195 research outputs found

    Exact linear modeling using Ore algebras

    Full text link
    Linear exact modeling is a problem coming from system identification: Given a set of observed trajectories, the goal is find a model (usually, a system of partial differential and/or difference equations) that explains the data as precisely as possible. The case of operators with constant coefficients is well studied and known in the systems theoretic literature, whereas the operators with varying coefficients were addressed only recently. This question can be tackled either using Gr\"obner bases for modules over Ore algebras or by following the ideas from differential algebra and computing in commutative rings. In this paper, we present algorithmic methods to compute "most powerful unfalsified models" (MPUM) and their counterparts with variable coefficients (VMPUM) for polynomial and polynomial-exponential signals. We also study the structural properties of the resulting models, discuss computer algebraic techniques behind algorithms and provide several examples

    Effective Scalar Products for D-finite Symmetric Functions

    Get PDF
    Many combinatorial generating functions can be expressed as combinations of symmetric functions, or extracted as sub-series and specializations from such combinations. Gessel has outlined a large class of symmetric functions for which the resulting generating functions are D-finite. We extend Gessel's work by providing algorithms that compute differential equations these generating functions satisfy in the case they are given as a scalar product of symmetric functions in Gessel's class. Examples of applications to k-regular graphs and Young tableaux with repeated entries are given. Asymptotic estimates are a natural application of our method, which we illustrate on the same model of Young tableaux. We also derive a seemingly new formula for the Kronecker product of the sum of Schur functions with itself.Comment: 51 pages, full paper version of FPSAC 02 extended abstract; v2: corrections from original submission, improved clarity; now formatted for journal + bibliograph

    Computing diagonal form and Jacobson normal form of a matrix using Gr\"obner bases

    Get PDF
    In this paper we present two algorithms for the computation of a diagonal form of a matrix over non-commutative Euclidean domain over a field with the help of Gr\"obner bases. This can be viewed as the pre-processing for the computation of Jacobson normal form and also used for the computation of Smith normal form in the commutative case. We propose a general framework for handling, among other, operator algebras with rational coefficients. We employ special "polynomial" strategy in Ore localizations of non-commutative GG-algebras and show its merits. In particular, for a given matrix MM we provide an algorithm to compute U,VU,V and DD with fraction-free entries such that UMV=DUMV=D holds. The polynomial approach allows one to obtain more precise information, than the rational one e. g. about singularities of the system. Our implementation of polynomial strategy shows very impressive performance, compared with methods, which directly use fractions. In particular, we experience quite moderate swell of coefficients and obtain uncomplicated transformation matrices. This shows that this method is well suitable for solving nontrivial practical problems. We present an implementation of algorithms in SINGULAR:PLURAL and compare it with other available systems. We leave questions on the algorithmic complexity of this algorithm open, but we stress the practical applicability of the proposed method to a bigger class of non-commutative algebras

    Fast Computation of Common Left Multiples of Linear Ordinary Differential Operators

    Full text link
    We study tight bounds and fast algorithms for LCLMs of several linear differential operators with polynomial coefficients. We analyze the arithmetic complexity of existing algorithms for LCLMs, as well as the size of their outputs. We propose a new algorithm that recasts the LCLM computation in a linear algebra problem on a polynomial matrix. This algorithm yields sharp bounds on the coefficient degrees of the LCLM, improving by one order of magnitude the best bounds obtained using previous algorithms. The complexity of the new algorithm is almost optimal, in the sense that it nearly matches the arithmetic size of the output.Comment: The final version will appear in Proceedings of ISSAC 201

    The Distribution of Patterns in Random Trees

    Get PDF
    Let T_nT\_n denote the set of unrooted labeled trees of size nn and let T_nT\_n be a particular (finite, unlabeled) tree. Assuming that every tree of T_nT\_n is equally likely, it is shown that the limiting distribution as nn goes to infinity of the number of occurrences of MM as an induced subtree is asymptotically normal with mean value and variance asymptotically equivalent to ÎŒn\mu n and σ2n\sigma^2n, respectively, where the constants ÎŒ>0\mu>0 and σ≄0\sigma\ge 0 are computable

    Low Complexity Algorithms for Linear Recurrences

    Get PDF
    We consider two kinds of problems: the computation of polynomial and rational solutions of linear recurrences with coefficients that are polynomials with integer coefficients; indefinite and definite summation of sequences that are hypergeometric over the rational numbers. The algorithms for these tasks all involve as an intermediate quantity an integer NN (dispersion or root of an indicial polynomial) that is potentially exponential in the bit size of their input. Previous algorithms have a bit complexity that is at least quadratic in NN. We revisit them and propose variants that exploit the structure of solutions and avoid expanding polynomials of degree NN. We give two algorithms: a probabilistic one that detects the existence or absence of nonzero polynomial and rational solutions in O(Nlog⁥2N)O(\sqrt{N}\log^{2}N) bit operations; a deterministic one that computes a compact representation of the solution in O(Nlog⁥3N)O(N\log^{3}N) bit operations. Similar speed-ups are obtained in indefinite and definite hypergeometric summation. We describe the results of an implementation.Comment: This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistributio

    Differential Equations for Algebraic Functions

    Get PDF
    It is classical that univariate algebraic functions satisfy linear differential equations with polynomial coefficients. Linear recurrences follow for the coefficients of their power series expansions. We show that the linear differential equation of minimal order has coefficients whose degree is cubic in the degree of the function. We also show that there exists a linear differential equation of order linear in the degree whose coefficients are only of quadratic degree. Furthermore, we prove the existence of recurrences of order and degree close to optimal. We study the complexity of computing these differential equations and recurrences. We deduce a fast algorithm for the expansion of algebraic series

    On Computation of Groebner Bases for Linear Difference Systems

    Full text link
    In this paper we present an algorithm for computing Groebner bases of linear ideals in a difference polynomial ring over a ground difference field. The input difference polynomials generating the ideal are also assumed to be linear. The algorithm is an adaptation to difference ideals of our polynomial algorithm based on Janet-like reductions.Comment: 5 pages, presented at ACAT-200
    • 

    corecore