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Abstract 
Satellite-derived sea surface temperature (SST) fronts provide a valuable resource 1 

for the study of oceanic fronts. Two edge detection algorithms designed specifically to 2 

detect fronts in satellite-derived SST fields are compared: the histogram-based 3 

algorithm of Cayula and Cornillon (1992, 1995) and the entropy-based algorithm of 4 

Shimada et al. (2005). The algorithms were applied to four months (July and August 5 

for both 1995 and 1996) of SST fields and the results are compared with SST data 6 

taken by the M.V. Oleander, a container ship that makes weekly transits between New 7 

York and Bermuda. There is no significant difference in front pixels found with the 8 

Cayula-Cornillon algorithm and those found in the in situ (Oleander) data. Furthermore, 9 

for strong fronts, with gradients greater than 0.2 K/km, the distribution of fronts found 10 

with the Shimada et al. algorithm is quite similar to that of fronts found with the 11 

Cayula-Cornillon algorithm. However, there are significant differences in the number 12 

of weak fronts found. This is seen clearly in waters south of the Gulf Stream where the 13 

gradient magnitude of fronts found is less than 0.1 K/km. In this region, the probability 14 

that the Shimada et al. algorithm detects a front rarely falls below 4% while the other 15 

two algorithms find fronts less than 1% of the time. These results raise the question of 16 

exactly what qualifies as an SST front, a classic problem in edge detection.  17 
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1 Introduction 19 

Oceanic fronts can be defined as relatively narrow zones in which the gradient of a 20 

given property is large compared to its background gradient in the region. Although not 21 

explicitly defined as gradients in the horizontal, or near horizontal, these are generally 22 

the gradients that one thinks of in the context of fronts. Fronts often correspond to 23 

boundaries between different water masses or to large shears in currents although other 24 

processes may give rise to fronts as well; e.g., a boundary between different vertical 25 

mixing regimes on the continental shelf. Of interest in this paper are enhanced 26 

horizontal gradients of temperature, specifically, sea surface temperature (SST) fronts. 27 

With the broad availability of satellite-derived SST fields, there has been significant 28 

effort devoted to the development of front-detection algorithms – automated methods 29 

for detecting fronts in these fields – and to the use of the resulting front data sets in 30 

scientific investigations. Front-detection algorithms fall into several categories, three 31 

of which are relevant here: gradient algorithms (Moore et al., 1997), histogram 32 

algorithms (Cayula and Cornillon, 1992, 1995; CCA, referring to the Cayula-Cornillon 33 

Algorithm, hereafter), and entropy algorithms (Vazquez et al., 1999; Shimada et al., 34 

2005; SEA, referring to the Shimada Entropy Algorithm, hereafter). These algorithms 35 

have been applied to thermal fronts in marginal seas (Hickox et al., 2000; Wang et al., 36 
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2001; Belkin and Cornillon, 2003) as well as open ocean regions (Ullman et al., 2007; 37 

Belkin et al., 2009). Several studies have also presented new views of oceanic fronts in 38 

coastal and regional seas, such as Ullman and Cornillon (1999) who applied the CCA 39 

to the northeastern coast of the US, and Shimada et al. (2005) and Chang et al. (2006, 40 

2010) who applied SEA to the Japanese coast and northern South China Sea. 41 

Interestingly, the West Luzon Front detected by CCA in Belkin and Cornillon (2003) 42 

and by SEA in Chang et al. (2010) was not detected by Wang et al. (2001) in their 43 

application of a gradient based algorithm to SST fields of the northern South China Sea. 44 

This suggests that the gradient based approach may not be appropriate for the detection 45 

of SST fronts in regions of weak SST gradients (Chang et al., 2010).  46 

When applying automated algorithms of front detection to satellite images, it is 47 

important to verify these methods. Ullman and Cornillon (2000) used SST fronts 48 

detected in along-track ship data to evaluate CCA detected fronts in satellite-derived 49 

fields. Fronts were identified in the in situ data based on along-track SST gradients. In 50 

this paper, we compare CCA and SEA detected fronts in satellite-derived SST fields 51 

with one-another and with fronts detected from continuous temperature measurements 52 

conducted from a merchant ship in transit between New York and Bermuda, the same 53 

basic data set used by Ullman and Cornillon (2000).  We do not include comparison 54 
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with a gradient based algorithm applied to the satellite-derived SST fields because this 55 

was dealt with in detail in Ullman and Cornillon (2000). The result of that analysis was 56 

that the gradient based algorithm found false fronts at roughly twice the rate that CCA 57 

did. 58 
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2 Data and methods 59 

Full resolution (1.2 km) July and August SST fields from both 1995 and 1996 were 60 

used for this study. These fields were derived from the level 2b (L2b)1 Advanced Very 61 

High Resolution Radiometer (AVHRR) data in the University of Miami/University of 62 

Rhode Island (URI) archive with version 5.0 of the National Oceanic and Atmospheric 63 

Administration (NOAA)/National Aeronautics and Space Administration (NASA) 64 

Pathfinder algorithm (Smith et al. 1996). Data in the archive cover the waters off the 65 

northeastern coast of the United States and the southeastern coast of Canada, east to 66 

approximately 40°W. Following retrieval to L2b, the 2 to 4 passes available per day 67 

were manually navigated to within 1 pixel, ~1.1 km at nadir. The fields were then 68 

remapped to an equirectangular projection (L3) with 1.2 km pixel spacing at the image 69 

center, 38°N 70°W. Remapping from L2b was performed using the nearest neighbor 70 

L2b pixel to the target L3 pixel. The study area used for this project (Fig. 1), 78° to 71 

63°W and 31°to 43°N, was extracted from these fields. Cloud removal was performed 72 

using the URI multi-image cloud detection algorithm described in Ullman and 73 

                                                

1 We use the NASA designation for data processing levels: 

http://science.nasa.gov/earthscience/earth-science-data/data-processing-levels-for-eosdis-data-products/. 
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Cornillon (1999). Detection of fronts in declouded SST images was performed using 74 

both the CCA and SEA methods. Brief descriptions of these are given below. More 75 

detailed descriptions are available in the original references (Cayula and Cornillon, 76 

1992, 1995 for CCA; Vazquez et al., 1999 and Shimada et al., 2005 for SEA). 77 

2.1 Front Detection Using Satellite-Derived Data 78 

The Cayula-Cornillon algorithm (CCA) used in this study is the multi-image version 79 

of the original multi-image edge detection algorithm developed at URI. In the first step, 80 

the SST fields are median filtered with a 3x3 (3.6x3.6 km) kernel to reduce noise in the 81 

field. This provides for a sharper separation of peaks corresponding to different water 82 

masses in the histograms used in the next step. Reducing the noise in the image is also 83 

beneficial in the contour following step. In the second step, the single image edge 84 

detector (SIED) is applied to each image in the time series. The SIED performs a set of 85 

statistical tests on histograms of the temperature field in a moving nxn (32x32 in this 86 

study) pixel window to identify candidate front pixels. It then descends to the pixel 87 

level and follows contours identified by the candidate front pixels. Segments shorter 88 

than m (10 in this study) pixels are subsequently eliminated from consideration. A 89 

second pass is then made over the images in the archive. First a zero-one image, 90 

initialized to zero, is formed in which each pixel flagged as a front pixel in any image 91 
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within n (60 in this study) hours of the given image, excluding the image of interest, is 92 

set to one. (It is important to note that the window used here does not exclude shorter 93 

time scale fronts; any front found in any of the adjacent images is included. 94 

Furthermore, this step is used to ‘help’ the algorithm find fronts in areas partially 95 

contaminated by clouds, it does not eliminate fronts.) The resulting image is then 96 

thinned, based on the local SST gradient, to lines one pixel wide. In the last step, the 97 

SIED algorithm is applied a second time to each image in the archive, but this time it 98 

uses the thinned persistent fronts associated with that image in the contour following 99 

step along with candidate pixels found in the analysis of histograms in the image. Fig. 100 

2b shows fronts resulting from this procedure for the AVHRR-derived SST field shown 101 

in Fig. 2a. 102 

The Shimada et al. algorithm is specifically designed for finer-scale front detection 103 

at the full image resolution of 1.2 km (Shimada et al., 2005). As typically employed, 104 

the original SST fields are not filtered prior to application of this algorithm. However, 105 

for comparison with CCA, SEA has been applied to both the original data, as is 106 

normally done, and to the 3x3 median filtered version of the data. Edge detection 107 

begins with an estimate of the Jensen-Shannon divergence in SST in two 5x5 pixel 108 

subwindows in four directions (shown in Fig. 3 of Shimada et al., 2005). A composite 109 
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matrix is built from the four Jensen-Shannon divergences, and the maximum value is 110 

taken as the final divergence value to be assigned to each pixel. If this value exceeds 111 

0.6 then the pixel is designated a front pixel. Finally, a thinning algorithm is applied to 112 

obtain pixel wide frontal segments. The results, again for the SST field in Fig. 2a, are 113 

shown in Fig. 2c for the unfiltered SST field and in Fig 2e for the 3x3 median filtered 114 

field. However, in order to compare this with CCA derived fronts, frontal segments 115 

shorter than 10 pixels are removed from further comparisons. These fronts are shown 116 

in Figs. 2d and 2f. Following front-detection, the SST gradient was calculated at each 117 

front pixel resulting from each of the two algorithms using the Prewitt operator to 118 

obtain the latitudinal and longitudinal gradient components. The gradient magnitude,  119 

|TS| where TS is SST, was determined from the Prewitt components. 120 

2.2 Processing of Ship Measurements 121 

Comprehensive validation of the Cayula-Cornillon algorithm for satellite-derived 122 

SST images using in situ data is described by Ullman and Cornillon (2000). In this 123 

study we compare SEA and CCA detected fronts with fronts detected in continuous 124 

ocean temperature measurements made from the container vessel M.V. Oleander 125 

(Oleander in the remainder), which regularly navigates between Port Elizabeth, NJ and 126 

Bermuda. The mean ship track is superimposed on Fig. 1 (black line). The Oleander 127 
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temperature data were measured by a flow system at a depth of between 5 and 6 m 128 

sampled every 15 s,  a corresponding spatial sampling of approximately 110 m at a 129 

ship speed of 15 knots. For comparison with the AVHRR data, the Oleander data were 130 

averaged to a 1.2 km spacing along the ship’s track. SST fronts in the Oleander data 131 

were identified by their along-track gradient as described in Ullman and Cornillon 132 

(2000). Specifically, an along-track location was defined as a front if one of two 133 

criteria was met. (1) The SST gradient magnitude exceeded 0.2 K/km or (2) SST 134 

gradient magnitude exceeded 0.1 K/km and the gradient magnitude at the along-track 135 

location was five times larger than the mean gradient magnitude averaged over a 70 136 

km section centered on the point of interest – the definition of a front used by Fedorov 137 

(1986). For the comparisons undertaken in this study, only satellite-derived SST fronts 138 

intersecting a ship track within 6 h of the passage of the ship were selected for further 139 

analyses. 140 
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3 Results 141 

3.1 SST Front Probability and Mean Gradient Maps 142 

Monthly composite maps of front probability were produced from the fronts 143 

detected in the individual satellite-derived images for June to August in both 1995 and 144 

1996. Front probability at a pixel is defined as the number of times the pixel was 145 

designated as a front pixel in the period considered divided by the number of times the 146 

pixel was clear in the same period. Fig. 3 shows the CCA (Fig. 3a) and the SEA (Fig. 147 

3b, c and d) SST front probabilities for August 1995. The CCA (3a) front probability 148 

map shows several frontal bands between Cape Hatteras (white arrow) and Georges 149 

Bank (yellow arrow). Most of these bands are approximately parallel to the 100 m 150 

isobath with front probabilities as high as 11%. In contrast, front probabilities in the 151 

unfiltered SEA2 map (3b) are everywhere substantially larger, up to 16% at some 152 

locations on the continental shelf, than those in the CCA-derived field. SEA front 153 

                                                

2 ‘Unfiltered’ here refers to the SST fields from which the fronts were derived. It 

does not refer to filtering, or the lack thereof, of the probability fields. ‘Filtered’ SEA 

fields refers to the application of a 3x3 median filter to the SST fields prior to the 

application of SEA. This convention will be used througout this manuscript. 
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probabilities obtained after eliminating front segments less than 10 pixels long from 154 

the unfiltered data (Fig. 3c), although less than the corresponding probabilities in the 155 

full SEA field (expected since a significant number of front pixels have been removed 156 

from the data), are still higher than the corresponding CCA probabilities. This is 157 

especially evident across much of the southern part of the study area; e.g., the area 158 

indicated by the red arrow.  In contrast, the front probabilities for the filtered fields 159 

with front segments shorter than 10 pixels removed (Fig. 3d) are quite different than 160 

the unfiltered version (Fig. 3c). Specifically, the filtered data show a significant 161 

decrease in front probability on the shelf when compared to the unfiltered probabilities 162 

and a significant increase in waters seaward of the Gulf Stream. In both cases – the 163 

increase in front probability seaward of the Gulf Stream and its decrease shoreward – 164 

well know structures in this region, such as the Gulf Stream and the Shelf Break front 165 

clearly evident in the CCA probability field (Fig. 3a) and to a lesser extent in the 166 

unfiltered SEA field (Fig. 3c), tend to be all but eliminated in the filtered field (Fig. 3d). 167 

In light of this, the focus of the remainder of this manuscript will be on comparisons of 168 

unfiltered SEA probabilities with CCA probabilities and front locations in the in situ 169 

data.  170 

Fig. 4a shows the mean SST gradient magnitude, |ÑTS|, for August 1995 at CCA 171 
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detected front locations and Figs. 4b and c, the corresponding SEA fields. These mean 172 

fields were obtained only from gradient values when a front was present. Specifically, 173 

if a front was detected by CCA at location x, y in images A and B, but not in image C, 174 

only |ÑTS| from images A and B were used when calculating the mean at x, y. In most 175 

locations, the CCA front |ÑTS| is larger than the corresponding SEA value. This is 176 

because SEA finds more fronts, many of which tend to be weaker (as will be shown 177 

shortly and discussed in more detail in Section 4) than those found by CCA, thus 178 

reducing the mean value. The same behavior is observed when comparing the full SEA 179 

detected |ÑTS| field (Fig. 4b) with that obtained from the reduced SEA data set (Fig. 4c); 180 

i.e., after the removal of short and presumably weaker frontal segments. The CCA front 181 

|ÑTS| map shows that mean fronts in the study area tend to be stronger, with values 182 

approaching 0.3 K/km, along the shelf-break than elsewhere in the region. The largest 183 

values occurred on the southeastern flank of Georges Bank. The mean front |ÑTS| 184 

values along the shelf-break are consistent with those found by Ullman and Cornillon 185 

(1999) for the climatological summer, July through September, based on data from 186 

1985 through 1996. Although the SEA front |ÑTS| map (Fig. 4b) shows similar patterns 187 

on the periphery of Georges Bank, with the strongest values >0.3 K/km, the pattern in 188 

much of the remainder of the study area reveals substantial differences between the 189 
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CCA and SEA front gradient fields. Frontal bands clearly seen in the CCA composite 190 

are only vaguely discernible in the SEA composite; e.g., along the northern and 191 

southern boundaries of the Gulf Stream (white arrows in Fig. 4a, b). However, the SEA 192 

front |ÑTS| map generated with short fronts eliminated (Fig. 4c), is more similar to the 193 

CCA map than is the SEA map based on all detected fronts. This suggests that much of 194 

the difference in the performance of the two edge detection algorithms is related to 195 

short, weak front segments found by the SEA but not by CCA. 196 

197 
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3.2 Comparison of AVHRR with Along-Track Fronts 198 

Fig. 5 shows a comparison of Oleander SSTs (black line) and Pathfinder SSTs (gray 199 

line) for 2-4 June 1995 - cruise MB9506a. To obtain this plot, the 9 AVHRR SST 200 

values (a 3x3 pixel square) nearest each Oleander sample in space and within 6 hours 201 

in time were averaged. Cloud contaminated pixels were not included in the average. 202 

Given that AVHRR passes are separated by approximately 12 hours this results in a 203 

value at virtually all Oleander locations (with temporal and spatial sampling of 15 s 204 

and 110 m, respectively), cloud cover permitting. The large scale changes in SST are 205 

well represented in both data sets shoreward of ~600 km - both see the very large 206 

change in SST at the shelf-break, ~200 km from New York, and the somewhat more 207 

gentle increase at approximately 450 km associated with the shoreward edge of the 208 

Gulf Stream. However, seaward of ~630 km there is a notable difference in the trends. 209 

SST in the Oleander record decreases rather abruptly at ~630 km, corresponding to the 210 

seaward, or southern, edge of the stream, and then remains relatively constant at about 211 

22°C for the remainder of the transect, In contrast, AVHRR SSTs decrease at a very 212 

nearly constant rate from their peak of 26°C in the Gulf Stream (~500 km) to ~20°C 213 

toward the end of transect. Given that the Oleander data is warmer than the AVHRR 214 

data in this region, it is unlikely that the difference is due to the difference in depth at 215 
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which the observations are made - 5 to 6 m for the Oleander and the top 10µm for 216 

AVHRR - since one would expect deeper waters to be slightly cooler than surface 217 

waters, not warmer. The more likely explanation is that high, thin clouds or small, 218 

unresolved clouds are depressing the satellite-derived SST values seaward of the 219 

southern edge of the Gulf Stream. A significant increase in cloud cover south of the 220 

stream is evident in the images for 2-4 June (not shown) supporting this view. 221 

Although pixels contaminated in this way are not likely to introduce false fronts in the 222 

CCA results and most likely not in the SEA results, they are likely to depress SST 223 

retrievals.  224 

The locations of fronts found with the three different methods (SEA fronts are only 225 

those with at least 10 pixels per front segment) are also indicated in Fig. 5. Consistent 226 

with Figs. 2 and 3, significantly more fronts are found by SEA than CCA. Significantly 227 

more fronts are also found in the Oleander data than by CCA, but these, as with the 228 

fronts located by CCA, tend to cluster in regions of large SST gradients while the SEA 229 

fronts tend to be more uniformly distributed. Note that no fronts are found seaward of 230 

about 900 km by CCA or in the Oleander data while there is a significant number 231 

found by SEA. Fig. 6 is a statistical summary in histogram form of the location of 232 

fronts, as defined by the various algorithms, along the Oleander track for all ship 233 
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sections in June and August of 1995 and 1996. Histogram bins correspond to 20 km 234 

along-track sections, ~16 AVHRR pixels. A peak located approximately 200 km from 235 

New York is evident for all three algorithms (Figures4a-c). The location of these peaks 236 

corresponds to the location of the 200 m isobath and the associated shelf-break front; 237 

i.e., to the high gradient region evident at 200 km in Fig. 5. There are also two 238 

relatively well-defined peaks at approximately 420 km and 530 km in the Oleander 239 

histogram. These correspond to the mean positions of the in-shore edge of the Gulf 240 

Stream, sometimes referred to as the ‘North Wall’, and the southern edge of the stream, 241 

respectively; the approximate location of the high gradient regions seen in the Oleander 242 

data at ~450 km and ~630 km in Fig. 5. The correspondence is not exact because of the 243 

lateral displacement of the Gulf Stream. There is a suggestion of peaks in the same 244 

locations in the CCA and SEA data. However, there are a number of other peaks in the 245 

SEA data that do not correspond to any in the Oleander data confounding the 246 

interpretation of the Gulf Stream peaks. The clearest difference between the histograms 247 

is in the larger number of SEA fronts compared with both CCA and Oleander fronts in 248 

all bins. This is discussed in more detail in the next section.  249 
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4 Discussion and Conclusion 250 

Comparisons of along-track fronts discussed in the previous section reveal clear 251 

differences between the satellite and the in situ data. Table 1 shows the results of an 252 

analysis of Variance (ANOVA) information table testing the number of front pixels per 253 

20 km bin detected by the in-situ, CCA, and SEA algorithms. There is a significant 254 

difference between the numbers of fronts in the three datasets (p<0.05). We therefore 255 

compared the difference in numbers between pairs of datasets. For the Oleander-CCA 256 

pair, there are no obvious differences; the null hypothesis cannot be rejected. However, 257 

the numbers of front pixels are significantly different between the Oleander and SEA 258 

and between the CCA and SEA, datasets.  259 

The ANOVA tests establish the statistical significance of the difference in the mean 260 

number of fronts per bin between SEA and CCA, and SEA and in situ, but not in the 261 

shapes of the distributions. In fact, the increased number of detected fronts in the SEA 262 

data appears to be fairly uniformly distributed along the Oleander track. Specifically, 263 

the SEA histogram (Fig. 6c) decreases from a maximum at 200 km, the shelf-break 264 

front, to approximately 600 km, seaward of which it is close to flat at about 90 detected 265 

front pixels per 20 km bin, while seaward of 600 km CCA and Oleander histogram 266 

values (Figs. 6a & b) are, on average, less than 10 detected fronts per bin. The 80 front 267 
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difference is slightly smaller than, but close to, the difference, approximately 100 268 

fronts, between the height of the shelf-break peak at 200 km in the SEA histogram (220 269 

fronts) and that in the Oleander histogram (120 fronts). This suggests a background 270 

level of front detection for the entropy algorithm of about 8%; there are on average 80 271 

cloud free pixels for the four month study period at each (1.2 km) location along the 272 

Oleander track seaward of 600 km and there are 16 AVHRR pixels (and along-track 273 

Oleander samples) in each 20 km bin yielding a total of approximately 1300 clear 274 

pixels in each bin. This results in a probability on the order of 90/1300 (approximately 275 

7%) close to the values evident in Fig. 3c for this portion of the track. In fact, the 276 

general differences in the SEA probability distribution (Fig. 3c) from the CCA 277 

distribution (Fig. 3a) are consistent with the argument presented above for a relatively 278 

flat background detection rate along the Oleander track. 279 

In the previous paragraphs we have shown that there is a relatively uniform 280 

background of SEA detected fronts to which are added fronts associated with major 281 

features from the shelf to the outer edge of the Gulf Stream. In Section 3 we also 282 

suggested that the fronts seen seaward of the Gulf Stream tend to be weak and likely 283 

short. Here we revisit these observations. Ullman and Cornillon (2000) suggest that the 284 

error rate in CCA front detection is >40% when the temperature gradient is <0.1 K/km 285 
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but falls rapidly with increasing SST gradient magnitude. Comparing the CCA gradient 286 

map (Fig. 4a) with the SEA map based on eliminating short fronts (Fig. 4c), it is clear 287 

that strong SST fronts, >0.2 K/km, those along the shelf-break especially in the vicinity 288 

of Georges Bank are well represented in both fields. This is similar to the results of 289 

Ullman and Cornillon (2000) that front pixels with high |ÑTS| are well defined. 290 

However, pixels with gradients about 0.1 K/km are clearly seen in offshore waters in 291 

the SEA composite maps (Fig. 4b, c) but are not found in the CCA results (Fig. 4a). We 292 

further investigated the spatial distribution of front pixels detected by CCA and SEA in 293 

the single image shown in Fig. 7. CCA and SEA detected frontal segments (Fig. 7a and 294 

b) correspond well in the Gulf Stream and along the shelf-break around Georges Bank. 295 

However, SEA found many more frontal segments in the study area (Fig. 7b, with 296 

fronts of < 10 pixels omitted) than the CCA algorithm. When frontal segments from 297 

both algorithms are superimposed (Fig. 7c), it is clearly seen that CCA frontal 298 

segments (blue lines) are mainly distributed in coastal waters. In contrast, the SEA 299 

segments (red lines) are evident throughout the image with a slightly higher density on 300 

the shelf than in Slope, Gulf Stream or Sargasso Sea waters. This is consistent with the 301 

number of fronts found along the track of the Oleander discussed in Section 3. Also 302 

note that the SEA frontal segments tend to be substantially shorter on average than the 303 
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CCA segments. 304 

Following Ullman and Cornillon (2000), we also examine the error rate in detection 305 

of SST fronts by CCA and SEA compared with the in situ data. False front errors occur 306 

if the ship was at the location of an AVHRR front within 6 hours of the AVHRR image 307 

time and a front was not found in the ship data.  The error rates for each of the two 308 

satellite-based algorithms are shown in Fig. 8 as a function of the SST gradient 309 

associated with the front. The results for CCA compare well with those of Ullman and 310 

Cornillon (2000). They are also consistently lower than the corresponding error rate for 311 

SEA with the fractional discrepancy increasing substantially with SST gradient. 312 

So why might the entropy algorithm (SEA) find more fronts than the histogram 313 

algorithm (CCA) or the gradient algorithm applied to the in situ data? Initially, one 314 

might think that the main reason for the discrepancy relates to the preprocessing of the 315 

SST fields, specifically, to the median filtering of the fields. However, a comparison of 316 

front probabilities obtained from SEA applied to the filtered SST fields with those 317 

obtained from SEA applied to the unfiltered fields and to those obtained from CCA 318 

suggest that this is not the case. Specifically, CCA tends to find fronts preferentially on 319 

the continental shelf relative to waters seaward of the Shelf Break while SEA applied 320 

to the filtered SST fields finds just the opposite, it finds fronts preferentially in waters 321 
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seaward of the Shelf Break. Furthermore, SEA applied to the unfiltered data, the results 322 

discussed in some detail in previous sections, tends to find fronts preferentially on the 323 

shelf as did CCA although at a much higher density. Other factors that might contribute 324 

to the entropy algorithm finding more fronts than the CCA and in situ algorithms are: 325 

(1) The size of the region examined by the algorithms (SEA vs. CCA): CCA identifies 326 

two populations in 32x32 pixel histograms and uses the boundary pixels between 327 

these populations to begin contour following. This means that if there are more 328 

than two distinct populations in the window, the algorithm will miss fronts. The 329 

fronts found will tend to be those between the largest two populations. The entropy 330 

algorithm operates on 5x5 pixel subwindows, hence it is not constrained to the 331 

same extent. The gradient algorithm applied to the in situ data used an even smaller 332 

kernel. 333 

(2) The effect of clouds on the retrieval of fronts (SEA vs. CCA, and SEA and CCA vs. 334 

in Situ): As noted earlier, the histogram of SST fronts for the Oleander data (Fig. 6a) 335 

shows two peaks associated with the Gulf Stream, one corresponding to the 336 

northern edge at ~400 km and one to the southern edge at ~520 km and then it 337 

drops precipitously from between 50 and 60 counts to ~20 counts after which it is 338 

relatively flat. Over the same region the CCA and SEA histograms decrease 339 
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relatively smoothly from their values at 280 km to their values at 500 km after 340 

which they too are relatively flat. There is a corresponding decrease in the percent 341 

of pixels identified as ‘clear’ by the Pathfinder algorithm (not shown) from 280 to 342 

500 km. This increase in cloud cover is likely the cause of the differences in 343 

numbers of fronts found by the different algorithms. Because the CCA operates on 344 

32x32 pixel histograms and requires at least 100 clear pixels to perform the 345 

histogram analysis and because it requires fronts to be at least 10 pixels long, its 346 

performance decreases as cloud cover increases; i.e., the algorithm will miss fronts 347 

in small clear regions. The SEA, which operates on smaller regions, is less 348 

susceptible to this problem hence will find relatively more fronts than the CCA as 349 

the cloud cover increases. The in situ algorithm does not depend on cloud cover at 350 

all although a match-up is not attempted if the satellite-data are not clear in the 351 

vicinity of the pixel of interest. 352 

(3) The dimensionality of the data (SEA and CCA vs. in situ): Both CCA and SEA 353 

operate on two-dimensional fields while the in situ algorithm operates on a line. 354 

The two dimensionality of satellite-derived SST fields allows for a weaker gradient 355 

or temperature threshold (depending on the algorithm) than that for the gradient 356 

algorithm applied to the one dimensional data; i.e., the 2d algorithms incorporate 357 
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information from the second dimension in the detection of fronts. 358 

In conclusion, the entropy algorithm finds many more weaker and likely shorter, 359 

fronts than the histogram or the in situ gradient algorithms. Although many of these 360 

fronts are likely real, the large number of weak fronts tends to mask the stronger fronts 361 

in statistical analyses of front distribution. This problem might be addressed by 362 

applying a filter to the SEA fronts; e.g., filtering on length, as we did here, and/or on 363 

|ÑTS|. The difficulty with applying filters, especially on the gradient, is what to use as a 364 

threshold. This is one of the advantages of the histogram algorithm; it is relatively 365 

insensitive to the gradient. In the end, the appropriate algorithm to use will depend on 366 

the application, specifically, on what is considered to be a front for the application. The 367 

histogram algorithm was designed to find long fronts separating two relatively large 368 

water masses, fronts that are thought to be dynamically important; i.e., to extend 369 

deeper in the water column than short, weak fronts. The latter may, however, be of 370 

significance in biological or chemical studies and of indicators of some submesoscale 371 

ocean structures. 372 
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Figure captions: 382 
Table 1: ANOVA table for the number of fronts detected by the Oleander, CCA and SEA 383 

methods. 384 

Figure 1: Topographic features of the study area off the northeast United States redrawn 385 

from Ullman and Cornillon (1999). CH, NY, LI, and GB indicate the Cape Hatteras, 386 

New York, Long Island, and Georges Bank, respectively. 387 

Figure 2: (a) AVHRR- SST for 0640 GMT 1 August 1995; (b) frontal segments obtained 388 

from CCA applied to the 3x3 median filtered SST field of panel a; (c) frontal 389 

segments obtained from SEA applied to the unfiltered SST field of panel a; (d) 390 

frontal segments following removal of all segments shorter than 10 pixels obtained 391 

from SEA applied to the unfiltered SST field of panel a; (e) frontal segments 392 

obtained from SEA applied to the 3x3 median filtered SST field of panel a, and; (f) 393 

frontal segments following removal of all segments shorter than 10 pixels obtained 394 

from SEA applied to the 3x3 median filtered SST field of panel a. 395 

Figure 3: Monthly maps of SST front probability detected by (a) CCA applied to the 3x3 396 

median filtered SST fields; (b) SEA applied to the unfiltered SST fields; (c) SEA 397 

applied to the unfiltered SST fields, with frontal segments shorter than 10 pixels 398 

removed, and; (d) SEA applied to the 3x3 median filtered SST fields, with frontal 399 

segments shorter than 10 pixels removed. 400 

Figure 4: Monthly composite maps of SST gradient magnitude detected by (a) CCA 401 

applied to the 3x3 median filtered SST fields; (b) SEA applied to the unfiltered SST 402 

fields and; (c) SEA applied to the unfiltered SST fields, with frontal segments 403 

shorter than 10 pixels removed. 404 

Figure 5: Along-track SST for 2 to 4 June 1995 obtained from the Oleander (black line) 405 

and AVHRR (gray line). 406 

Figure 6: Histogram distribution in 20 km bins of front pixels detected along the 407 

Oleander track from (a) in-situ SST; (b) CCA applied to the 3x3 median filtered SST 408 

fields and; (c) SEA applied to the unfiltered SST fields, with frontal segments 409 

shorter than 10 pixels removed.  410 

Figure 7: (a) SST for 1806 GMT 1 August 1995 with CCA detected fronts superimposed; 411 

(b) The same image with SEA detected fronts, obtained from the unfiltered field, 412 

superimposed and; (c) CCA detected fronts (blue) and SEA detected fronts (red) 413 

from the same SST field. 414 

Figure 8: Error rate in detection of SST fronts by CCA and SEA (unfiltered) compared 415 

with the in situ data as a function of the gradient along the Oleander track. 416 

417 
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