
The θ-Join as a Join with θ

Jules Desharnais1 and Bernhard Möller2

1 Université Laval, Québec
2 Universität Augsburg

Abstract. We present an algebra for the classical database operators.
Contrary to most approaches we use (inner) join and projection as the
basic operators. Theta joins result by representing theta as a database
table itself and defining theta-join as a join with that table. The same
technique works for selection. With this, (point-free) proofs of the stan-
dard optimisation laws become very simple and uniform. The approach
also applies to proving join/projection laws for preference queries. Ex-
tending the earlier approach of [16], we replace disjointness assumptions
on the table types by suitable consistency conditions. Selected results
have been machine-verified using the CALCCHECK tool.

1 Introduction

The paper deals with an algebra for the classical operators of relational algebra
as used in databases. While in most approaches the join operator is defined
as a combination of direct product, selection and projection, we take a different
approach, using (inner) join and projection as the basic operators. Theta joins are
incorporated by simply representing (mathematically) theta as a database table
itself and defining theta-join as a join with that table. The same can be done with
selection by representing the corresponding condition as the table of all tuples
that satisfy it. With this, (point-free) proofs of the standard laws become very
simple and uniform. The approach is also suitable for proving join/projection
laws for preference queries.

The paper builds upon [16]. While many of the laws there required disjoint-
ness of the types of the tables involved, we are here more general and replace
disjointness of types by suitable consistency conditions. Technically, we extend
the techniques there by deploying variants of the split and glue operators in-
troduced in [3,4]. This allows point-free formulations of the new conditions and
corresponding point-free proofs of the ensuing laws. Selected results have been
machine-verified using the CALCCHECK tool [9,10].

2 Preliminaries

Our approach is based on the algebra of binary relations, see e.g. [17]. A binary
relation between sets M and N is a subset R ⊆ M ×N . We denote the empty
relation ∅ by 0 and the universal relationM×N by TM×N , omitting the subscript

when it is clear from the context. Domain, codomain and relational composition
; are defined as usual, the latter binding stronger than union and intersection.
The converse of R is R⌣ ⊆ N ×M , given by R⌣ = {(y, x) | (x, y) ∈ R}.

If M = N then R is called homogeneous . In this case there is the identity
relation 1M = {(x, x) |x ∈ M}, which is neutral w.r.t. ; . If M is clear from the
context we omit the subscript M .

A test over M is a sub-identity P ⊆ 1 which encodes the subset {x | (x, x) ∈
P}. The negation ¬P of test P is the complement of P relative to 1, i.e., 1−P ,
where − is set difference. It encodes the complement of the set encoded by P .
When convenient we do not distinguish between tests and the encoded sets.

Domain and codomain can be encoded as the tests

⌜R = R ; TN×M ∩ 1M , R⌝ = TM×N ;R ∩ 1N . (1)

We list a few properties of domain; symmetric ones hold for the codomain
operator which, however, we do not use in this paper. For proofs see [6].

Lemma 2.1 Consider relations R,S and test P .
1. ⌜(R∪S) = ⌜R∪⌜S. Hence ⌜ is isotone, i.e., monotonically increasing, w.r.t. ⊆.
2. ⌜R ;R = R and ¬⌜R ;R = 0.
3. ⌜P = P (stability)
4. ⌜R = 0 ⇔ R = 0. (full strictness)
5. ⌜(P ;R) = P ; ⌜R. (import/export)

6. ⌜(R ; S) = ⌜(R ; ⌜S). (locality)
7. R ; P ∩ S = (R ∩ S) ; P = R ∩ S ; P . (restriction)

3 Typed Tuples

In this section we present the formal model of database objects as typed tuples.
The types represent attributes, i.e., columns of a database relation. Conceptually
and notationally, we largely base on [11].

Definition 3.1 Let A be a set of attribute names and (DA)A∈A be a family of
nonempty sets, where for A ∈ A the set DA is called the domain of A.
1. The set U =df

⋃
A∈A

DA is called the universe.

2. A type T is a subset T ⊆ A.
3. A T -tuple is a mapping t : T → U where ∀A ∈ T : t(A) ∈ DA. For T = ∅

the only T -tuple is the empty mapping ∅.
4. The domain DT for a type T is the set of all T -tuples, i.e., the Cartesian

product DT = Π
A∈T

DA.

5. For a T -tuple t and a sub-type T ′ ⊆ T we define the projection πT ′(t) to T ′

as the restriction of the mapping t to T ′. By this π∅(t) = ∅. Projections π
are not to be confused with the Cartesian product operator Π .

6. A set of tuples of the same type is called a table and is relationally encoded
as a test.

2

7. For a tuple t and a table P of T -tuples we introduce the abbreviations

t :: T ⇔df t ∈ DT , P :: T ⇔df P ⊆ DT .

Definition 3.2 Two tuples ti :: Ti (i = 1, 2) are called matching , in signs t1#t2,
iff πT (t1) = πT (t2), where T =df T1∩T2. In this case we define t1 1 t2 =df t1∪t2.
The join of nonmatching tuples is undefined. If T = ∅, i.e., the types Ti are
disjoint, then the ti are trivially matching. The empty tuple ∅ matches every
tuple and hence is the neutral element of 1.

The join of two types T1, T2 is the union of their attributes, i.e., T1 1 T2 =df

T1 ∪ T2. For tables Pi :: Ti (i = 1, 2), the join 1, binding stronger than union
and intersection, is defined as the set of all matching combinations of Pi-tuples:

P1 1 P2 =df {t :: T1 1 T2 | πTi
(t) ∈ Pi (i = 1, 2)}

= {t1 1 t2 | ti ∈ Pi (i = 1, 2), t1 # t2} .

When we want to avoid numerical indices we use the convention that table P
has type TP , etc. The table {∅} is the neutral element of 1 on tables.

Lemma 3.3 DT11T2 = DT1 1 DT2 . Hence T2 ⊆ T1 ⇒ DT1 1 DT2 = DT1 .

Proof. Immediate from the definition of type join and Def. 3.1.4. 2

Lemma 3.4 Consider tables P :: TP , Q :: TQ and an arbitrary type T ′.
1. Every tuple is characterised by its projections: for t ∈ DTP1TQ

we have
t = πTP

(t) 1 πTQ
(t). For t, u ∈ DTP1TQ

this entails t = u ⇔ πTP
(t) =

πTP
(u) ∧ πTQ

(t) = πTQ
(u).

2. Projection sub-distributes over join: πT ′(P 1 Q) ⊆ πT ′(P) 1 πT ′(Q).
3. If TP ∩ TQ = ∅ then this strengthens to an equality.

1. Straightforward calculation.
2. By distributivity of restriction over union, for any two matching tuples t1, t2

(not necessarily from P,Q) we have πT ′(t1 1 t2) = πT ′(t1) 1 πT ′(t2). Hence
if we take matching t1 ∈ P, t2 ∈ Q, then t =df πT ′(t1 1 t2) ∈ πT ′(P 1 Q).
Because πT ′(t1 1 t2) = πT ′(t1) 1 πT ′(t2), also t ∈ πT ′(P) 1 πT ′(Q).

3. t ∈ πT ′(P) 1 πT ′(Q)
⇔ ∃u, v : u ∈ P ∧ v ∈ Q ∧ t = πT ′(u) 1 πT ′(v) {[definition of join]}
⇒ ∃u, v : u ∈ P ∧ v ∈ Q ∧ t = πT ′(u 1 v) {[u# v by TP ∩ TQ = ∅]}
⇒ t ∈ πT ′(P 1 Q) {[definitions]} 2

Lemma 3.5 For Pi :: Ti (i = 1, 2) with disjoint Ti, i.e., with T1 ∩ T2 = ∅, the
join P1 1 P2 is isomorphic to the Cartesian product of P1 and P2.

Proof. For t ∈ P1 1 P2, the conditions πTi(t) ∈ Pi(i = 1, 2) are independent.
Hence all elements of P1 can be joined with all elements of P2. Thus, by definition,

t ∈ P1 1 P2 ⇔ πT1(t) ∈ P1 ∧ πT2(t) ∈ P2 ⇔ (πT1(t), πT2(t)) ∈ P1 × P2 . 2

3

Lemma 3.6 [16] The following laws hold:
1. 1 is associative, commutative and distributes over ∪.
2. 1 is isotone in both arguments.
3. Assume Pi, Qi :: Ti (i = 1, 2). Then the following interchange law holds:

(P1 ∩Q1) 1 (P2 ∩Q2) = (P1 1 P2) ∩ (Q1 1 Q2) .

4. For P,Q :: T we have P 1 Q = P ∩Q. In particular, P 1 P = P .

4 The θ-Join

For simplicity we restrict ourselves to θ-joins with binary relations θ. Assume
tables P :: TP , Q :: TQ with TP ∩ TQ = ∅ as well as A ∈ TP , B ∈ TQ and a
binary relation θ ⊆ DA × DB . Note that the assumptions imply A ̸= B3. We
want to model an expression that in standard database theory would be written
“P 1θ(P.A,Q.B) Q”. The corresponding table contains exactly those tuples t of
table P 1 Q in which the values t(A) ∈ P.A and t(B) ∈ Q.B (remember that t
is a function from attribute names to values) are in relation θ.

The idea is to consider θ mathematically again as table of type A 1 B. Then
the above expression can simply be represented as P 1 θ 1 Q.

Example 4.1 Here is a simple database of persons and ages with > as θ.

P : Name1 Age1

A 50
B 55
C 60

<: Age1 Age2

50 55
50 60
55 60

Q: Age2 Name2

50 E
55 F
55 G

P 1 Q: Name1 Age1 Age2 Name2

A 50 50 E
A 50 55 F
A 50 55 G
B 55 50 E
B 55 55 F
B 55 55 G
C 60 50 E
C 60 55 F
C 60 55 G

P 1 <: Name1 Age1 Age2

A 50 55
A 50 60
B 55 60

< 1 Q: Age1 Age2 Name2

50 55 F
50 55 G

P 1 < 1 Q: Name1 Age1 Age2 Name2

A 50 55 F
A 50 55 G

2

3 With this we follow the SQL standard. Note, however, that P 1 θ 1 Q is defined
even if this disjointness condition does not hold. It is not even necessary to require
A ̸= B, although having A = B is not interesting.

4

We use our view of the θ-join for algebraic proofs of two standard optimisation
rules for projections applied to joins.

Theorem 4.2
1. If Q :: L ⊆ TP then πL(P 1 Q) = πL(P) 1 Q.
2. Assume TP ∩TQ = ∅ and θ :: L for some L ⊆ TP ∪TQ. This means that θ is

to provide the “glue” between the type-disjoint P and Q. Set LP =df TP ∩L
and LQ =df TQ ∩ L. Then we have the transformation rule

πL(P 1 θ 1 Q) = πLP
(P) 1 θ 1 πLQ

(Q) (push projection over join).

Proof.
1. (⊆) Immediate from Lm. 3.4.2 and πL(Q) = Q by Q :: L.

(⊇)

πL(P)
= πL(P 1 DP) {[definition of DP]}
= πL(P 1 DP 1 DL) {[assumption L ⊆ TP , definition of DL]}
= πL(P 1 DL) {[definition of DP]}
= πL(P 1 (Q ∪Q)) {[Boolean algebra, setting

X =df DL −X for X :: L]}
= πL(P 1 Q) ∪ πL(P 1 Q)) {[distributivity of join and projection]}
⊆ πL(P 1 Q) ∪ (πL(P) 1 πL(Q)){[Lm. 3.4.2]}
= πL(P 1 Q) ∪ (πL(P) ∩ πL(Q)) {[Lm 3.6.4]}
⊆ πL(P 1 Q) ∪ πL(Q) {[Boolean algebra]}
= πL(P 1 Q) ∪Q {[πL(Q) = Q by Q :: L]}

By Lm 3.6.4 and shunting we obtain from this πL(P) 1 Q = πL(P) ∩Q ⊆
πL(P 1 Q).

2. πL(P 1 θ 1 Q)
= πL(P 1 Q 1 θ) {[associativity and commutativity of 1]}
= πL(P 1 Q) 1 θ {[Part 1]}
= πL(P) 1 πL(Q) 1 θ {[assumption TP ∩ TQ = ∅ with Lm. 3.4.3]}
= πL(P) 1 θ 1 πL(Q) {[associativity and commutativity of 1]}
= πLP

(P) 1 θ 1 πLQ
(Q) {[P :: TP , Q :: TQ, definition of projection]} 2

5 Selection as Join

Since the representation of the θ-join as a join with θ has proved useful, we will
now treat selection σC(P) for table P and condition C analogously. A condition,
i.e., a predicate on tuples, is simply represented as a subset C ⊆ DL for some
type L, which means C :: L. Conjunction and disjunction of C,C ′ :: L are then
represented by C 1 C ′ and C ∪C ′, resp. (see Lm. 3.6.4). For P :: T and L ⊆ T ,
we can now just set σC(P) =df P 1 C.

Lemma 5.1 Assume again P :: T .

5

1. Selections commute, i.e., σC(σC′(P)) = σC′(σC(P)).
2. Selections can be combined, i.e., σC(σC′(P)) = σC1C′(P).
3. If C uses only attributes from L ⊆ T , i.e., C ⊆ DL, then πL(σC(P)) =

σC(πL(P)).

Proof.
1. Immediate from associativity/commutativity of 1.
2. Ditto.
3. By definitions, Th. 4.2.1 and definitions again:

πL(σC(P)) = πL(P 1 C) = πL(P) 1 C = σC(πL(P)) . 2

6 Inverse Image and Maximal Elements

The tools developed in the preceding sections will now be applied to a subfield
of database theory, namely to preference queries. They serve to remedy a well
known problem for queries with hard constraints, by which the objects sought in
the database are clearly and sharply characterised. If there are no exact matches
the empty result set is returned, which is very frustrating for users.

Instead, over the last decade queries with soft constraints have been studied.
These arise from a formalisation of the user’s preferences in the form of partial
strict orders [12,13]. Instead of returning an empty result set, one can then
present the user with the maximal or “best” tuples w.r.t. her preference order.

We now show how to express the maximality operator algebraically and then
prove a sample optimisation rule for it. The idea has already been described
thoroughly in the predecessor paper [16]; hence we only give a brief presentation
of it. After that we develop substantially new laws for it. The main ingredient
is an inverse image operator on relations.

Definition 6.1 For a type T a T -relation is a homogeneous binary relation R
on DT ; we abbreviate this by R :: T 2. In analogy to the notation in Sect. 2 we
also write TT instead of DT × DT . For a relation R :: T 2 the image of a test
P :: T under R is obtained using the forward diamond operator as

||R⟩⟩P =df {(x, x) | ∃y ∈ P : xR y} = ⌜(R ; P) .

Two immediate consequences of the definition and Lm. 2.1 are

||0⟩⟩P = 0 , ||T⟩⟩P =

{
DT if P ̸= 0 ,
0 otherwise.

(2)

The inverse image of a set P under a relation R consists of the elements
that have an R-successor in P , i.e., are R-related to some object in P . Assume
that R is a strict order (irreflexive and transitive), which is the case in our
application domain of preferences. Then the inverse image of P consists of the
tuples dominated by some tuple in P . This allows the following definition.

6

Definition 6.2 For a relation R :: T 2 and a set P :: T the R-maximal objects
of P form the relative complement of the set of R-dominated objects, viz.

R ▷ P =df P ∩ ¬||R⟩⟩P .

The mnemonic behind the ▷ symbol is that in an order diagram for a prefer-
ence relation R the maximal objects within P are the peaks in P ; rotating the
diagram clockwise by 90◦ puts the peaks to the right. Hence R ▷ P might also
be read as “R-peaks in P”. From (2) we obtain

0 ▷ P = P , T ▷ P = 0 . (3)

A central ingredient for the preference approach is a possibility for defining
complex preference relations out of simpler ones. An example would be “I prefer
cars that are green and, equally important, have low fuel consumption”. The
following sections deal with such construction mechanisms, notably with the
join of relations.

7 The Join of Relations

Definition 7.1 The joinR1 1 R2 :: (T1 1 T2)
2 of relations Ri :: T

2
i (i = 1, 2) is

t (R1 1 R2)u ⇔df πT1
(t)R1 πT1

(u) ∧ πT2
(t)R2 πT2

(u) .

Example 7.2 We model the above simple database of cars. Consider the set
A = {Col,Fuel} of attribute names with DCol = {black, blue, green, red,white}
and DFuel = {4.0, 4.1, . . . , 9.9, 10.0}. The comparison relation RCol is given by
the Hasse diagram

green

blue red white

black

while as RFuel we choose > . A user uttering the preference RCol does not like
black at all, likes green best and otherwise is indifferent about blue, red,white.
Hence s (RCol 1 RFuel) t iff the colour of t is closer to green than that of s and
the fuel value of t is less than that of s. 2

Definition 7.3 Based on join we can define the two standard preference con-
structors ⊗ of Pareto and & of prioritised composition as

R⊗ S =df (R 1 (1 ∪ S)) ∪ ((1 ∪R) 1 S) ,
R&S =df (R 1 T) ∪ (1 1 S) .

Pareto composition corresponds to the product order on pairs, with two varia-
tions: it does not consider pairs, but tuples from which parts are extracted by
the projections involved in 1 ; moreover, it is more liberal than the product of
strict orders, since it also admits equality in one part of the tuples as long as
there is a strict order relation between the other parts. Prioritised composition
corresponds to the lexicographic order on pairs.

7

We seek a set of algebraic laws that allow proving optimisation rules similar
to “push projection over join” from Th. 4.2.2. As an example consider tables
P :: TP , Q :: TQ and a preference relation R :: T 2

P . Then we would like to show

(R 1 TQ) ▷ (P 1 Q) = (R ▷ P) 1 Q (4)

under suitable side conditions on P,Q,R. The preference R 1 TQ, which also
occurs as a part of the & constructor, expresses that the user does not care
about the attributes in TQ and is only interested in the TP part. Therefore the
preference query can be pushed to that part as shown on the right hand side.
This may speed up the query evaluation considerably.

To achieve the mentioned algebraic laws we need to investigate the interaction
between the 1 and ▷ operators involved. Of particular importance are so-called
interchange laws: the above rule can, by (3), be written as

(R 1 TQ) ▷ (P 1 Q) = (R ▷ P) 1 (0 ▷ Q) ;

a maximum between joins is equal to a join between maxima4.

8 Split, Glue and Pair Relations

To formulate and prove rules about the join of relations in an algebraic style
we bring the pointwise definition into a more manageable point-free form. For
this we deploy techniques from [3,4]. First we introduce relations for connecting
tuples and pairs of tuples.

Definition 8.1 For types T1, T2 we define split � and its converse glue � with
the functionalities

T11T2
�T1×T2

⊆ DT11T2 × (DT1 ×DT2) ,

T1×T2
�T11T2

⊆ (DT1 ×DT2)×DT11T2 .

Again we suppress the type indices for readability. The behaviour is given by

t � (t1, t2) ⇔df (t1, t2) � t ⇔df t1 = πT1
(t) ∧ t2 = πT2

(t) .

Hence � relates every tuple to all its possible splits into matching pairs of
subtuples. The definition is stronger than the corresponding one in [3,4], and
this results in more useful laws which are detailed below: [3,4] allow arbitrary
splittings on the left and right of � ; �, whereas ours are “synchronised” by
the projections so that the same splits are used on the left and right. By the
difference in approach the forward interchange rule of Th. 9.2 does not hold
in their setting. For the purposes of database algebra, however, the stronger
definition is quite adequate.

While split and glue tell us how to decompose or recompose tuples or tuple
parts, we also want to want to relate corresponding parts “in parallel”.

4 We use this example only for motivation; strictly speaking an interchange law needs
to have the same variables on both sides.

8

Definition 8.2 A pair relation over types T1, T2 is a subset of (DT1
×DT2

) ×
(DT1

×DT2
). The parallel product R1×R2 of relations Ri :: T

2
i is the pair relation

(t1, t2) (R1 ×R2) (u1, u2) ⇔df t1 R1 u1 ∧ t2 R2 u2 .

By 1T1×T2
we denote the identity pair relation. When the Ti are clear from the

context we omit the type index.

The parallel product is a standard construct in relation algebra; it occurs,
for instance, in [2] and [7] and is also called a Kronecker product [8]. With its
help we can express the lifting of join to relations in Def. 7.1 more compactly.

Lemma 8.3 The join of relations Ri :: T
2
i can be expressed point-free as

R1 1 R2 =df � ; (R1 ×R2) ;� .

The proof is immediate from the definitions. From this relational representa-
tion it follows that join is strict w.r.t. 0 and distributes through union in both
arguments. We note that for relational tests P,Q the lifting P 1 Q is a test in
the algebra of relations. Details are given in Lm. 10.5.

Next to this, we also use the concept of tests for pair relations. These are
again sub-identities, i.e., subsets of 1T1×T2

; as usual they are idempotent and
commute under ; (e.g. [5]). The parallel product of tests is a test in the set of
pair relations.

Definition 8.4 Another test in the set of pair relations is the lifted matching
check T1

⃝# T2
: for tuples ti, ui :: Ti

(t1, t2) T1
⃝# T2

(u1, u2) ⇔df t1 = u1 ∧ t2 = u2 ∧ t1 # t2 .

To ease notation, we suppress the type indices.

We now present the essential laws for all these constructs.

Lemma 8.5
1. � = �⌣

.
2. � ; � = ⃝# and hence � ; � ⊆ 1.
3. � ; � = 1.
4. ⃝# ; � = � and symmetrically � ;⃝# = � .
5. � and � are deterministic and injective; in addition � is total and � is

surjective.
6. � ; C ;� ⊆ R ⇔ ⃝# ; C ;⃝# ⊆ � ;R ;�. In particular,

� ; C ;� ⊆ � ;D ;� ⇔ ⃝# ; C ;⃝# ⊆ ⃝# ;D ;⃝# .
7. � ;T ;� = T.
8. � ;C ;⃝# ; T ;� = � ;C ;� ;T.

Proof. The proofs of Parts 1—3 are straightforward pointwise calculations.
4. By 2 and 3, ⃝# ; � = � ; � ; � = � ; 1 = �.

9

5. These are standard relation-algebraic consequences of Parts 1—3.
6. By isotony, Part 2, isotony and Parts 4 and 3,

� ;C ;� ⊆ R ⇒ � ;� ;C ;� ;� ⊆ � ;R ;�
⇔ ⃝# ; C ;⃝# ⊆ � ;R ;� ⇒ � ;⃝# ;C ;⃝# ;� ⊆ � ;� ;R ;� ;�
⇔ � ;C ;� ⊆ R .

For R = � ;D ;� the second claim results again by Part 2.
7. This is direct by totality of � and surjectivity of � (Part 5).
8. By Parts 2 and 7, � ;C ;⃝# ;T ;� = � ;C ;� ;� ;T ;� = � ;C ;� ;T . 2

Lemma 8.6
1. 1T1×T2

= 1T1
× 1T2

.
2. TT1

× TT2
is the universal pair relation.

3. The operators × and ∩ satisfy an equational interchange law:

(R1 ∩ R2)× (S1 ∩ S2) = (R1 × S1) ∩ (R2 × S2) .

4. The operators × and ; satisfy an equational interchange law:

(R1 ;R2)× (S1 ; S2) = (R1 × S1) ; (R2 × S2) .

Again, the proofs are straightforward calculations. In addition, we have the
following result.

Lemma 8.7 Identity and top behave nicely w.r.t. 1, i.e., 1T1 1 1T2 = 1T11T2 .
Similarly, TT1 1 TT2 = TT11T2 ; equivalently, � ;TT1×T2 ;� = TT11T2 .

Proof. For the first claim we calculate, using Lms. 8.3, 8.6.1 and 8.5.3,

1T1
1 1T2

= � ; (1T1
× 1T2

) ;� = � ; 1T1×T2
;� = � ;� = 1T11T2

.

The second claim was shown in Lm. 8.5.7. 2

9 Interchange Laws for Join

We have already seen some interchange laws. It turns out that join inherits many
of them, sometimes as inclusions rather than equations.

Lemma 9.1 Relations Ri, Si :: T
2
i satisfy the equational interchange law

(R1 1 R2) ∩ (S1 1 S2) = (R1 ∩ S1) 1 (R2 ∩ S2) .

Proof.

(R1 1 R2) ∩ (S1 1 S2)
= � ; (R1 ×R2) ;� ∩ � ; (S1 × S2) ;� {[Lm. 8.3]}

10

= � ; ((R1 ×R2) ∩ (S1 × S2)) ;� {[determinacy of � and
injectivity of � (Lm. 8.5.5)]}

= � ; ((R1 ∩ S1)× (R2 ∩ S2)) ;� {[×-∩-interchange (Lm. 8.6)]}
= (R1 ∩ S1) 1 (R2 ∩ S2) {[Lm. 8.3]} 2

Theorem 9.2 (Forward Interchange) Relations Ri, Si :: T 2
i satisfy the in-

clusional interchange law

(R1 1 R2) ; (S1 1 S2) ⊆ (R1 ; S1) 1 (R2 ; S2) .

Proof. We calculate as follows.

(R1 1 R2) ; (S1 1 S2)
= � ;(R1 ×R2) ;� ;� ;(S1 × S2) ;� {[Lm. 8.3]}
⊆ � ;(R1 ×R2) ; 1 ; (S1 × S2) ;� {[Lm. 8.5.2]}
= � ;(R1 ×R2) ; (S1 × S2) ;� {[neutrality of 1]}
= � ;((R1 ; S1)× (R2 ; S2)) ;� {[; -×-interchange (Lm. 8.6.3)]}
= (R1 ; S1) 1 (R2 ; S2) {[Lm. 8.3]}

2

Using this we can show a subdistribution law for domain over join.

Theorem 9.3 For Ri :: T
2
i (i = 1, 2) the domain of their join satisfies

⌜(R1 1 R2) ⊆ ⌜R1 1 ⌜R2 .

Proof. By (1) and Lm. 8.7, Th. 9.2, 1-∩-interchange (Lm. 9.1) and (1):

⌜(R1 1 R2) = (R1 1 R2) ; (TT1
1 TT2

) ∩ (1T1
1 1T2

)
⊆ ((R1 ; TT1) 1 (R2 ; TT2)) ∩ (1T1 1 1T2)
= (R1 ; TT1

∩ 1T1
) 1 (R2 ; TT2

∩ 1T2
) = ⌜R1 1 ⌜R2 2

Next we present conditions under which these inclusions become equations.

10 Compatibility and Matching

Definition 10.1
1. We call R1, R2 weakly matching if for all xi ∈ ⌜Ri (i = 1, 2) with x1 # x2

there are yi :: Ti (i = 1, 2) with y1#y2 and xi Ri yi. This means that starting
from matching tuples one can always reach corresponding matching tuples
via the Ri.

2. R1, R2 are strongly matching if for all xi ∈ ⌜Ri (i = 1, 2) with x1 # x2

all tuples yi :: Ti (i = 1, 2) with xi Ri yi satisfy y1 # y2. This means that
starting from matching tuples all corresponding tuples reachable via the Ri

are matching again.

We want to find a algebraic characterisations of these forms of matching.

11

Definition 10.2 Relations R1, R2 are forward compatible iff

⃝# ; (R1 ×R2) ⊆ (R1 ×R2) ;⃝# ,

and backward compatible iff (R1 ×R2) ;⃝# ⊆ ⃝# ; (R1 ×R2). Finally, R1 and R2

are compatible iff they are forward and backward compatible.

We can now give point-free characterisations of matching.

Lemma 10.3
1. All test relations are compatible with each other.
2. Two relations are strongly matching iff they are forward compatible.
3. R1, R2 are weakly matching iff ⃝# ; (⌜R1 × ⌜R2) ⊆ ⌜((R1 ×R2) ;⃝#) iff ⌜(⃝# ;

(R1 ×R2)) ⊆ ⌜((R1 ×R2) ;⃝#).
4. Strongly matching relations are also weakly matching.

Proof.
1. For test relations P,Q the relation P × Q is a test in the algebra of pair

relations. Since ⃝# is a test there too, they commute, which means forward
and backward compatibility of P and Q.

2. Straightforward predicate calculus with the definitions.
3. Ditto for the first inclusion. The second one results from the first by dis-

tributivity of domain over × and the import/export law of Lm. 2.1.5.
4. Immediate from the second inclusion of Part 3 and isotony of domain. 2

Now we can show a reverse interchange law between 1 and ;.

Theorem 10.4 (Backward Interchange) Let Ri, Si :: T
2
i . If R1, R2 are for-

ward compatible or S1, S2 are backward compatible then

(R1 ; S1) 1 (R2 ; S2) ⊆ (R1 1 R2) ; (S1 1 S2) .

In particular, if R1, R2 or S1, S2 are tests then the inclusion holds.

Proof. We assume R1, R2 to be forward compatible.

(R1 ; S1) 1 (R2 ; S2)
= � ;(R1 ; S1)× (R2 ; S2) ;� {[Lm. 8.3]}
= � ;(R1 ×R2) ; (S1 × S2) ;� {[; -×-interchange (Lm. 8.6.4)]}
= � ;⃝# ;(R1 ×R2) ; (S1 × S2) ;� {[Lm. 8.5.4]}
⊆ � ;(R1 ×R2) ;⃝# ; (S1 × S2) ;� {[forward compatibility]}
= � ;(R1 ×R2) ;� ;� ;(S1 × S2) ;� {[Lm. 8.5.2]}
= (R1 1 R2) ; (S1 1 S2) {[Lm. 8.3]}
The proof under backward compatibility of S1, S2 is symmetric. 2

Finally, we show the announced result on the join of tests.

Lemma 10.5 If Pi :: Ti (i = 1, 2) are tests then P1 1 P2 :: T1 1 T2 is a test
with ¬(P1 1 P2) = ¬P1 1 1T2

∪ 1T1
1 ¬P2, where ¬P = 1− P .

12

Proof. First,

(P1 1 P2) ; (¬P1 1 1T2
∪ 1T1

1 ¬P2)

= {[distributivity]}
(P1 1 P2) ; (¬P1 1 1T2) ∪ (P1 1 P2) ; (1T1 1 ¬P2)

⊆ {[forward interchange (Th. 9.2)]}
(P1 ; ¬P1) 1 (P2 ; 1T2

) ∪ (P1 ; 1T1
) 1 (P2 ; ¬P2)

= {[Pi tests and strictness of join]}
0T11T2

Second,

P1 1 P2 ∪ ¬P1 1 1T2
∪ 1T1

1 ¬P2

= {[Boolean algebra and distributivity of join]}
P1 1 P2 ∪ ¬P1 1 P2 ∪ ¬P1 1 ¬P2 ∪ P1 1 ¬P2 ∪ ¬P1 1 ¬P2

= {[distributivity of join and Boolean algebra]}
1T1

1 P2 ∪ 1T1
1 ¬P2

= {[distributivity of join and Boolean algebra]}
1T1

1 1T2

= {[Lm. 8.7]}
1T11T2 2

11 About Weak Matching

We have seen that strong matching turns 1 - ; -interchange from inclusion to
equation form (Lm. 10.3, Ths. 9.2 and 10.4). We now show that weak matching
does the same for distributivity of domain over join.

Theorem 11.1 Weakly matching Ri :: T
2
i satisfy ⌜R1 1 ⌜R2 ⊆ ⌜(R1 1 R2).

Proof. By Lm. 8.3, Lm. 8.5.4, weak matching with Lm. 10.3.3, domain represen-
tation (1), isotony, Lm. 8.5(8,3) and Lm. 8.3 with domain representation (1):

⌜R1 1 ⌜R2 = � ;(⌜R1 × ⌜R2) ;� = � ;⃝# ;(⌜R1 × ⌜R2) ;�
⊆ � ;⌜((R1 ×R2) ;⃝#) ;� = � ;((R1 ×R2) ;⃝# ; T ∩ 1) ;�
⊆ � ;(R1 ×R2) ;⃝# ; T ;� ∩ � ;1 ;� = � ;(R1 ×R2) ;� ;T ∩ 1

= ⌜(R1 1 R2) 2

Weak matching is even equivalent to distributivity of domain.

Theorem 11.2 If ⌜R1 1 ⌜R2 ⊆ ⌜(R1 1 R2) then R1, R2 are weakly matching.

Proof. We first prove that an injective relation S and an arbitrary relation R
satisfy S ;⌜(S⌣;R) = ⌜R ;S. By domain representation (1), then by R ; (S ;T∩1) =

13

R ∩ T ; S⌣ and laws of ⌣, right distributivity due to injectivity of S, P⌣ = P for
any test P and domain representation (1):

S ; ⌜(S⌣
;R) = S ; (S

⌣
;R ; T ∩ 1) = S ∩ T ;R

⌣
; S

= (1 ∩ T ;R
⌣
) ; S = (1 ∩R ; T) ; S = ⌜R ; S .

To prove the lemma, we assume ⌜R1 1 ⌜R2 ⊆ ⌜(R1 1 R2) and prove ⃝# ; (⌜R1 ×
⌜R2) ⊆ ⌜((R1 ×R2) ;⃝#) (see Lm. 10.3.3).

⃝# ; (⌜R1 × ⌜R2)
= ⃝# ; (⌜R1 × ⌜R2) ;⃝# {[⃝# and ⌜R1 × ⌜R2 are tests, idempotence

and commutativity of tests]}
= � ;� ;(⌜R1 × ⌜R2) ;� ;� {[Lm. 8.5.2]}
= � ;(⌜R1 1 ⌜R2) ;� {[Lm. 8.3]}
⊆ � ;⌜(R1 1 R2) ;� {[assumption and isotony]}
= � ;⌜(� ;(R1 ×R2) ;�) ;� {[Lm. 8.3]}
= ⌜((R1 ×R2) ;�)� ;� {[Lm. 8.5(1,5) and preliminary result]}
= ⌜((R1 ×R2) ;⃝# ;�) ;⃝# {[Lm. 8.5(2,4)]}
⊆ ⌜((R1 ×R2) ;⃝#) {[⌜(R ; S) ⊆ ⌜R, ⃝# is a test and isotony]} 2

12 Join and Maximal Elements

We now study how join and the maximum operator interact. First we show an
interchange law for join and diamond.

Lemma 12.1 For Ri :: T
2
i and Pi :: Ti (i = 1, 2),

||R1 1 R2⟩⟩(P1 1 P2) ⊆ ||R1⟩⟩P1 1 ||R2⟩⟩P2 .

If the Ri ; Pi are weakly matching then this strengthens to an equality.

Proof. By definition of inverse image, Th. 9.2 with Lm. 10.3.1 and Th. 10.4,
Th. 9.3 and definition of inverse image:

||R1 1 R2⟩⟩(P1 1 P2) = ⌜((R1 1 R2) ; (P1 1 P2)) = ⌜((R1 ; P1) 1 (R2 ; P2))

⊆ ⌜(R1 ; P1) 1 ⌜(R2 ; P2) = ||R1⟩⟩P1 1 ||R2⟩⟩P2)

The claim when the Ri ;Pi are weakly matching follows by using Th. 11.1 in the
third step. 2

This is used to derive an interaction law for join and maximum.

Lemma 12.2 Consider tables P :: TP , Q :: TQ and relations R :: T 2
P and S :: T 2

Q

such that R ; P and S ;Q are weakly matching. Then

(R 1 S) ▷ (P 1 Q) = (R ▷ P) 1 Q ∪ P 1 (S ▷ Q) .

14

Proof.
(R 1 S) ▷ (P 1 Q)

= (P 1 Q)− ||R 1 S⟩⟩(P 1 Q) {[definition of ▷]}
= (P 1 Q)− (||R⟩⟩P 1 ||S⟩⟩Q) {[Lm. 12.1]}
= (P 1 Q) ; ¬(||R⟩⟩P 1 ||S⟩⟩Q) {[definition of −]}
= (P 1 Q);

(¬||R⟩⟩P 1 1Q ∪ 1P 1 ¬||S⟩⟩Q)
{[complement of test (Lm. 10.5)]}

= (P ; ¬||R⟩⟩P) 1 (Q ; 1Q)
∪ (P ; 1P) 1 Q ; ¬||S⟩⟩Q)

{[distributivity and interchange laws of
Ths. 9.2 and 10.4, since P,Q are tests]}

= (R ▷ P) 1 Q ∪ P 1 (S ▷ Q) {[neutrality of 1 and definition of ▷]} 2

Corollary 12.3 Consider tables P :: TP , Q :: TQ and a relation R :: T 2
P such

that R ; P and TQ ;Q are weakly matching. Then

(R 1 TQ) ▷ (P 1 Q) = (R ▷ P) 1 Q .

Proof. Immediate from Lm. 12.2, (3), strictness of 1 and neutrality of 0. 2

This shows (4) — the only question is how to establish weak matching. For
this we introduce a sufficient condition.

Definition 12.4 Assume tables P :: TP , Q :: TQ. We call P joinable with Q if
P ⊆ ||#⟩⟩Q, where # is the matching relation between tuples. Pointwise, P is
joinable with Q iff ∀ p ∈ P : ∃ q ∈ Q : p # q. Informally this means that every
tuple in P has a join partner in Q.

Lemma 12.5 If P is joinable with Q then R ;P and TQ ;Q are weakly matching.

Since the proof needs additional notions we defer it to the Appendix.

Now we can state an optimisation rule involving a θ-join.

Theorem 12.6 Consider P :: TP , Q :: TQ, R :: T 2
P as well as θ :: {A} 1 {B}

with A ∈ TP , B ∈ TQ with TP ∩ TQ = ∅. If P is joinable with θ 1 Q then

(R 1 Tθ1Q) ▷ (P 1 θ 1 Q) = (R ▷ P) 1 θ 1 Q .

This is immediate from Lm. 12.5 and Cor. 12.3.

Without the premise of joinability the theorem need not hold.

Example 12.7 Choose, for instance, θ as equality and TP = {A}, P = {1, 2},
TQ = {B}, Q = {1} as well as DA = DB = {1, 2}. Here {2} has no join partner
in θ 1 Q. Now for a preference R with 1R 2 we have the differing expressions

(R 1 Tθ1Q) ▷ (P 1 θ 1 Q) = (R 1 Tθ1Q) ▷ {(1, 1)} = {(1, 1)} ,
(R ▷ P) 1 θ 1 Q = {2} 1 θ 1 {1} = 0 . 2

15

13 Conclusion and Outlook

We have presented a new and simple approach to an algebraic treatment of
the theta join in databases. This is a piece that was missing in the predecessor
paper [16], because there mostly only joins of tables with disjoint attribute sets
were treated. However, overlapping types are mandatory for coping with theta
joins. And so other important outcomes of the present paper are the more liberal
notions of weak and strong matching of binary relations over database tuples.

With the help of the developed tools we have algebraically proved the cor-
rectness of two sample optimisation rules, namely “push projection over join”
and “push preference over join”.

Further work will be to treat the large catalogue of preference optimisation
rules in [14] with these techniques. This also concerns the complex preference
relation constructors of Pareto and prioritised composition. In fact, the relation
R 1 TU in Th. 12.6 is equal to the prioritised preference R&0.

The present treatment was performed in the setting of concrete binary re-
lations. While mostly point-free, some of the basic lemmas in Sect. 3 still were
proved in a pointwise fashion. A next step to a more abstract view would be to
axiomatise the projections and then reason point-free in terms of these. Another
more abstract approach could be based on the concept of typed join algebras
from the predecessor paper [16].

Acknowledgement Helpful comments were provided by Patrick Roocks, An-
dreas Zelend and the anonymous referees.

References

1. R. Berghammer, A. Haeberer, G. Schmidt, P. Veloso: Comparing two different ap-
proaches to products in abstract relation algebra. Proceedings of the Third Inter-
national Conference on Algebraic Methodology and Software Technology (AMAST
’93), University of Twente, Enschede, The Netherlands, 1993, Springer, 167–176

2. R. Berghammer, B. von Karger: Relational Semantics of Functional Programs. In
C. Brink, W. Kahl, G. Schmidt (eds.): Relational Methods in Computer Science.
Advances in Computing Science, Springer 1997, 115–130

3. H.-H. Dang, P. Höfner, B. Möller: Algebraic separation logic. Journal of Logic and
Algebraic Programming 80(6), 221–247 (2011)

4. H.-H. Dang, B. Möller: Reverse exchange for concurrency and local reasoning. In:
J. Gibbons, P. Nogueira (eds.): MPC. LNCS 7342. Springer 2012, 177–197. Revised
and extended version: H.-H. Dang, B. Möller: Concurrency and local reasoning
under reverse exchange. Science of Computer Programming 85, Part B, 204–223
(2013)

5. J. Desharnais, B. Möller, G. Struth: Modal Kleene algebra and applications — a
survey. Journal on Relational Methods in Computer Science 1, 93–131 (2004)

6. J. Desharnais, B. Möller, G. Struth: Kleene algebra with domain. ACM Transac-
tions on Computational Logic 7, 798–833 (2006)

7. A. Haeberer, M. Frias, G. Baum, P. Veloso: Fork algebras. In C. Brink, W. Kahl, G.
Schmidt (eds.): Relational Methods in Computer Science. Advances in Computing
Science. Springer 1997, 54–69

8. R. Horn, C. Johnson: Topics in matrix analysis, Cambridge University Press 1991

16

9. W. Kahl: CALCCHECK: A proof checker for teaching the “Logical Approach to Dis-
crete Math”. In J. Avigad, A. Mahboubi (eds.): ITP 2018 — Interactive Theorem
Proving. LNCS 10895. Springer 2018, 324–341

10. W. Kahl: CALCCHECK —A proof-checker for Gries and Schneider’s Logical Approach
to Discrete Math. http://calccheck.mcmaster.ca/

11. P. Kanellakis: Elements of relational database theory. In J. van Leeuwen (ed.):
Handbook of Theoretical Computer Science. Volume B: Formal Models and Se-
mantics. Elsevier 1990, 1073–1156

12. W. Kießling: Preference queries with SV-semantics. In International Conference on
Management of Data (COMAD ’05), 15–26, 2005.

13. W. Kießling, M. Endres, F. Wenzel: The Preference SQL system — An overview.
Bull. Technical Committee on Data Engineering, IEEE Computer Society 34(2),
11–18 (2011). Details under http://www.markusendres.de/preferencesql/

14. W. Kießling, B. Hafenrichter: Algebraic optimization of relational preference
queries. Technical Report No. 2003-01. University of Augsburg, Institute of Com-
puter Science, February 2003

15. R. Maddux: On the derivation of identities involving projection functions. In L.
Csirmaz, D. Gabbay, M. de Rijke (eds.): Logic Colloquium ’92. Studies in Logic,
Languages, and Information. CSLI Publications, 143–163 (1995)

16. B. Möller, P. Roocks: An algebra of database preferences. Journal of Logical and
Algebraic Methods in Programming 84(3): 456-481 (2015)

17. G. Schmidt, T. Ströhlein: Relations and Graphs: Discrete Mathematics for Com-
puter Scientists. EATCS Monographs on Theoretical Computer Science. Springer
1993

18. H. Zierer: Programmierung mit Funktionsobjekten: Konstruktive Erzeugung se-
mantischer Bereiche und Anwendung auf die partielle Auswertung. Institut für
Informatik, Technische Universität München. Report TUM-I8803, February 1988

14 Appendix

For types TP , TQ we use the notion of a direct product of DP and DQ (e.g. [17]).
This is a pair (ρP , ρQ) of relations with ρP ⊆ (DP × DQ) × DP and ρQ ⊆
(DP ×DQ)×DQ such that

ρ⌣

P ; ρP = 1 , ρ⌣

Q ; ρQ = 1 ,

ρP ; ρ⌣

P ∩ ρQ ; ρ⌣

Q = 1 , ρ⌣

P ; ρQ = T .

Using this concept the parallel product can be represented as

P ×Q = ρP ; P ; ρ
⌣

P ∩ ρQ ;Q ; ρ
⌣

Q . (5)

The following properties of direct products are used in the main proof5:

ρP ; T = T = ρQ ; T , (6)
(R1 ; ρ

⌣

P ∩R2 ; ρ
⌣

Q) ; (ρP ; S1 ∩ ρQ ; S2) = R1 ; S1 ∩ R2 ; S2 . (7)

5 Equation (7) is valid for concrete relations. For abstract relations, only ⊆ holds.
This phenomenon is called unsharpness in the literature (an early mention is [18],
a further elaboration [1]). The situation is similar with Lm. 8.6.4. The paper [15]
constructs an RA that does not satisfy sharpness.

17

http://calccheck.mcmaster.ca/
http://www.markusendres.de/preferencesql/

Proof of Lemma 12.5. The proof consists in showing ⃝# ;(⌜(R ;P)×⌜(TQ ;Q)) ⊆
⌜(((R ; P)× (TQ ;Q)) ;⃝#) (see Lm. 10.3.3). We do this by showing the stronger
property ⌜(R ;P)×⌜(TQ ;Q) ⊆ ⌜(((R ;P)× (TQ ;Q)) ;⃝#), from which the original
claim follows by ⃝# ⊆ 1 and isotony of ; .

Since “joinable” is defined with # and the formula to prove uses ⃝# , we have
to make a connection between the two:

⃝# = ⌜(ρP ; # ∩ ρQ) . (8)

This is analogous to the conversion of a relation to a vector explained in [17],
which would give ⃝# ;T = (ρP ; # ∩ ρQ) ;T. The inverse transformation is # =
ρ⌣

P ; (⃝# ;T∩ρQ). Both equations are easily verified. Using restriction (Lm. 2.1.7)
and Boolean algebra, the second one can be simplified to # = ρ⌣

P ;⃝# ;ρQ. Then
by Def. 12.4 and the definition of diamond (Def. 6.1) P is joinable with Q iff

P ⊆ ⌜(ρ⌣

P ;⃝# ; ρQ ;Q) . (9)

Now we calculate as follows.
⌜(R ; P)× ⌜(TQ ;Q)

= {[distributivity of domain over ×]}
⌜((R ; P)× (TQ ;Q))

= {[(5)]}
⌜(ρP ;R ; P ; ρ⌣

P ∩ ρQ ; TQ ;Q ; ρ⌣

Q)

⊆ {[Boolean algebra and isotony of ⌜]}
⌜(ρP ;R ; P ; ρ⌣

P)

= {[locality (Lm. 2.1.6)]}
⌜(ρP ;R ; P ; ⌜(ρ⌣

P))

= {[ρP is surjective, hence ρ⌣

P is total]}
⌜(ρP ;R ; P ; 1)

= {[neutrality of 1 and (9) with Boolean algebra]}
⌜(ρP ;R ; P ; ⌜(ρ⌣

P ;⃝# ; ρQ ;Q))

= {[locality (Lm. 2.1.6) twice]}
⌜(ρP ;R ; P ; ρ⌣

P ; ⌜(⃝# ; ρQ ;Q))

= {[domain representation (1)]}
⌜(ρP ;R ; P ; ρ⌣

P ; (⃝# ; ρQ ;Q ; T ∩ 1))

= {[⃝# is a test, restriction (Lm. 2.1.7) and neutrality of 1]}
⌜(ρP ;R ; P ; ρ⌣

P ; (ρQ ;Q ; T ∩ ⃝#))

= {[R1 ; (R2 ; T ∩ R3) = (R1 ∩ T ;R⌣

2) ;R3 for all R1, R2, R3,
laws of converse and Q is a test]}

⌜((ρP ;R ; P ; ρ⌣

P ∩ T ;Q ; ρ⌣

Q) ;⃝#)

= {[(6)]}
⌜((ρP ;R ; P ; ρ⌣

P ∩ ρQ ; TQ ;Q ; ρ⌣

Q) ;⃝#)

= {[(5)]}
⌜(((R ; P)× (TQ ;Q)) ;⃝#)

2

18

	The -Join as a Join with

