $\{\emptyset\}$ is the neutral element of \bowtie on tables.

Lemma 3.3 $D_{T_{1} \bowtie T_{2}}=D_{T_{1}} \bowtie D_{T_{2}}$. Hence $T_{2} \subseteq T_{1} \Rightarrow D_{T_{1}} \bowtie D_{T_{2}}=D_{T_{1}}$.
Proof. Immediate from the definition of type join and Def. 3.1.4.

Lemma 3.4 Consider tables P :: T_{P}, Q :: T_{Q} and an arbitrary type T^{\prime}.

1. Every tuple is characterised by its projections: for $t \in D_{T_{P} \bowtie T_{Q}}$ we have $t=\pi_{T_{P}}(t) \bowtie \pi_{T_{Q}}(t)$. For $t, u \in D_{T_{P} \bowtie T_{Q}}$ this entails $t=u \Leftrightarrow \pi_{T_{P}}(t)=$ $\pi_{T_{P}}(u) \wedge \pi_{T_{Q}}(t)=\pi_{T_{Q}}(u)$.
2. Projection sub-distributes over join: $\pi_{T^{\prime}}(P \bowtie Q) \subseteq \pi_{T^{\prime}}(P) \bowtie \pi_{T^{\prime}}(Q)$.
3. If $T_{P} \cap T_{Q}=\emptyset$ then this strengthens to an equality.
4. Straightforward calculation.
5. By distributivity of restriction over union, for any two matching tuples t_{1}, t_{2} (not necessarily from P, Q) we have $\pi_{T^{\prime}}\left(t_{1} \bowtie t_{2}\right)=\pi_{T^{\prime}}\left(t_{1}\right) \bowtie \pi_{T^{\prime}}\left(t_{2}\right)$. Hence if we take matching $t_{1} \in P, t_{2} \in Q$, then $t={ }_{d f} \pi_{T^{\prime}}\left(t_{1} \bowtie t_{2}\right) \in \pi_{T^{\prime}}(P \bowtie Q)$. Because $\pi_{T^{\prime}}\left(t_{1} \bowtie t_{2}\right)=\pi_{T^{\prime}}\left(t_{1}\right) \bowtie \pi_{T^{\prime}}\left(t_{2}\right)$, also $t \in \pi_{T^{\prime}}(P) \bowtie \pi_{T^{\prime}}(Q)$.
6. $\quad t \in \pi_{T^{\prime}}(P) \bowtie \pi_{T^{\prime}}(Q)$
$\Leftrightarrow \exists u, v: u \in P \wedge v \in Q \wedge t=\pi_{T^{\prime}}(u) \bowtie \pi_{T^{\prime}}(v)\{[$ definition of join $]\}$ $\Rightarrow \exists u, v: u \in P \wedge v \in Q \wedge t=\pi_{T^{\prime}}(u \bowtie v) \quad\left\{u \# v\right.$ by $\left.T_{P} \cap T_{Q}=\emptyset\right\}$ $\Rightarrow t \in \pi_{T^{\prime}}(P \bowtie Q) \quad\{$ definitions $\}$

Lemma 3.5 For $P_{i}:: T_{i}(i=1,2)$ with disjoint T_{i}, i.e., with $T_{1} \cap T_{2}=\emptyset$, the join $P_{1} \bowtie P_{2}$ is isomorphic to the Cartesian product of P_{1} and P_{2}.

Proof. For $t \in P_{1} \bowtie P_{2}$, the conditions $\pi_{T_{i}}(t) \in P_{i}(i=1,2)$ are independent. Hence all elements of P_{1} can be joined with all elements of P_{2}. Thus, by definition,

$$
t \in P_{1} \bowtie P_{2} \Leftrightarrow \pi_{T_{1}}(t) \in P_{1} \wedge \pi_{T_{2}}(t) \in P_{2} \Leftrightarrow\left(\pi_{T_{1}}(t), \pi_{T_{2}}(t)\right) \in P_{1} \times P_{2}
$$

Lemma 3.6 [16] The following laws hold:

1. \bowtie is associative, commutative and distributes over \cup.
2. \bowtie is isotone in both arguments.
3. Assume $P_{i}, Q_{i}:: T_{i}(i=1,2)$. Then the following interchange law holds:

$$
\left(P_{1} \cap Q_{1}\right) \bowtie\left(P_{2} \cap Q_{2}\right)=\left(P_{1} \bowtie P_{2}\right) \cap\left(Q_{1} \bowtie Q_{2}\right) .
$$

4. For $P, Q:: T$ we have $P \bowtie Q=P \cap Q$. In particular, $P \bowtie P=P$.

4 The $\boldsymbol{\theta}$-Join

For simplicity we restrict ourselves to θ-joins with binary relations θ. Assume tables $P:: T_{P}, Q:: T_{Q}$ with $T_{P} \cap T_{Q}=\emptyset$ as well as $A \in T_{P}, B \in T_{Q}$ and a binary relation $\theta \subseteq D_{A} \times D_{B}$. Note that the assumptions imply $A \neq B^{3}$. We want to model an expression that in standard database theory would be written " $P \bowtie_{\theta(P . A, Q . B)} Q$ ". The corresponding table contains exactly those tuples t of table $P \bowtie Q$ in which the values $t(A) \in P . A$ and $t(B) \in Q . B$ (remember that t is a function from attribute names to values) are in relation θ.

The idea is to consider θ mathematically again as table of type $A \bowtie B$. Then the above expression can simply be represented as $P \bowtie \theta \bowtie Q$.

Example 4.1 Here is a simple database of persons and ages with $>$ as θ.

[^0]We use our view of the θ-join for algebraic proofs of two standard optimisation rules for projections applied to joins.

Theorem 4.2

1. If $Q:: L \subseteq T_{P}$ then $\pi_{L}(P \bowtie Q)=\pi_{L}(P) \bowtie Q$.
2. Assume $T_{P} \cap T_{Q}=\emptyset$ and θ :: L for some $L \subseteq T_{P} \cup T_{Q}$. This means that θ is to provide the "glue" between the type-disjoint P and Q. Set $L_{P}={ }_{d f} T_{P} \cap L$ and $L_{Q}={ }_{d f} T_{Q} \cap L$. Then we have the transformation rule

$$
\pi_{L}(P \bowtie \theta \bowtie Q)=\pi_{L_{P}}(P) \bowtie \theta \bowtie \pi_{L_{Q}}(Q) \quad(\text { push projection over } j \text { oin }) .
$$

Proof.

1. (\subseteq) Immediate from Lm. 3.4.2 and $\pi_{L}(Q)=Q$ by $Q:: L$.
(〇)

$$
\pi_{L}(P)
$$

$=\pi_{L}\left(P \bowtie D_{P}\right) \quad\left\{\left[\right.\right.$ definition of $\left.D_{P}\right\}$
$=\pi_{L}\left(P \bowtie D_{P} \bowtie D_{L}\right) \quad\left\{\left[\right.\right.$ assumption $L \subseteq T_{P}$, definition of $\left.\left.D_{L}\right]\right\}$
$=\pi_{L}\left(P \bowtie D_{L}\right) \quad\left\{\left[\right.\right.$ definition of $\left.D_{P}\right\}$
$=\pi_{L}(P \bowtie(Q \cup \bar{Q})) \quad\{[\underline{B o o l e a n}$ algebra, setting $\bar{X}={ }_{d f} D_{L}-X$ for $\left.X:: L\right\}$
$\left.=\pi_{L}(P \bowtie Q) \cup \pi_{L}(P \bowtie \bar{Q})\right) \quad\{[$ distributivity of join and projection $]\}$
$\subseteq \pi_{L}(P \bowtie Q) \cup\left(\pi_{L}(P) \bowtie \pi_{L}(\bar{Q})\right)\{[\operatorname{Lm} .3 .4 .2]\}$
$=\pi_{L}(P \bowtie Q) \cup\left(\pi_{L}(P) \cap \pi_{L}(\bar{Q})\right)\{[\operatorname{Lm} 3.6 .4]\}$
$\subseteq \pi_{L}(P \bowtie Q) \cup \pi_{L}(\bar{Q}) \quad\{$ Boolean algebra \}
$=\pi_{L}(P \bowtie Q) \cup \bar{Q} \quad\left\{\left[\pi_{L}(\bar{Q})=\bar{Q}\right.\right.$ by $\left.\bar{Q}:: L\right\}$
By Lm 3.6.4 and shunting we obtain from this $\pi_{L}(P) \bowtie Q=\pi_{L}(P) \cap Q \subseteq$ $\pi_{L}(P \bowtie Q)$.
2. $\quad \pi_{L}(P \bowtie \theta \bowtie Q)$
$=\pi_{L}(P \bowtie Q \bowtie \theta) \quad\{$ associativity and commutativity of $\left.\bowtie]\right\}$
$=\pi_{L}(P \bowtie Q) \bowtie \theta \quad\{$ Part 1 $\}$
$=\pi_{L}(P) \bowtie \pi_{L}(Q) \bowtie \theta \quad\left\{\left[\right.\right.$ assumption $T_{P} \cap T_{Q}=\emptyset$ with Lm. 3.4.3]\}
$=\pi_{L}(P) \bowtie \theta \bowtie \pi_{L}(Q) \quad\{$ associativity and commutativity of $\left.\bowtie]\right\}$
$=\pi_{L_{P}}(P) \bowtie \theta \bowtie \pi_{L_{Q}}(Q) \quad\left\{\left[P:: T_{P}, Q:: T_{Q}\right.\right.$, definition of projection $\left.]\right\}$

5 Selection as Join

Since the representation of the θ-join as a join with θ has proved useful, we will now treat selection $\sigma_{C}(P)$ for table P and condition C analogously. A condition, i.e., a predicate on tuples, is simply represented as a subset $C \subseteq D_{L}$ for some type L, which means $C:: L$. Conjunction and disjunction of $C, C^{\prime}:: L$ are then represented by $C \bowtie C^{\prime}$ and $C \cup C^{\prime}$, resp. (see Lm. 3.6.4). For $P:: T$ and $L \subseteq T$, we can now just set $\sigma_{C}(P)={ }_{d f} P \bowtie C$.

Lemma 5.1 Assume again P :: T.

1. Selections commute, i.e., $\sigma_{C}\left(\sigma_{C^{\prime}}(P)\right)=\sigma_{C^{\prime}}\left(\sigma_{C}(P)\right)$.
2. Selections can be combined, i.e., $\sigma_{C}\left(\sigma_{C^{\prime}}(P)\right)=\sigma_{C \bowtie C^{\prime}}(P)$.
3. If C uses only attributes from $L \subseteq T$, i.e., $C \subseteq D_{L}$, then $\pi_{L}\left(\sigma_{C}(P)\right)=$ $\sigma_{C}\left(\pi_{L}(P)\right)$.

Proof.

1. Immediate from associativity/commutativity of \bowtie.
2. Ditto.
3. By definitions, Th. 4.2.1 and definitions again:

$$
\pi_{L}\left(\sigma_{C}(P)\right)=\pi_{L}(P \bowtie C)=\pi_{L}(P) \bowtie C=\sigma_{C}\left(\pi_{L}(P)\right)
$$

6 Inverse Image and Maximal Elements

The tools developed in the preceding sections will now be applied to a subfield of database theory, namely to preference queries. They serve to remedy a well known problem for queries with hard constraints, by which the objects sought in the database are clearly and sharply characterised. If there are no exact matches the empty result set is returned, which is very frustrating for users.

Instead, over the last decade queries with soft constraints have been studied. These arise from a formalisation of the user's preferences in the form of partial strict orders $[12,13]$. Instead of returning an empty result set, one can then present the user with the maximal or "best" tuples w.r.t. her preference order.

We now show how to express the maximality operator algebraically and then prove a sample optimisation rule for it. The idea has already been described thoroughly in the predecessor paper [16]; hence we only give a brief presentation of it. After that we develop substantially new laws for it. The main ingredient is an inverse image operator on relations.

Definition 6.1 For a type T a T-relation is a homogeneous binary relation R on D_{T}; we abbreviate this by $R:: T^{2}$. In analogy to the notation in Sect. 2 we also write T_{T} instead of $D_{T} \times D_{T}$. For a relation $R:: T^{2}$ the image of a test $P:: T$ under R is obtained using the forward diamond operator as

$$
|R\rangle P={ }_{d f}\{(x, x) \mid \exists y \in P: x R y\}=\ulcorner(R ; P) .
$$

Two immediate consequences of the definition and Lm. 2.1 are

$$
|0\rangle P=0, \quad|\mathrm{~T}\rangle P= \begin{cases}D_{T} & \text { if } P \neq 0 \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

The inverse image of a set P under a relation R consists of the elements that have an R-successor in P, i.e., are R-related to some object in P. Assume that R is a strict order (irreflexive and transitive), which is the case in our application domain of preferences. Then the inverse image of P consists of the tuples dominated by some tuple in P. This allows the following definition.

Definition 6.2 For a relation $R:: T^{2}$ and a set $P:: T$ the R-maximal objects of P form the relative complement of the set of R-dominated objects, viz.

$$
R \triangleright P={ }_{d f} P \cap \neg|R\rangle P .
$$

The mnemonic behind the \triangleright symbol is that in an order diagram for a preference relation R the maximal objects within P are the peaks in P; rotating the diagram clockwise by 90° puts the peaks to the right. Hence $R \triangleright P$ might also be read as " R-peaks in P ". From (2) we obtain

$$
\begin{equation*}
0 \triangleright P=P, \quad \text { Т } \triangleright P=0 \tag{3}
\end{equation*}
$$

A central ingredient for the preference approach is a possibility for defining complex preference relations out of simpler ones. An example would be "I prefer cars that are green and, equally important, have low fuel consumption". The following sections deal with such construction mechanisms, notably with the join of relations.

7 The Join of Relations

Definition 7.1 The $j o i n R_{1} \bowtie R_{2}::\left(T_{1} \bowtie T_{2}\right)^{2}$ of relations $R_{i}:: T_{i}^{2}(i=1,2)$ is

$$
t\left(R_{1} \bowtie R_{2}\right) u \Leftrightarrow_{d f} \pi_{T_{1}}(t) R_{1} \pi_{T_{1}}(u) \wedge \pi_{T_{2}}(t) R_{2} \pi_{T_{2}}(u)
$$

Example 7.2 We model the above simple database of cars. Consider the set $\mathcal{A}=\{$ Col, Fuel $\}$ of attribute names with $D_{\text {Col }}=\{$ black, blue, green, red, white $\}$ and $D_{\text {Fuel }}=\{4.0,4.1, \ldots, 9.9,10.0\}$. The comparison relation $R_{\text {Col }}$ is given by the Hasse diagram

while as $R_{\text {Fuel }}$ we choose $>$. A user uttering the preference $R_{\text {Col }}$ does not like black at all, likes green best and otherwise is indifferent about blue, red, white. Hence $s\left(R_{\text {Col }} \bowtie R_{\text {Fuel }}\right) t$ iff the colour of t is closer to green than that of s and the fuel value of t is less than that of s.

Definition 7.3 Based on join we can define the two standard preference constructors \otimes of Pareto and $\&$ of prioritised composition as

$$
\begin{aligned}
R \otimes S & ={ }_{d f}(R \bowtie(1 \cup S)) \cup((1 \cup R) \bowtie S) \\
R \& S & ={ }_{d f}(R \bowtie \mathrm{~T}) \cup(1 \bowtie S)
\end{aligned}
$$

Pareto composition corresponds to the product order on pairs, with two variations: it does not consider pairs, but tuples from which parts are extracted by the projections involved in \bowtie; moreover, it is more liberal than the product of strict orders, since it also admits equality in one part of the tuples as long as there is a strict order relation between the other parts. Prioritised composition corresponds to the lexicographic order on pairs.

We seek a set of algebraic laws that allow proving optimisation rules similar to "push projection over join" from Th. 4.2.2. As an example consider tables $P:: T_{P}, Q:: T_{Q}$ and a preference relation $R:: T_{P}^{2}$. Then we would like to show

$$
\begin{equation*}
\left(R \bowtie \mathrm{~T}_{Q}\right) \triangleright(P \bowtie Q)=(R \triangleright P) \bowtie Q \tag{4}
\end{equation*}
$$

under suitable side conditions on P, Q, R. The preference $R \bowtie \mathrm{~T}_{Q}$, which also occurs as a part of the \& constructor, expresses that the user does not care about the attributes in T_{Q} and is only interested in the T_{P} part. Therefore the preference query can be pushed to that part as shown on the right hand side. This may speed up the query evaluation considerably.

To achieve the mentioned algebraic laws we need to investigate the interaction between the \bowtie and \triangleright operators involved. Of particular importance are so-called interchange laws: the above rule can, by (3), be written as

$$
\left(R \bowtie \mathrm{~T}_{Q}\right) \triangleright(P \bowtie Q)=(R \triangleright P) \bowtie(0 \triangleright Q) ;
$$

a maximum between joins is equal to a join between maxima ${ }^{4}$.

8 Split, Glue and Pair Relations

To formulate and prove rules about the join of relations in an algebraic style we bring the pointwise definition into a more manageable point-free form. For this we deploy techniques from [3,4]. First we introduce relations for connecting tuples and pairs of tuples.

Definition 8.1 For types T_{1}, T_{2} we define split \prec and its converse glue \succ with the functionalities

$$
\begin{aligned}
& { }_{T_{1} \bowtie T_{2}} \prec_{T_{1} \times T_{2}} \subseteq D_{T_{1} \bowtie T_{2}} \times\left(D_{T_{1}} \times D_{T_{2}}\right), \\
& T_{1 \times T_{2}} \succ_{T_{1} \bowtie T_{2}} \subseteq\left(D_{T_{1}} \times D_{T_{2}}\right) \times D_{T_{1} \bowtie T_{2}} .
\end{aligned}
$$

Again we suppress the type indices for readability. The behaviour is given by

$$
t \prec\left(t_{1}, t_{2}\right) \Leftrightarrow_{d f}\left(t_{1}, t_{2}\right) \succ t \Leftrightarrow_{d f} t_{1}=\pi_{T_{1}}(t) \wedge t_{2}=\pi_{T_{2}}(t)
$$

Hence \prec relates every tuple to all its possible splits into matching pairs of subtuples. The definition is stronger than the corresponding one in [3,4], and this results in more useful laws which are detailed below: [3,4] allow arbitrary splittings on the left and right of $\succ ; \prec$, whereas ours are "synchronised" by the projections so that the same splits are used on the left and right. By the difference in approach the forward interchange rule of Th. 9.2 does not hold in their setting. For the purposes of database algebra, however, the stronger definition is quite adequate.

While split and glue tell us how to decompose or recompose tuples or tuple parts, we also want to want to relate corresponding parts "in parallel".

[^1]Definition 8.2 A pair relation over types T_{1}, T_{2} is a subset of $\left(D_{T_{1}} \times D_{T_{2}}\right) \times$ $\left(D_{T_{1}} \times D_{T_{2}}\right)$. The parallel product $R_{1} \times R_{2}$ of relations $R_{i}:: T_{i}^{2}$ is the pair relation

$$
\left(t_{1}, t_{2}\right)\left(R_{1} \times R_{2}\right)\left(u_{1}, u_{2}\right) \Leftrightarrow_{d f} t_{1} R_{1} u_{1} \wedge t_{2} R_{2} u_{2} .
$$

By $1_{T_{1} \times T_{2}}$ we denote the identity pair relation. When the T_{i} are clear from the context we omit the type index.

The parallel product is a standard construct in relation algebra; it occurs, for instance, in [2] and [7] and is also called a Kronecker product [8]. With its help we can express the lifting of join to relations in Def. 7.1 more compactly.

Lemma 8.3 The join of relations $R_{i}:: T_{i}^{2}$ can be expressed point-free as

$$
R_{1} \bowtie R_{2}={ }_{d f} \prec ;\left(R_{1} \times R_{2}\right) ; \succ .
$$

The proof is immediate from the definitions. From this relational representation it follows that join is strict w.r.t. 0 and distributes through union in both arguments. We note that for relational tests P, Q the lifting $P \bowtie Q$ is a test in the algebra of relations. Details are given in Lm. 10.5.

Next to this, we also use the concept of tests for pair relations. These are again sub-identities, i.e., subsets of $1_{T_{1} \times T_{2}}$; as usual they are idempotent and commute under ; (e.g. [5]). The parallel product of tests is a test in the set of pair relations.

Definition 8.4 Another test in the set of pair relations is the lifted matching check ${ }_{T_{1}} \bigoplus_{T_{2}}$: for tuples $t_{i}, u_{i}:: T_{i}$

$$
\left(t_{1}, t_{2}\right)_{T_{1}} \oiint_{T_{2}}\left(u_{1}, u_{2}\right) \Leftrightarrow{ }_{d f} t_{1}=u_{1} \wedge t_{2}=u_{2} \wedge t_{1} \# t_{2}
$$

To ease notation, we suppress the type indices.
We now present the essential laws for all these constructs.

Lemma 8.5

1. $\succ=\prec$.
2. $\succ ; \prec=\circledast$ and hence $\succ ; \prec \subseteq 1$.
3. $\prec ; \succ=1$ 。
4. $\# ;>=\succ$ and symmetrically $\prec ; \#=\prec$.
5. \prec and \succ are deterministic and injective; in addition \prec is total and \succ is surjective.
6. $\prec ; C ; \succ \subseteq R \Leftrightarrow \nexists ; C ; \# \subseteq \succ ; R ; \prec$. In particular, $\prec ; C ; \succ \subseteq \prec ; D ; \succ \Leftrightarrow \# ; C ; \# \subseteq \circledast ; D ; \#$.
7. $\prec ; \mathrm{T} ; \succ=\mathrm{T}$.
8. $\prec ; C ; \# ; \mathrm{T} ; \succ=\prec ; C ; \succ ; \mathrm{T}$.

Proof. The proofs of Parts 1-3 are straightforward pointwise calculations.
4. By 2 and $3, \# ; \succ=\succ ; \prec ; \succ=\succ ; 1=\succ$.
5. These are standard relation-algebraic consequences of Parts 1-3.
6. By isotony, Part 2, isotony and Parts 4 and 3,

$$
\begin{aligned}
& \prec ; C ; \succ \subseteq R \Rightarrow \succ ; \prec ; C ; \succ ; \prec \subseteq \succ ; R ; \prec \\
& \Leftrightarrow \nsubseteq ; C ; \# \subseteq \succ ; R ; \prec \Rightarrow \prec ; \# ; C ; \# ; \succ \subseteq \prec ; \succ ; R ; \prec ; \succ \\
& \Leftrightarrow \prec ; C ; \succ \subseteq R .
\end{aligned}
$$

For $R=\prec ; D ; \succ$ the second claim results again by Part 2.
7. This is direct by totality of \prec and surjectivity of \succ (Part 5).
8. By Parts 2 and $7, \prec ; C ; \# ; \mathrm{T} ; \succ=\prec ; C ; \succ ; \prec ; \mathrm{T} ; \succ=\prec ; C ; \succ ; \mathrm{T}$.

Lemma 8.6

1. $1_{T_{1} \times T_{2}}=1_{T_{1}} \times 1_{T_{2}}$.
2. $\mathrm{T}_{T_{1}} \times \mathrm{T}_{T_{2}}$ is the universal pair relation.
3. The operators \times and \cap satisfy an equational interchange law:

$$
\left(R_{1} \cap R_{2}\right) \times\left(S_{1} \cap S_{2}\right)=\left(R_{1} \times S_{1}\right) \cap\left(R_{2} \times S_{2}\right)
$$

4. The operators \times and ; satisfy an equational interchange law:

$$
\left(R_{1} ; R_{2}\right) \times\left(S_{1} ; S_{2}\right)=\left(R_{1} \times S_{1}\right) ;\left(R_{2} \times S_{2}\right)
$$

Again, the proofs are straightforward calculations. In addition, we have the following result.

Lemma 8.7 Identity and top behave nicely w.r.t. \bowtie, i.e., $1_{T_{1}} \bowtie 1_{T_{2}}=1_{T_{1} \bowtie T_{2}}$. Similarly, $\mathrm{T}_{T_{1}} \bowtie \mathrm{~T}_{T_{2}}=\mathrm{T}_{T_{1} \bowtie T_{2}} ;$ equivalently, $\prec ; \mathrm{T}_{T_{1} \times T_{2}} ; \succ=\mathrm{T}_{T_{1} \bowtie T_{2}}$.

Proof. For the first claim we calculate, using Lms. 8.3, 8.6.1 and 8.5.3,

$$
1_{T_{1}} \bowtie 1_{T_{2}}=\prec ;\left(1_{T_{1}} \times 1_{T_{2}}\right) ; \succ=\prec ; 1_{T_{1} \times T_{2}} ; \succ=\prec ; \succ=1_{T_{1} \bowtie T_{2}}
$$

The second claim was shown in Lm. 8.5.7.

9 Interchange Laws for Join

We have already seen some interchange laws. It turns out that join inherits many of them, sometimes as inclusions rather than equations.

Lemma 9.1 Relations $R_{i}, S_{i}:: T_{i}^{2}$ satisfy the equational interchange law

$$
\left(R_{1} \bowtie R_{2}\right) \cap\left(S_{1} \bowtie S_{2}\right)=\left(R_{1} \cap S_{1}\right) \bowtie\left(R_{2} \cap S_{2}\right) .
$$

Proof.

$$
\begin{aligned}
& \left(R_{1} \bowtie R_{2}\right) \cap\left(S_{1} \bowtie S_{2}\right) \\
= & \prec ;\left(R_{1} \times R_{2}\right) ; \succ \cap \prec ;\left(S_{1} \times S_{2}\right) ; \succ \quad\{[\text { Lm. } 8.3]\}
\end{aligned}
$$

$$
\begin{array}{lll}
=\prec ;\left(\left(R_{1} \times R_{2}\right) \cap\left(S_{1} \times S_{2}\right)\right) ; \succ & & \{\text { determinacy of } \prec \text { and } \\
& & \text { injectivity of } \succ(\text { Lm. 8.5.5 })]\} \\
=\prec ;\left(\left(R_{1} \cap S_{1}\right) \times\left(R_{2} \cap S_{2}\right)\right) ; \succ & & \{[\times-\cap \text {-interchange }(\text { Lm. 8.6 })]\} \\
=\left(R_{1} \cap S_{1}\right) \bowtie\left(R_{2} \cap S_{2}\right) & & \{[\text { Lm. 8.3]\}}
\end{array}
$$

Theorem 9.2 (Forward Interchange) Relations $R_{i}, S_{i}:: T_{i}^{2}$ satisfy the inclusional interchange law

$$
\left(R_{1} \bowtie R_{2}\right) ;\left(S_{1} \bowtie S_{2}\right) \subseteq\left(R_{1} ; S_{1}\right) \bowtie\left(R_{2} ; S_{2}\right) .
$$

Proof. We calculate as follows.

$$
\begin{array}{rll}
& \left(R_{1} \bowtie R_{2}\right) ;\left(S_{1} \bowtie S_{2}\right) & \\
=\prec ;\left(R_{1} \times R_{2}\right) ; \succ ; \prec ;\left(S_{1} \times S_{2}\right) ; \succ & \{[\text { Lm. } 8.3]\} \\
\subseteq & \prec ;\left(R_{1} \times R_{2}\right) ; 1 ;\left(S_{1} \times S_{2}\right) ; \succ & \{[\text { Lm. 8.5.2]\}} \\
= & \prec ;\left(R_{1} \times R_{2}\right) ;\left(S_{1} \times S_{2}\right) ; \succ & \{[\text { neutrality of } 1]\} \\
= & \prec ;\left(\left(R_{1} ; S_{1}\right) \times\left(R_{2} ; S_{2}\right)\right) ; \succ & \{[;-\times \text {-interchange (Lm. 8.6.3)]\}} \\
= & \left(R_{1} ; S_{1}\right) \bowtie\left(R_{2} ; S_{2}\right) & \{[\text { Lm. } 8.3]\}
\end{array}
$$

Using this we can show a subdistribution law for domain over join.
Theorem 9.3 For $R_{i}:: T_{i}^{2}(i=1,2)$ the domain of their join satisfies

$$
\left\ulcorner(R _ { 1 } \bowtie R _ { 2 }) \subseteq \left\ulcornerR _ { 1 } \bowtie \left\ulcorner R_{2}\right.\right.\right.
$$

Proof. By (1) and Lm. 8.7, Th. 9.2, \bowtie - - -interchange (Lm. 9.1) and (1):

$$
\begin{aligned}
& \left\ulcorner\left(R_{1} \bowtie R_{2}\right)=\left(R_{1} \bowtie R_{2}\right) ;\left(\mathrm{T}_{T_{1}} \bowtie \mathrm{~T}_{T_{2}}\right) \cap\left(1_{T_{1}} \bowtie 1_{T_{2}}\right)\right. \\
& \begin{array}{l}
\subseteq\left(\left(R_{1} ; \mathbf{T}_{T_{1}}\right) \bowtie\left(R_{2} ; \mathbf{T}_{T_{2}}\right)\right) \cap\left(1_{T_{1}} \bowtie 1_{T_{2}}\right) \\
=\left(R_{1} ; \mathbf{T}_{T_{1}} \cap 1_{T_{1}}\right) \bowtie\left(R_{2} ; \mathbf{T}_{T_{2}} \cap 1_{T_{2}}\right) \stackrel{ }{=} R_{1} \bowtie\left\ulcorner R_{2}\right.
\end{array}
\end{aligned}
$$

Next we present conditions under which these inclusions become equations.

10 Compatibility and Matching

Definition 10.1

1. We call R_{1}, R_{2} weakly matching if for all $x_{i} \in\left\ulcorner R_{i}(i=1,2)\right.$ with $x_{1} \# x_{2}$ there are $y_{i}:: T_{i}(i=1,2)$ with $y_{1} \# y_{2}$ and $x_{i} R_{i} y_{i}$. This means that starting from matching tuples one can always reach corresponding matching tuples via the R_{i}.
2. R_{1}, R_{2} are strongly matching if for all $x_{i} \in\left\ulcorner R_{i}(i=1,2)\right.$ with $x_{1} \# x_{2}$ all tuples $y_{i}:: T_{i}(i=1,2)$ with $x_{i} R_{i} y_{i}$ satisfy $y_{1} \# y_{2}$. This means that starting from matching tuples all corresponding tuples reachable via the R_{i} are matching again.

We want to find a algebraic characterisations of these forms of matching.

Definition 10.2 Relations R_{1}, R_{2} are forward compatible iff

$$
\# ;\left(R_{1} \times R_{2}\right) \subseteq\left(R_{1} \times R_{2}\right) ; \#,
$$

and backward compatible iff $\left(R_{1} \times R_{2}\right) ; 円 \subseteq \circledast ;\left(R_{1} \times R_{2}\right)$. Finally, R_{1} and R_{2} are compatible iff they are forward and backward compatible.

We can now give point-free characterisations of matching.

Lemma 10.3

1. All test relations are compatible with each other.
2. Two relations are strongly matching iff they are forward compatible.
3. R_{1}, R_{2} are weakly matching iff $\# ;\left(\left\ulcorner R_{1} \times\left\ulcorner R_{2}\right) \subseteq\left\ulcorner\left(\left(R_{1} \times R_{2}\right)\right.\right.\right.\right.$; \#) iff $\ulcorner(\#$; $\left.\left(R_{1} \times R_{2}\right)\right) \subseteq\left\ulcorner\left(\left(R_{1} \times R_{2}\right) ; 円\right)\right.$.
4. Strongly matching relations are also weakly matching.

Proof.

1. For test relations P, Q the relation $P \times Q$ is a test in the algebra of pair relations. Since $\#$ is a test there too, they commute, which means forward and backward compatibility of P and Q.
2. Straightforward predicate calculus with the definitions.
3. Ditto for the first inclusion. The second one results from the first by distributivity of domain over \times and the import/export law of Lm. 2.1.5.
4. Immediate from the second inclusion of Part 3 and isotony of domain.

Now we can show a reverse interchange law between \bowtie and ;
Theorem 10.4 (Backward Interchange) Let $R_{i}, S_{i}:: T_{i}^{2}$. If R_{1}, R_{2} are forward compatible or S_{1}, S_{2} are backward compatible then

$$
\left(R_{1} ; S_{1}\right) \bowtie\left(R_{2} ; S_{2}\right) \subseteq\left(R_{1} \bowtie R_{2}\right) ;\left(S_{1} \bowtie S_{2}\right)
$$

In particular, if R_{1}, R_{2} or S_{1}, S_{2} are tests then the inclusion holds.
Proof. We assume R_{1}, R_{2} to be forward compatible.

```
    \(\left(R_{1} ; S_{1}\right) \bowtie\left(R_{2} ; S_{2}\right)\)
    \(=\prec ;\left(R_{1} ; S_{1}\right) \times\left(R_{2} ; S_{2}\right) ; \succ \quad\{[\operatorname{Lm} .8 .3]\}\)
    \(=\prec ;\left(R_{1} \times R_{2}\right) ;\left(S_{1} \times S_{2}\right) ; \succ \quad\{[;-\times\)-interchange (Lm. 8.6.4) \(]\}\)
    \(=\prec ; \# ;\left(R_{1} \times R_{2}\right) ;\left(S_{1} \times S_{2}\right) ; \succ \quad\{[\) Lm. 8.5.4 \(]\}\)
    \(\subseteq \prec ;\left(R_{1} \times R_{2}\right) ; \# ;\left(S_{1} \times S_{2}\right) ; \succ \quad\{[\) forward compatibility ]\}
    \(=\prec ;\left(R_{1} \times R_{2}\right) ; \succ ; \prec ;\left(S_{1} \times S_{2}\right) ; \succ \quad\{[\) Lm. 8.5.2 \(]\}\)
    \(=\left(R_{1} \bowtie R_{2}\right) ;\left(S_{1} \bowtie S_{2}\right)\)
\(\{[\) Lm. 8.3\(]\}\)
```

The proof under backward compatibility of S_{1}, S_{2} is symmetric.
Finally, we show the announced result on the join of tests.
Lemma 10.5 If $P_{i}:: T_{i}(i=1,2)$ are tests then $P_{1} \bowtie P_{2}:: T_{1} \bowtie T_{2}$ is a test with $\neg\left(P_{1} \bowtie P_{2}\right)=\neg P_{1} \bowtie 1_{T_{2}} \cup 1_{T_{1}} \bowtie \neg P_{2}$, where $\neg P=1-P$.

Proof. First,

$$
\begin{aligned}
& \left(P_{1} \bowtie P_{2}\right) ;\left(\neg P_{1} \bowtie 1_{T_{2}} \cup 1_{T_{1}} \bowtie \neg P_{2}\right) \\
= & \{\text { distributivity }\} \\
& \left(P_{1} \bowtie P_{2}\right) ;\left(\neg P_{1} \bowtie 1_{T_{2}}\right) \cup\left(P_{1} \bowtie P_{2}\right) ;\left(1_{T_{1}} \bowtie \neg P_{2}\right) \\
\subseteq & \{\text { forward interchange }(\text { Th. } 9.2)]\} \\
& \left(P_{1} ; \neg P_{1}\right) \bowtie\left(P_{2} ; 1_{T_{2}}\right) \cup\left(P_{1} ; 1_{T_{1}}\right) \bowtie\left(P_{2} ; \neg P_{2}\right) \\
= & \left\{\left[P_{i} \text { tests and strictness of join }\right\}\right. \\
& 0_{T_{1} \bowtie T_{2}}
\end{aligned}
$$

Second,

$$
\begin{aligned}
& P_{1} \bowtie P_{2} \cup \neg P_{1} \bowtie 1_{T_{2}} \cup 1_{T_{1}} \bowtie \neg P_{2} \\
= & \{[\text { Boolean algebra and distributivity of join }\} \\
& P_{1} \bowtie P_{2} \cup \neg P_{1} \bowtie P_{2} \cup \neg P_{1} \bowtie \neg P_{2} \cup P_{1} \bowtie \neg P_{2} \cup \neg P_{1} \bowtie \neg P_{2} \\
= & \quad\{\text { distributivity of join and Boolean algebra }\} \\
& 1_{T_{1}} \bowtie P_{2} \cup 1_{T_{1}} \bowtie \neg P_{2} \\
= & \{\text { distributivity of join and Boolean algebra }\} \\
& 1_{T_{1}} \bowtie 1_{T_{2}} \\
= & \{[\text { Lm. 8.7 }\} \\
& 1_{T_{1} \bowtie T_{2}}
\end{aligned}
$$

11 About Weak Matching

We have seen that strong matching turns \bowtie-;-interchange from inclusion to equation form (Lm. 10.3, Ths. 9.2 and 10.4). We now show that weak matching does the same for distributivity of domain over join.

Theorem 11.1 Weakly matching $R_{i}:: T_{i}^{2}$ satisfy $\left\ulcorner R_{1} \bowtie\left\ulcorner R_{2} \subseteq\left\ulcorner\left(R_{1} \bowtie R_{2}\right)\right.\right.\right.$.
Proof. By Lm. 8.3, Lm. 8.5.4, weak matching with Lm. 10.3.3, domain representation (1), isotony, Lm. 8.5(8,3) and Lm. 8.3 with domain representation (1):

$$
\begin{aligned}
\left\ulcornerR _ { 1 } \bowtie \left\ulcorner R_{2}\right.\right. & =\prec ;\left(\left\ulcornerR_{1} \times\left\ulcorner R_{2}\right) ; \succ=\prec ; \circledast ;\left(\left\ulcornerR_{1} \times\left\ulcorner R_{2}\right) ; \succ\right.\right.\right.\right. \\
& \subseteq \prec ;\left(\left(R_{1} \times R_{2}\right) ; \#\right) ; \succ=\prec ;\left(\left(R_{1} \times R_{2}\right) ; 巴 ; \mathrm{T} \cap 1\right) ; \succ \\
& \left.\subseteq \prec ;\left(R_{1} \times R_{2}\right) ; \# ; \mathrm{T} ; \succ \cap \prec ;\right\rangle ; \succ=\prec ;\left(R_{1} \times R_{2}\right) ; \succ ; \mathrm{T} \cap 1 \\
& =\left\ulcorner\left(R_{1} \bowtie R_{2}\right)\right.
\end{aligned}
$$

Weak matching is even equivalent to distributivity of domain.
Theorem 11.2 If $\left\ulcorner^{\ulcorner } R_{1} \bowtie\left\ulcorner R_{2} \subseteq\left\ulcorner\left(R_{1} \bowtie R_{2}\right)\right.\right.\right.$ then R_{1}, R_{2} are weakly matching.
Proof. We first prove that an injective relation S and an arbitrary relation R satisfy $S ;\left\ulcorner\left(S^{\sim} ; R\right)=\ulcorner R ; S\right.$. By domain representation (1), then by $R ;(S ; \mathbf{T} \cap 1)=$
$R \cap \mathrm{\top} ; S^{\complement}$ and laws of ${ }^{\smile}$, right distributivity due to injectivity of $S, P^{\smile}=P$ for any test P and domain representation (1):

$$
\begin{aligned}
S ;\left\ulcorner\left(S^{\ulcorner } ; R\right)\right. & =S ;\left(S^{\smile} ; R ; \mathrm{T} \cap 1\right)=S \cap \mathrm{~T} ; R\ulcorner S \\
& =(1 \cap \mathrm{~T} ; R) ; S=(1 \cap R ; \mathrm{T}) ; S=\ulcorner R ; S .
\end{aligned}
$$

To prove the lemma, we assume $\left\ulcorner R_{1} \bowtie\left\ulcorner R_{2} \subseteq\left\ulcorner\left(R_{1} \bowtie R_{2}\right)\right.\right.\right.$ and prove $\# ;\left(\left\ulcorner R_{1} \times\right.\right.$ $\left\ulcorner R_{2}\right) \subseteq\left\ulcorner\left(\left(R_{1} \times R_{2}\right) ; \#\right)(\right.$ see Lm. 10.3.3).

$$
\begin{aligned}
& \# ;\left(\left\ulcornerR_{1} \times\left\ulcorner R_{2}\right)\right.\right. \\
& =\# ;\left(\left\ulcornerR_{1} \times\left\ulcorner R_{2}\right) ; \# \quad\left\{巴 \text { and } \left\ulcornerR_{1} \times\left\ulcorner R_{2}\right. \text { are tests, idempotence }\right.\right.\right.\right. \\
& \text { and commutativity of tests]\} } \\
& =\succ ; \prec ;\left(\left\ulcornerR_{1} \times\left\ulcorner R_{2}\right) ; \succ ; \prec \quad\{\text { Lm. 8.5.2 \} }\right.\right. \\
& =\succ ;\left(\left\ulcorner R_{1} \bowtie\left\ulcorner R_{2}\right) ; \prec \quad\{\text { Lm. } 8.3]\right\}\right. \\
& \subseteq \succ ;\left(R_{1} \bowtie R_{2}\right) ; \prec \quad\{\text { assumption and isotony }\} \\
& \left.=\succ ;\left(\prec ;\left(R_{1} \times R_{2}\right) ; \succ\right) ; \prec \quad\{\text { Lm. } 8.3]\right\} \\
& =\left\ulcorner\left(\left(R_{1} \times R_{2}\right) ; \succ\right) \succ ; \prec \quad\{\text { Lm. 8.5(1,5) and preliminary result }]\right\} \\
& =\left\ulcorner\left(\left(R_{1} \times R_{2}\right) ; \# ;>\right) ; \# \quad\{\text { L. } \# \text {. 8.5 (2,4) }]\right\} \\
& \subseteq\left\ulcorner\left(\left(R_{1} \times R_{2}\right) ; \#\right) \quad\{\lceil(R ; S) \subseteq\ulcorner R, \# \text { is a test and isotony }\}\}\right.
\end{aligned}
$$

12 Join and Maximal Elements

We now study how join and the maximum operator interact. First we show an interchange law for join and diamond.

Lemma 12.1 For $R_{i}:: T_{i}^{2}$ and $P_{i}:: T_{i}(i=1,2)$,

$$
\left|R_{1} \bowtie R_{2}\right\rangle\left(P_{1} \bowtie P_{2}\right) \subseteq\left|R_{1}\right\rangle P_{1} \bowtie\left|R_{2}\right\rangle P_{2} .
$$

If the $R_{i} ; P_{i}$ are weakly matching then this strengthens to an equality.

Proof. By definition of inverse image, Th. 9.2 with Lm. 10.3.1 and Th. 10.4, Th. 9.3 and definition of inverse image:

$$
\begin{aligned}
\left|R_{1} \bowtie R_{2}\right\rangle\left(P_{1} \bowtie P_{2}\right) & =\left\ulcorner\left(\left(R_{1} \bowtie R_{2}\right) ;\left(P_{1} \bowtie P_{2}\right)\right)=\left\ulcorner\left(\left(R_{1} ; P_{1}\right) \bowtie\left(R_{2} ; P_{2}\right)\right)\right.\right. \\
& \subseteq\left\ulcorner\left(R_{1} ; P_{1}\right) \bowtie\left\ulcorner\left(R_{2} ; P_{2}\right)=\left|R_{1}\right\rangle P_{1} \bowtie\left|R_{2}\right\rangle P_{2}\right)\right.
\end{aligned}
$$

The claim when the $R_{i} ; P_{i}$ are weakly matching follows by using Th. 11.1 in the third step.

This is used to derive an interaction law for join and maximum.
Lemma 12.2 Consider tables $P:: T_{P}, Q:: T_{Q}$ and relations R :: T_{P}^{2} and $S:: T_{Q}^{2}$ such that $R ; P$ and $S ; Q$ are weakly matching. Then

$$
(R \bowtie S) \triangleright(P \bowtie Q)=(R \triangleright P) \bowtie Q \cup P \bowtie(S \triangleright Q) .
$$

Proof.

$$
\begin{array}{rlrl}
& (R \bowtie S) \triangleright(P \bowtie Q) & & \\
= & (P \bowtie Q)-|R \bowtie S\rangle(P \bowtie Q) & & \{\text { definition of } \triangleright]\} \\
= & (P \bowtie Q)-(|R\rangle P \bowtie|S\rangle Q) & \{[\text { Lm. 12.1]\}} \\
= & (P \bowtie Q) ; \neg(|R\rangle P \bowtie|S\rangle Q) & & \{\text { definition of }-]\} \\
= & (P \bowtie Q) ; & & \{\text { complement of test (Lm. 10.5)]\}} \\
& \left(\neg|R\rangle P \bowtie 1_{Q} \cup 1_{P} \bowtie \neg|S\rangle Q\right) & \\
= & (P ; \neg|R\rangle P) \bowtie\left(Q ; 1_{Q}\right) & & \{\text { distributivity and interchange laws of } \\
& \left.\cup\left(P ; 1_{P}\right) \bowtie Q ; \neg|S\rangle Q\right) & & \text { Ths. 9.2 and } 10.4, \text { since } P, Q \text { are tests }]\} \\
= & (R \triangleright P) \bowtie Q \cup P \bowtie(S \triangleright Q) & & \{\text { neutrality of } 1 \text { and definition of } \triangleright]\}
\end{array}
$$

Corollary 12.3 Consider tables P :: T_{P}, Q :: T_{Q} and a relation R :: T_{P}^{2} such that $R ; P$ and $\mathrm{T}_{Q} ; Q$ are weakly matching. Then

$$
\left(R \bowtie \mathrm{~T}_{Q}\right) \triangleright(P \bowtie Q)=(R \triangleright P) \bowtie Q .
$$

Proof. Immediate from Lm. 12.2, (3), strictness of \bowtie and neutrality of 0 .
This shows (4) - the only question is how to establish weak matching. For this we introduce a sufficient condition.

Definition 12.4 Assume tables P :: $T_{P}, Q:: T_{Q}$. We call P joinable with Q if $P \subseteq|\#\rangle Q$, where $\#$ is the matching relation between tuples. Pointwise, P is joinable with Q iff $\forall p \in P: \exists q \in Q: p \# q$. Informally this means that every tuple in P has a join partner in Q.

Lemma 12.5 If P is joinable with Q then $R ; P$ and $\mathrm{T}_{Q} ; Q$ are weakly matching.

Since the proof needs additional notions we defer it to the Appendix.
Now we can state an optimisation rule involving a θ-join.

Theorem 12.6 Consider P :: $T_{P}, Q:: T_{Q}, R:: T_{P}^{2}$ as well as $\theta::\{A\} \bowtie\{B\}$ with $A \in T_{P}, B \in T_{Q}$ with $T_{P} \cap T_{Q}=\emptyset$. If P is joinable with $\theta \bowtie Q$ then

$$
\left(R \bowtie \mathrm{~T}_{\theta \bowtie Q}\right) \triangleright(P \bowtie \theta \bowtie Q)=(R \triangleright P) \bowtie \theta \bowtie Q .
$$

This is immediate from Lm .12 .5 and Cor. 12.3.
Without the premise of joinability the theorem need not hold.

Example 12.7 Choose, for instance, θ as equality and $T_{P}=\{A\}, P=\{1,2\}$, $T_{Q}=\{B\}, Q=\{1\}$ as well as $D_{A}=D_{B}=\{1,2\}$. Here $\{2\}$ has no join partner in $\theta \bowtie Q$. Now for a preference R with $1 R 2$ we have the differing expressions

$$
\begin{aligned}
& \left(R \bowtie \mathrm{~T}_{\theta \bowtie Q}\right) \triangleright(P \bowtie \theta \bowtie Q)=\left(R \bowtie \mathrm{~T}_{\theta \bowtie Q}\right) \triangleright\{(1,1)\}=\{(1,1)\}, \\
& (R \triangleright P) \bowtie \theta \bowtie Q=\{2\} \bowtie \theta \bowtie\{1\}=0 .
\end{aligned}
$$

13 Conclusion and Outlook

We have presented a new and simple approach to an algebraic treatment of the theta join in databases. This is a piece that was missing in the predecessor paper [16], because there mostly only joins of tables with disjoint attribute sets were treated. However, overlapping types are mandatory for coping with theta joins. And so other important outcomes of the present paper are the more liberal notions of weak and strong matching of binary relations over database tuples.

With the help of the developed tools we have algebraically proved the correctness of two sample optimisation rules, namely "push projection over join" and "push preference over join".

Further work will be to treat the large catalogue of preference optimisation rules in [14] with these techniques. This also concerns the complex preference relation constructors of Pareto and prioritised composition. In fact, the relation $R \bowtie \mathrm{~T}_{U}$ in Th. 12.6 is equal to the prioritised preference $R \& 0$.

The present treatment was performed in the setting of concrete binary relations. While mostly point-free, some of the basic lemmas in Sect. 3 still were proved in a pointwise fashion. A next step to a more abstract view would be to axiomatise the projections and then reason point-free in terms of these. Another more abstract approach could be based on the concept of typed join algebras from the predecessor paper [16].
Acknowledgement Helpful comments were provided by Patrick Roocks, Andreas Zelend and the anonymous referees.

References

1. R. Berghammer, A. Haeberer, G. Schmidt, P. Veloso: Comparing two different approaches to products in abstract relation algebra. Proceedings of the Third International Conference on Algebraic Methodology and Software Technology (AMAST '93), University of Twente, Enschede, The Netherlands, 1993, Springer, 167-176
2. R. Berghammer, B. von Karger: Relational Semantics of Functional Programs. In C. Brink, W. Kahl, G. Schmidt (eds.): Relational Methods in Computer Science. Advances in Computing Science, Springer 1997, 115-130
3. H.-H. Dang, P. Höfner, B. Möller: Algebraic separation logic. Journal of Logic and Algebraic Programming 80(6), 221-247 (2011)
4. H.-H. Dang, B. Möller: Reverse exchange for concurrency and local reasoning. In: J. Gibbons, P. Nogueira (eds.): MPC. LNCS 7342. Springer 2012, 177-197. Revised and extended version: H.-H. Dang, B. Möller: Concurrency and local reasoning under reverse exchange. Science of Computer Programming 85, Part B, 204-223 (2013)
5. J. Desharnais, B. Möller, G. Struth: Modal Kleene algebra and applications - a survey. Journal on Relational Methods in Computer Science 1, 93-131 (2004)
6. J. Desharnais, B. Möller, G. Struth: Kleene algebra with domain. ACM Transactions on Computational Logic 7, 798-833 (2006)
7. A. Haeberer, M. Frias, G. Baum, P. Veloso: Fork algebras. In C. Brink, W. Kahl, G. Schmidt (eds.): Relational Methods in Computer Science. Advances in Computing Science. Springer 1997, 54-69
8. R. Horn, C. Johnson: Topics in matrix analysis, Cambridge University Press 1991
9. W. Kahl: CALCCHECK: A proof checker for teaching the "Logical Approach to Discrete Math". In J. Avigad, A. Mahboubi (eds.): ITP 2018 - Interactive Theorem Proving. LNCS 10895. Springer 2018, 324-341
10. W. Kahl: CalcCheck - A proof-checker for Gries and Schneider's Logical Approach to Discrete Math. http://calccheck.mcmaster.ca/
11. P. Kanellakis: Elements of relational database theory. In J. van Leeuwen (ed.): Handbook of Theoretical Computer Science. Volume B: Formal Models and Semantics. Elsevier 1990, 1073-1156
12. W. Kießling: Preference queries with SV-semantics. In International Conference on Management of Data (COMAD '05), 15-26, 2005.
13. W. Kießling, M. Endres, F. Wenzel: The Preference SQL system - An overview. Bull. Technical Committee on Data Engineering, IEEE Computer Society 34(2), 11-18 (2011). Details under http://www.markusendres.de/preferencesql/
14. W. Kießling, B. Hafenrichter: Algebraic optimization of relational preference queries. Technical Report No. 2003-01. University of Augsburg, Institute of Computer Science, February 2003
15. R. Maddux: On the derivation of identities involving projection functions. In L. Csirmaz, D. Gabbay, M. de Rijke (eds.): Logic Colloquium '92. Studies in Logic, Languages, and Information. CSLI Publications, 143-163 (1995)
16. B. Möller, P. Roocks: An algebra of database preferences. Journal of Logical and Algebraic Methods in Programming 84(3): 456-481 (2015)
17. G. Schmidt, T. Ströhlein: Relations and Graphs: Discrete Mathematics for Computer Scientists. EATCS Monographs on Theoretical Computer Science. Springer 1993
18. H. Zierer: Programmierung mit Funktionsobjekten: Konstruktive Erzeugung semantischer Bereiche und Anwendung auf die partielle Auswertung. Institut für Informatik, Technische Universität München. Report TUM-I8803, February 1988

14 Appendix

For types T_{P}, T_{Q} we use the notion of a direct product of D_{P} and D_{Q} (e.g. [17]). This is a pair $\left(\rho_{P}, \rho_{Q}\right)$ of relations with $\rho_{P} \subseteq\left(D_{P} \times D_{Q}\right) \times D_{P}$ and $\rho_{Q} \subseteq$ $\left(D_{P} \times D_{Q}\right) \times D_{Q}$ such that

$$
\begin{aligned}
& \stackrel{\rho_{P}}{\breve{\rho_{P}} ; \rho_{P}=1, \quad \quad \rho_{Q}^{\breve{ }} ; \rho_{Q}=1, ~} \\
& \rho_{P} ; \rho_{P} \cap \rho_{Q} ; \stackrel{\rho_{Q}}{\breve{\rho_{2}}} 1, \quad \quad \rho_{P}^{\breve{L}} ; \rho_{Q}=\mathrm{T} .
\end{aligned}
$$

Using this concept the parallel product can be represented as

$$
\begin{equation*}
P \times Q=\rho_{P} ; P ; \stackrel{\rho_{P}}{\sim} \cap \rho_{Q} ; Q ; \rho_{Q} . \tag{5}
\end{equation*}
$$

The following properties of direct products are used in the main proof ${ }^{5}$:

$$
\begin{gather*}
\rho_{P} ; \mathrm{T}=\mathrm{\top}=\rho_{Q} ; \mathrm{\top}, \tag{6}\\
\left(R_{1} ; \stackrel{\left.\rho_{P} \cap R_{2} ; \rho_{Q}\right)}{;\left(\rho_{P} ; S_{1} \cap \rho_{Q} ; S_{2}\right)=R_{1} ; S_{1} \cap R_{2} ; S_{2}} .\right. \tag{7}
\end{gather*}
$$

[^2]Proof of Lemma 12．5．The proof consists in showing $\# ;\left(\left\ulcorner(R ; P) \times\left\ulcorner\left(\mathrm{T}_{Q} ; Q\right)\right) \subseteq\right.\right.$ $\left\ulcorner\left(\left((R ; P) \times\left(\mathrm{T}_{Q} ; Q\right)\right) ; \#\right)\right.$（see Lm．10．3．3）．We do this by showing the stronger property $\left\ulcorner(R ; P) \times\left\ulcorner\left(\mathrm{T}_{Q} ; Q\right) \subseteq\left\ulcorner\left(\left((R ; P) \times\left(\mathrm{T}_{Q} ; Q\right)\right) ; \#\right)\right.\right.\right.$ ，from which the original claim follows by $\# \subseteq 1$ and isotony of ；．

Since＂joinable＂is defined with \＃and the formula to prove uses $\#$ ，we have to make a connection between the two：

$$
\begin{equation*}
巴=\left\ulcorner\left(\rho_{P} ; \# \cap \rho_{Q}\right)\right. \tag{8}
\end{equation*}
$$

This is analogous to the conversion of a relation to a vector explained in［17］， which would give $\# ; \mathbf{T}=\left(\rho_{P} ; \# \cap \rho_{Q}\right) ; \mathbf{T}$ ．The inverse transformation is $\#=$ $\stackrel{\rho_{P}}{\sim} ;\left(\# ; \mathrm{T} \cap \rho_{Q}\right)$ ．Both equations are easily verified．Using restriction（Lm．2．1．7） and Boolean algebra，the second one can be simplified to $\#=\rho_{P} ; \# ; \rho_{Q}$ ．Then by Def． 12.4 and the definition of diamond（Def．6．1）P is joinable with Q iff

$$
\begin{equation*}
P \subseteq\left\ulcorner\left(\stackrel{\rho_{P}}{\succ} ; \# ; \rho_{Q} ; Q\right)\right. \tag{9}
\end{equation*}
$$

Now we calculate as follows．

$$
\begin{aligned}
& \left\ulcorner(R ; P) \times{ }^{\Gamma}\left(\mathrm{T}_{Q} ; Q\right)\right. \\
& =\begin{array}{l}
\quad\{\text { distributivity of domain over } \times]\} \\
\\
\Gamma\left((R ; P) \times\left(\mathrm{T}_{Q} ; Q\right)\right)
\end{array} \\
& =\{[5)]\} \\
& \left\ulcorner\left(\rho_{P} ; R ; P ; \rho_{P}^{\breve{ }} \cap \rho_{Q} ; \mathrm{T}_{Q} ; Q ; \rho_{Q}^{\breve{ }}\right)\right. \\
& \subseteq \quad\{[\text { Boolean algebra and isotony of }]\} \\
& \left\ulcorner\left(\rho_{P} ; R ; P ; \rho_{P}\right)\right. \\
& =\quad\{[\text { locality }(\mathrm{Lm} .2 .1 .6)]\} \\
& \left\ulcorner\left(\rho_{P} ; R ; P ;\left\ulcorner\left(\rho_{P}^{\breve{ }}\right)\right)\right.\right. \\
& =\left\{\left[\rho_{P} \text { is surjective, hence } \rho_{P}^{\breve{ }} \text { is total }\right]\right\} \\
& \left\ulcorner\left(\rho_{P} ; R ; P ; 1\right)\right. \\
& =\quad\{[\text { neutrality of } 1 \text { and (9) with Boolean algebra }]\} \\
& \left\ulcorner\left(\rho_{P} ; R ; P ;\left\ulcorner\left(\rho_{P} ; \# ; \rho_{Q} ; Q\right)\right)\right.\right. \\
& \left.=_\{\text {locality (Lm. 2.1.6) twice }]\right\} \\
& { }^{\ulcorner }\left(\rho_{P} ; R ; P ; \rho_{P}^{\breve{ }} ;{ }^{\ulcorner }\left(\# ; \rho_{Q} ; Q\right)\right) \\
& =\quad\{\text { domain representation (1) }]\} \\
& \left\ulcorner\left(\rho_{P} ; R ; P ; \rho_{P} ;\left(\# ; \rho_{Q} ; Q ; \mathrm{T} \cap 1\right)\right)\right. \\
& =\{[\# \text { is a test, restriction (Lm. 2.1.7) and neutrality of } 1]\} \\
& \left\ulcorner\left(\rho_{P} ; R ; P ; \rho_{P} ;\left(\rho_{Q} ; Q ; \mathrm{T} \cap \#\right)\right)\right. \\
& =\left\{\left[R_{1} ;\left(R_{2} ; \mathrm{T} \cap R_{3}\right)=\left(R_{1} \cap \mathrm{~T} ; R_{2}^{\bullet}\right) ; R_{3} \text { for all } R_{1}, R_{2}, R_{3}\right.\right. \text {, } \\
& \text { laws of converse and } Q \text { is a test }\}\} \\
& \left\ulcorner\left(\left(\rho_{P} ; R ; P ; \rho_{P} \cap \mathrm{~T} ; Q ; \stackrel{\rho_{Q}}{\breve{\prime}}\right) ; \#\right)\right. \\
& =\begin{aligned}
& \{[(6)]\} \\
& \left(\left(\rho_{P} ; R ; P ; \breve{\rho_{P}} \cap \rho_{Q} ; \mathrm{T}_{Q} ; Q ; \breve{\rho_{Q}}\right) ; 巴\right)
\end{aligned} \\
& =\{[(5)]\} \\
& \left\ulcorner\left(\left((R ; P) \times\left(\mathrm{T}_{Q} ; Q\right)\right) ; 円\right)\right.
\end{aligned}
$$

[^0]: ${ }^{3}$ With this we follow the SQL standard. Note, however, that $P \bowtie \theta \bowtie Q$ is defined even if this disjointness condition does not hold. It is not even necessary to require $A \neq B$, although having $A=B$ is not interesting.

[^1]: ${ }^{4}$ We use this example only for motivation; strictly speaking an interchange law needs to have the same variables on both sides.

[^2]: ${ }^{5}$ Equation (7) is valid for concrete relations. For abstract relations, only \subseteq holds. This phenomenon is called unsharpness in the literature (an early mention is [18], a further elaboration [1]). The situation is similar with Lm. 8.6.4. The paper [15] constructs an RA that does not satisfy sharpness.

