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Abstract

Many combinatorial generating functions can be expressed as combinations of symmetric functions,
or extracted as sub-series and specializations from such combinations. Gessel has outlined a large class
of symmetric functions for which the resulting generating functions are D-finite. We extend Gessel’s
work by providing algorithms that compute differential equations, these generating functions satisfy
in the case they are given as a scalar product of symmetric functions in Gessel's class. Examples
of applications td-regular graphs and Young tableaux with repeated entries are given. Asymptotic
estimates are a natural application of our method, which we illustrate on the same model of Young
tableaux. We also derive a seemingly new formula for the Kronecker product of the sum of Schur
functions with itself.
© 2005 Elsevier Inc. All rights reserved.
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0. Introduction

A power series in one variable is called differentiably finite, or simply D-finite, when it
is solution of a linear differential equation with polynomial coefficients. This differential
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equation turns out to be a convenient data structure for extracting information related to the
series and many algorithms operate directly on this differential equation. In particular, the
class of univariate D-finite power series is closed under sum, product, Hadamard product,
and Borel transform, among other operations, and algorithms computing the corresponding
differential equations are known (see for instaf84). Moreover, the coefficient sequence

of a univariate D-finite power series satisfies a linear recurrence, which makes it possible to
compute many terms of the sequence efficiently. These closure properties are implemented
in computer algebra systems [24,31]. Also, the mere knowledge that a series is D-finite
gives information concerning its asymptotic behavior. Thus, whether it be for algorithmic
or theoretical reasons, it is often important to know whether a given series is D-finite or not,
and it is useful to compute the corresponding differential equation when possible.

D-finiteness extends to power series in several variables: a power series is called D-finite
when the vector space spanned by the series and its derivatives is finite-dimensional. Again,
this class enjoys many closure properties and algorithms are available for computing the
systems of linear differential equations generating the corresponding operator ideals [4,5].
Algorithmically, the key tool is provided by Grobner bases in rings of linear differential
operators and an implementation is available in Chyzsljun package! An additional,
very important closure operation on multivariate D-finite power series is definite integration.
It can be computed by an algorithm callegeative telescopingdue to Zeilberger [46].
Again, this method takes as input (linear) differential operators and outputs differential
operators (infewer variables) satisfied by the definite integral. It turns out that the algorithmic
realization of creative telescoping has several common features with the algorithms we
introduce here.

Beyond the multivariate case, Gessel considered the case of infinitely many variables and
laid the foundations of a theory of D-finiteness for symmetric functions [9]. He defines a
notion of D-finite symmetric series and obtains several closure properties. The motivation for
studying D-finite symmetric series is that new closure properties occur and can be exploited
to derive the D-finiteness of usual multivariate or univariate power series. Thus, the main
application of [9] is a proof of the D-finiteness for several combinatorial counting functions.
This is achieved by describing the counting functions as combinations of coefficients of D-
finite symmetric series, which can then be computed by way of a scalar product of symmetric
functions. Under certain conditions, the scalar product of symmetric functions depending
on extra parameters is D-finite in those parameters, where D-finiteness is that of (usual)
multivariate power series. Most of Gessel’s proofs are not constructive. In this article, we
give algorithms that compute the resulting systems of differential equations for the scalar
product operation. Besides Gessel’s work, these algorithms are inspired by methods used
by Goulden, Jackson, and Reilly in [12,13]. Finally, Grébner bases are used to help make
these methods into algorithms. One outcome is a simplification of the original techniques
of [12,13].

Considering some enumerative combinatorial problem of a symmetric flavor and param-
eterized by a discrete parameter (denotedk oy the examples below), it is often so that
the enumeration is solved by first forming a scalar product of two symmetric functions in
k variables. Moreover, in the examples envisioned (the enumeratienegfular graphs, of

1 This package is part of tregolib library available ahttp://algo.inria.fr/packages/
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k-uniform tableaux, etc.), this scalar product is the specializatidveriables of a scalar
product between two “closed-form” symmetric functions in infinitely many variables. Both
symmetric functions are sufficiently well-behaved that nice “closed forms” are obtained
under specialization, leading to descriptions in terms of linear differential operators that are
easy to derive. This nice behavior is well exemplified by Efsafd (8) below and is what
delimits the scope of our method in applications.

Additionally, our method extends to other scalar products whose associated adjunctions
satisfy a certain condition of preservation of degree (see Section 9.1), as well as to the
Kronecker product of symmetric functions (see Section 9.2).

A very basic example of application of our method is the enumeration of labeled graphs.
A finite graph onn vertices labeled with non-negative integéfs , i, Of respective
valenciesvy, ..., v,, iS given as a weight the monomua,'(1 Th|s encoding leads
to generating functlons that are symmetric series: the set of all finite simple graphs is
enumerated by the product

G =Y ] wx=[]a+xxp.

GeG (i,j)eE(G) i<j

as each edg€, j) € E(G) is either in the graph or not. This series is obviously invari-

ant under renamings of the’s, which motivates the involvement of symmetric function
theory in the application. Finite simple graphs whose vertices all have valency two are
called 2-regular graphs Such a graph contributes @ by a term of the form:c2 lz
Therefore, extractlng the sub-series@fvith same monomials as in the series expansion

of ]_[leN\{O}(l—i-xl ), another symmetric series, results in the generating series of 2-regular
graphs according to the same encoding. By symmetry, monomials based on different sets
of indicesiy, ..., i, of cardinalityn share the same coefficient in this extracted series. In
this spirit, it will be shown in SectioB that the number of 2-regular graphsrovertices is

given as the coefficient af in the series

Ga(t) = (exp((pf — p2)/2— p3/4). explt (b} + p2)/2)).

Here, the scalar product is a scalar product for symmetric functions, to be defined in the
next section; it implements the coefficient extraction. The variallgs, and p, can be
viewed as standard variables, althoyghand p, will be assigned the symmetric function
interpretationp; = x1+x2+- -+, p2 = xf+x§+- --. Our purpose in the present paperis to
describe scalar products of symmetric functions {ikgr) by a linear differential equation.

By our method, Algorithm 1 below calculates th@#(r) satisfies the differential equation

2(1 — 1)GH(t) — 12Ga(t) =0

which is easily solved to recover the classical setiesr) = e‘%’(“fz)/«/l —t. More
details on this calculation as well as similar examples will be given in Se8tibngeneral,
the derived differential equation will not admit of such a closed form solution. However,
it is possible to extract asymptotic information on the sequence being enumerated directly
from this differential equation. This will be exemplified in Section 8.

This article is organized as follows. After recalling the necessary part of Gessel’s work in
Section 1, we start by focusing on the special situation when a single argument of the scalar
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product depends on extra parameters. We present an algorithm for computing the differential
equations satisfied by the scalar product in this case in Se2tidhe application to the
example ok-regular graphs is detailed in Section 3. Then a special case where the algorithm
can be further refined is described in Section 4. We treat a variant of Young tableaux where
each elementis repeatktimes in Section 5. (These are in bijection with a generalization of
involutions [19].) The general form of the main algorithm, when both arguments depend on
extra parameters, is given in Section 6. Termination and correctness of the main algorithms
are proved in Section 7. Next, in Section 8 we employ our algorithms to derive asymptotic
estimates of the enumerating sequencésrefjular graphs fok = 1, 2, 3, 4. Following this
approach of experimental mathematics, we state a conjecture for gken®discussion on
several extensions and applications of the method closes the paper in Section 9, including
the calculation of a seemingly new formula for the Kronecker product of the sum of all
Schur functions with itself.

1. Symmetric D-finite functions

In this section, we recall the facts we need about symmetric functions, D-finite functions,
and symmetric D-finite functions.

1.1. Symmetric functions

We first collect basic definitions, notation, and results of the theory of symmetric func-
tions. We refer to [21,34] for further results.

Symmetric functions are series in the infinite set of variables, ... over a fieldk
of characteristic 0, subject to a certain invariance under renumberings of the variables.
The K -algebraA of symmetric functions is formally defined as follows. For each positive
integerm, the K -vector space consisting of the polynomialsdfx1, . . ., x,,] that are fixed
under any permutation of the variables is a grafledlgebraG,,, the algebra of symmetric
polynomials inm variables. Here the grading is with respect to the total degree in the
m variables and it induces a chain of graded surjective homomorphignisom G, 1
onto G,, defined by setting,,,+1 to 0. Taking the inverse limit (a.k.a. projective limit) of
the system({G,,}, {n,}) results in the graded -algebraA of symmetric functions. By
restriction of the algebra&,, and the maps,, to homogeneous polynomials in a fixed
degreen, the inductive limit becomes a vector subspaceof A. We have the relation
A= @n}O An.

We now recall the definitions of the most frequently used bases of thé\ramyl vector
spaces\,,. Denote byl = (41, ..., 4) a partition of the integen. This means that =
M4+ Ak andir > - >4 > 0, which we also denot&-n. Alternatively, the power
notationd = 11 ... k’* for partitions indicates thabccurs; timesin/, fori = 1,2, ... k.
Partitions serve as indices for the five principal symmetric function families that we use:

¢ the homogeneous symmetric functigns= h;, - - - h,,, for h, defined as the sum of all
monomials of degreein x1, x2, . .., with possible repetition (i.e., with any non-negative
exponents),
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o the elementary symmetric functioag = ¢,, - - -¢;,, for e, defined as the sum of all
monomials of degrerin x1, x2, ..., with no possible repetition (i.e., with exponents 0
or 1, exclusively),

¢ the power symmetric functions; = p;, --- p;,, for p, defined as the sum of tinth
power of all variables,

e the monomial symmetric functiong, = > _(r1!r2! L)
ranges over all permutations of the non-negative integers,

e the Schur symmetric functiong, whose intuitive definition is in terms of the represen-
tations of the permutation grousy,, and that can alternatively be defined as the limit
symmetric function when tends to infinity of the determinant of thex n-matrix with
@i, j)-entryh; ;4.

When the indices are restricted to all partitions of the same positive integery of the
five families forms a basis for the vector space of symmetric polynomials of daegree
x1, x2, .... On the other hand, any of the three families indexed by the integers\N,
(pi), (hy), and(e;), is algebraically independent ov@r and generates the algebfaof
symmetric functions ovek : A = K[p1, p2,...] = K[h1,h2,...] = K[e1,e2,...]. In
this work, we shall focus on the basgis; ), as we shall endow with a differential structure
will regard to the variableg;.

Generating series of symmetric functions live in the larger ring of symmetric series,
K[t p1, p2, .. .1]. There, we have the generating series of homogeneous and elementary
functions:

H(t) =Y hyt" = exp(z pﬁlfl) . EM) =) ent" = exp(Z(—l)fpi%l) :

M Ak

51 Ko Whereo

1.2. Scalar product and coefficient extraction

The ring of symmetric series is endowed with a scalar product defined as a bilinear
symmetric form such that the basgs) and(m ) are dual to each other:

(ms, hy) =0, 1)

whered; , is 1if 2 = pand O otherwise.
For a partition in power notatiord, = 11 . . . k"%, the normalization constant

7y :=1"nq! - kK ny!
plays the role of the square of a normgfin the following important formula:
(P Pu) = 05,425 2

The scalar product is a basic tool for coefficient extraction. Indeed, if we \ite,
x2,...) inthe form)"; f;m;, then the coefficient af{* - - -x,f" inFis f; = (F,h;), by
(1). Moreover, when. = 1", the identitys1» = p1» yields a simple way to compute this
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coefficient wherF is written in the basis of thp's:

Theorem 1(Gessel; Goulden and Jackoriet 0 be theK -algebra homomorphism from
the algebra of symmetric functions ov&rto the algebrak [[7]] of formal power series in
t defined byd(p1) = ¢, O(p,) = Oforn > 1. Then if F is a symmetric function

0 M
0F) =) an—,
n=0

whereq,, is the coefficient afy - - - x,, in F.

Gessel also provides an analogue for this theorem when1"2™ and/ = 1"3" [9,
Theorems 2—4]. Combinations of other degree patterns quickly become arduous to write
explicitly.

1.3. Plethysm

Plethysm is a way to compose symmetric functions, which in the simplest case, amounts
to simply scaling the indices on the power sums. This inner law,afenoted:[v] for u, v
in A, is, forw =", c;p,, defined by the rules [34]

pl’l[w] = Z clpnx/llpnxlg MR
2
(ot + pv)[w] = au[w] + Pv[w], @v)[w] = ulw]v[w],

wherea, § in K. For example, consider that[p,] = p,[w], and in particular that
Pulpm] = paxm- Thus, we see that when we write € A in the power sum basis as
w = w(p1, p2, ..., Pk, - - -), the scaling effect appears on the indices as

wlpnl = w(Pixns P2xns -« » Phxns - - -)-

1.4. D-finiteness of multivariate series

RecallthataserieB € K[[x1, ..., x,]]isD-finitein x4, . . ., x, when the set of all partial
derivatives and their iterateg’*" "+ F/axil ... dx/" spans a finite-dimensional vector
space over the fiel® (x1, .. ., x,). A D-finite descriptiorof a series- is a set of differential
equations whose solutions in aky(x1, . . ., x,)-vector space share this property. A typical
example of such a set is a systenmdfifferential equations of the form

R k
aof af
g1(x) f () + q2(x) 7= (x) + -+ + qu(x) — (x) =0,
0x; Ox;
wherei ranges over 1 .., n,eachy; isin K (xy, ..., x,) for 1< j <k, andkandg; depend
oni. Observe that by a theorem of Staffd&] Chapter 5], any D-finite seridsadmits a
D-finite description consisting of only two differential equations. However, we do not know
how to benefit from this theoretical result in our computational setting, and it will be more
efficient to compute in a systematic way with non-minimal sets.
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The properties of D-finite series we need here are summarized in the following theorem.

Theorem 2. (1) The set of D-finite power series form&asubalgebra oK [[x1, ..., x,]]
for the usual product of series

(2) If Fis D-finite inxq, .. ., x, then for any subset of variableg, . .., x;, the special-
ization of F atx;; = --- = x;, = 0is D-finite in the remaining variables

(3) If P is a polynomial inx1, .. ., x,,, thenexp P (x) is D-finite inx1, ..., x,.

(4) If F and G are D-finite in the variables;, ..., x,,+,, then the Hadamard product
F © G with respect to the variables, . .., x, is D-finite inx1, ..., x;4n-

(Recall that the Hadamard product of two sefies. aau“QZﬁeNk b[;uﬂ IS enk Go
bou®*, whereu* = u‘Il e uzk )

These properties are classi§ad]. The first three are elementary, the last one relies on
more delicate properties of dimension and is due to Lipshitz [20].

We note at this point that it is usually simple in applications to provide a D-finite descrip-
tion for a D-finite function, as the latter is most often given as a polynomial expression in
“atomic” D-finite functions, usually well-known special functions. Given a table of atomic
D-finite descriptions, one bases on the closure properties of Theorem 2 above and uses al-
gorithms described in [5] in order to derive a D-finite description for the whole expression.
In our examples, doing this will be straightforward since our functions will be exponentials
of polynomials.

1.5. D-finite symmetric functions

The definition of D-finiteness for series in an infinite humber of variables is achieved
by generalizing property (2) in Theorem 2: € K|[[x1, x2, ...]] is calledD-finite in the
infinitely many variablesy; if, for any choice of a finite se§ of positive integers, the
specialization to 0 of eacky for i not in Sresults in a power series that is D-finite, in the
classical sense, in the variablesfor i in S In this case, all the properties in Theorem 2
hold in the infinite multivariate case.

The definition is then tailored to symmetric series by considering the algebra of symmetric
series as generated ov€iby the sefp1, po, . ..}: asymmetric series is call&ifinitewhen
it is D-finite in the p;’s.

Property (4) in Theorem 2 has the following very important consequence:

Theorem 3(Gessél. Let f and g be elements &f[[z1, ..., %]11[[p1, p2, .. .]1], D-finite in
the p;’s andt;’s, and suppose that g involves only finitely many ofhis. Then(f, g) is
D-finite in thet;’s provided it is well-defined as a power series

We return to the example of regular graphs given in the introduction. We shall see in
Section3 that the exponential generating ser@&@s of 2-regular graphs is given as an
extraction of coefficients from the generating se@ad all finite simple graphs in the form
G2 = (G, exp(hat)) and we shall provide the explicit representations

2 2
p2 — po +
G= exp(Z(—l)’ plzl,le> and  hp= %
i
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Both G and exghot) are clearly D-finite symmetric by the definition above. Navy is
equal to the scalar product

<exp (Z(—l)f (p? — p2/)/2i> cexp(t(p? + Pz)/2)> ,

and thus by Theorer8 the resulting power series is D-finite inNote the effect of the
requirement thaty be dependent on finitely many’s only in the theorem—here expr
depends o1 andpz only. As a consequence, the scalar product extracts those terms from
G that are supported by monomialstjrp1, andp, only. In other words, we can set ai]’s

to 0 inG wheni > 2, which yields

Ga(1) = <eXp((pf — p2)/2 — p3/4), exp(t (pf + pz)/2)>-

This scalar product is between symmetric functions in finitely marsy.

1.6. Effective D-finite symmetric closures

Our work consists in making Theore®effective by giving algorithms for producing
linear differential equations annihilatingf, g). The input to our algorithms consists of
closed forms foig and the specialization dfin the finite number of;'s appearing irg,
from which generators of ideals of differential operators which annihilate them can then be
computed.

Providing algorithms to manipulate linear differential equations amounts to making the
closure properties of univariate D-finite series effective; similarly, algorithms operating on
systems of linear differential operators make the closure properties of multivariate D-finite
series effective. Our title is thus motivated by the fact that our algorithm makes it possible
to compute all the information on a scalar product that can be predicted from D-finiteness.
Note that we do not check that the resulting power series is well-defined: our algorithm
merely computes equations that the scalar product series must satisfy if it is well-defined.

In our examples, we make use of symmetric series that are built by plethysm. Closure
properties are given by Gessel, but our applications require only a simple consequence of
property (3) in Theorem 2, namely thatgfis a polynomial in thep;’s, thenk[g] ande|[g]
are D-finite forh = H(1) ande = E(1).

2. Algorithm for scalar product: the simple case

We proceed to give a new algorithm to compute the differential equation satisfied by a
scalar product of two D-finite symmetric series under the hypotheses of Theorem 3 and
with the additional simplifying condition that only one of the symmetric series depends
ont. When the number df variables is 1, the output is a single differential equation for
which existing computer algebra algorithms might find a closed-form solution. In most
cases however, no such solution exists and we are content with a differential equation from
which useful information can be extracted.
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The basic tool we use here is non-commutative Grébner bases in extensions of Weyl
algebras. An introduction to this topic can be found30]. By W;, we denote the Weyl
algebra

WtZK(tl,...,tk,atl, ...,6,,(;
[atl‘vlj] = 5i,j7 [tlst]] = [ativatj] = 07 1<l,]<k),

where the brackeu, b] denotesib — ba andd; ; is the Kronecker notation. This algebra
can be identified with the algebra of linear differential operators with coefficients that are

polynomialint = 11, ..., . We correspondingly denot&, for variablesp = pa, ..., px,
as well asg; for d,, ..., 0y, 0, fOr 0p,, ..., 0p,, etc. For the algorithm, we work in the
extension

Wy(t) = K1) ki) Wy,

of the Weyl algebrd¥, ; = W, ® W; in which the coefficients of the differential oper-
ators are still polynomial i but rational int. Supposd- andG belong toK [¢][[ p]] and

are D-finite symmetric series as in Theor8min particular, they both satisfy systems of
linear differential equations with polynomial coefficients fréht)[ p]. We can write these
equations as elements®f, ; (#) acting onF andG. The seZr = anny, ) F (respZg) of

all operators o#,, ; () annihilatingF (resp.G) is then deftideal of W, ;(r). Given as input
Grobner bases &fr andZg, our algorithm outputs non-zero elements of the annihilating
left ideal anny, ) (F, G).

To combine elements &fr andZs in a meaningful way we use the adjunction map,
denotedo here? defined for an operataP € W, by imposing the relationP - F, G) =
(F, Pe. G) for all seried- andG. As a consequence, we have the relatiB®)® = Q° P°
and the adjointP® is computed formally fronp? = id,, andazi = p;/i; in particular
(pidp)° = pidy, [21]. This makes the adjunction map an involution as well as an algebra
anti-automorphism oW ,,. Note that, although adjunction extendsig (r) by setting;” =
1;, no adjoint for thed,, can be defined in any consistent way. Assume that an adjilSint
existed. For reasons to be explained later, this adjoint has to be of thedgrmfr; + v for
complex constants, B, , with « # 0. Now, for any serief andG we haved,, - F, G) =
(F, afi . G). Choose any non-zero serietndependent of ; then by the method of variation
of parameters for series, one finds a se@esatisfyingéfj -G = F. Upon evaluation, we
obtain 0= (F, F) # 0, a contradiction.

We now proceed to outline the algorithm for the simple case, meaning that from this point
on we elect to havé” € K[[p]], i.e.,F independent of. The condition orf- that it does
not involvet implies thatd,, - F = 0 fori from 1 tok. We can use this fact to simplify our
calculations. In this case, we consider a different annihilatoryafi hereafter denoted
Jr.Note that/r =Zr N W,.

This allows us to determine the action of combinationsPok J; and Q € Zg. For
example, givenan§ € W,, T € W, ;(t), andU € W;(1),

(F,(P°SU+TQ)-G)=(S°P-F,U-G)+(F,TQ-G)=0.

2 Macdonald denotes the adjunction operatorlby
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It follows that, if we can find a combination such thial; P7S;U; +3-;T;Q; = R € Wy,

we have 0= (F, R - G) = R - (F, G). Note that eaclP’ S is an element of ; while each
T;Q;isanelementafs. Therefore, we conduct our search for an element ofiaf, G)

by determining a non-zero element(o‘f,? Wi (1) +IG) N W;. We shall prove in Section.1

that such an element exists. Basically, the goal of our algorithms is to compute sufficiently
many non-zero elements (17;> W; () + IG) N W; so as to generate a D-finite description

of the scalar product.

Note, however, that whil€g is a left W, ;(¢) ideal, JRW;(r) is aright W), ;(¢)-ideal
and the sum@ + Q for P € JoW,(r) andQ € Z do not form an ideal. This problem
is very similar to the problem of creative telescoping: given an ideat W, ;(z), the
aim in the first step of this method is to determine an elemedt}, ¥, ;(r) + Z that does
not involvep. There alsog, W, (1) := 3_; 0p, Wp:(¢) is a right ideal. The algorithm we
present thus bears a non-fortuitous resemblance with that of [37]: in this reference, trunca-
tions of the left ideall and of the right idead, W), ; (¢) at a given total degree ip, 0, 0;
are recombined linearly, this for higher and higher truncation degrees until the correspond-
ing truncation of the intersectio(m,, Wy () + I) N W, is non-trivial. In our situation, we
determine truncations of the left idezt and the right ideal/; W, (¢) at a given trunca-
tion order, recombine those two vector spaces linearly, and iterate over higher and higher
truncation orders until the corresponding truncatiorﬁlﬁw, ) + IG) N W; is a D-finite
description.

To some extent, the approach of the present paper also shares features with that in [27].
However, this reference focuses on determining a bound on a truncation order that permits
to compute generators of an intersection- (ap Wy + I) NW; for a given ideal of W, ;,
and also generators for a whole free resolutiolh.ofrom there, the cohomology groups
of the module-theoretic integrélt; / L of the quotient modulé ), , /I are derived. Roughly
speaking, we are not concerned here with more than the first cohomology group, and fur-
thermore, we treat the similar but different problem for ideal®gf, (r) and intersections
in We(1).

Being a module oveW, (1), the sum/ 2 W; (1) + Zg is a vector space ove (1). It is this
second structure that is adapted to our method. We could try using the module structure
in this section, but this would not generalize to the case whenFaldepends on. The
idea is to us&X (¢)-linear algebra in the vector space structure to eliminate thand p;.
Roughly speaking, we incrementally generate lines in a matrix corresponding to generators
of JgW;(t) + I, and perform Gaussian elimination to remove the monomials involving
andd,.

The main loop of the algorithm considers monomials of increasing degree with respect to
any ordering on the monomials pn d,,, d;. We use the notatiog to denote the monomial
comparison associated with this ordering. We reduce each monamiéh respect to
(the Grobner bases fof); andZs. Note that the chosen monomial ordering is the same
for bothZg andZ}.. Equivalently, the remainder of the reduction of a monomialith
respect taZ. can be viewed as the adjoint of the remainder of the reductiart efith
respect taZr. However, to reflect the fact that adjunction modifies the variables, when
reducing with respect t8r we need to use a different order, specifically, the ordetipg
defined bys, <., on W, if and only if f7<33. In our implementation, we use the ordering
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DegRevLexd, > p > 0;) which sorts by total degree first, breaking ties by a reverse
lexicographic order on the variables. The oregris then DegRevLegp > 7).

Once we have computed these values, we add two rows (and for sufficientlyxlarge
only one column) in a matrix where we perform Gaussian elimination to cancel entries
corresponding to monomials involvinggandd,,.

We now state the algorithm more formally as Algoritinfollowed by an example in the
next section. After this example, we describe the modifications necessary to handle specific
cases more efficiently, and how to treat the general case. The proofs that these algorithms
work and terminate are delayed until Section 7.

Algorithm 1 (Scalar product

Input: Symmetric functiong € K[[p]] andG € K[t][[p]], both D-finite inp, ¢, given
by D-finite descriptions ifW,, and W, ; (1), respectively

Output A D-finite description of F, G) in W, (¢).

(1) Determine a Grobner basi; for the leftideabnny, , ) G with respectto any monomial
orderingx, as well as a Grobner basigg- for the right idealann,vp F* with respect to
the monomial ordering induced byon W,,.

(2) B :={}.

(3) lterate through each monomialin p, 0, ;.
(a) Writeoo = py with € W, andy € K[0;].
(b) o := (B — (Breds Gre))y.
(€) ag :=a— (aredg Gg).
(d) Introducexr andog as two new elements into B and reduce so as to elimipadg.
(e) Compute the dimension of the ideal generatedlyy W, (¢). If this dimension i9,

break and outpuB N W;(¢).

Notice, if m = 1, as is the case in our examples, there is only one vartabled the
dimension condition in (3e) is simplified to:

If B contains a non-zero element P frdi (r), break and return P

Note that Step (1) requires to determine both idealsygnip G and anny, F, not just
anny, ,(».nG and aniy, ) F. In other words, one generally needs to pass from a D-finite
description{ P;} generating the ideal apn ) as) ; W,(p)P; to a set{Q;} generating
the ideal anw, F = W, Nanny,,» F as)_; W,0;, and similarly forG. The operation

of computing such intersections is calldéyl closurein the terminology 0f40,41]. It is

a non-obvious task, owing to the change of module structure (coefficie®s, {p) are
replaced with coefficients i,). Algorithms are provided in [40,41].

Sometimes, the input s¢P;} already constitutes a generating set for the Weyl closure.
In this case, one can skip Step (1) of the algorithm. This is the case in our examples.

The remainder of the reduction with respect to the Grobner l8asis a multivariate
analogue of the remainder of the Euclidean division. It is such that forany = o« —
(xred@) belongs to the ideal generated @yA similar statement holds f@¥ .

For this description we have assumed that Grobner bases could be computed for both
left and right ideals. If they can only be computed on one side, say for left ideals, then the
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operators.r can be obtained as follows: first, determine the monomial ordegingduced
by adjunction orWv,, viewed as a left structure from the orderiagpn W), viewed as a right
structure; then, replace the Grébner bdkis with the Grobner basi§r for the left ideal
anny, F with respect to<,,; o is then computed a@ﬁ — (p°redy, gj;))y. This way we
getGre = (Gr)°.

We represent the badsas a matrix, with columns indexed by monomials in this, the
dp,’s, and thed;,’s. Each row in the matrix corresponds to the row vector of the coefficients of
some element d8 with regard to the indexing monomial basis. Introducing an element into
the basis consists of adding a new row at the bottom of the matrix, performing row reduction
(also known as Gaussian elimination), and then returning the new matrix as the updated
basis. In practiceB can be handled (not inefficiently) by a Grobner basis computation
with respect to a monomial ordering that eliminates ths and thed,,’s, performing
calculations in the fre& [¢]-module with a basis the list of indexing monomials.

Finally, some remembering can be done at Step (3b) to avoid reducing thef sagaimn
and again, for different’s involving the sames.

3. Example: k-regular graphs

The enumeration of regular graphs has been treated by a number of 46{B¢k3,29].
We present it here because of its expository value and as it is the simplest in a family of
examples. After expressing the problem as a scalar product, we describe in detail how our
algorithm treats it. We conclude this section with an indication of how the scenario may be
generalized.

3.1. A generating series for graphs as a scalar product

Recall from the introduction that a generating series for the set of all finite simple graphs
labeled with integers frori\ \ {0} is

G(x) = Z 1_[ Xixj = 1_[(1+xixj)v

GeG (i,j)eE(G) i<j

under the encoding that a graph owerticesiy, .. ., i, of respective valencies, . .., v,
contributes a monomlacl,”1 --x;".Wecan S|m|IarIy make a generating function for graphs
with multiple edges (multlgraphs) by

1
M(x) = E A xr) )’

for an edge(i, /) of a graph with multiplicitym contributes a monomial"x" and any
non-negative multiplicity is allowed.

Clearly bothG andM are symmetric functions, and in fact, we have the relatiGns
e[ez] andM = hlez], as determined by a method that we discuss in Se&tibnBoth are
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easily rewritten in terms of thg;’s:

c;=exp(§:c—n%p?—;uo/Z> and wf=exp(§:(p?+pz)/2>.
| @

l

In any given term, the degree of gives the valency of vertek So, for example, the
coefficientg, of x1---x, in G, hereafter denotefk; - - - x,]G, gives the number of 1-
regular graphs, or perfect matchings on the complete graptvertices, and in general the
coefficientg,[qk] = [x’l‘ . -x,’j]G, also given agm ]G, gives the number dé-regular graphs
onn vertices. By virtue of Eq.X), coefficient extraction amounts to a scalar product, and
the generating functiotr (r) of k-regular graphs is given by

ld’l
Gr(r) =) gl = (G Hy).
S

where

n h n
Hi (1) == th’% = Z ( zt’) = exp(ht). (4)

n

Now, sincelx = Y, p,/z; (Where the sum is over all partitioisof k), the exponential
generating functiorty (1) is also exgr >_,,, p;/z;), an exponential in a finite number of
pi’s. By property (3) in Theoren2, this is D-finite. Further, as a result of scalar product
property (2), we can rewrite Eq. (4) as

Gty — i2P? | pi p? Pi
=(exp[ > (-1 St > o | e IZ;

ieven i<k iodd i<k Ak
)

and now by Theorer8 this generating functioG (¢) is D-finite.

Note how the closed form fdg in (3), in infinitely many variables, and the closed form
for Hi(¢) in (4), in terms of theéh’s, have led to the scalar product (5) between two closed
forms, explicitly written in terms of finitely many; for eachk. This reduction is what has
made the algorithm applicable.

3.2. Effective computation fdér= 2

Toillustrate atypical calculation, we calculaie(t), the generating function for 2-regular
graphs which, according to Eq. (5), is determined by

Ga(t) = (exp((v% — p2)/2— p3/4). exp(t (v + p2)/2)) .
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Algorithm 1 calculates that2(¢) satisfies the differential equation
2(1 — 1)GH(t) — 12Ga(1) = 0,

which is easily solved to finG (1) = e~ 0+ /. /T 7.

In order to appeal to Algorithm 1, s&t = exp((p? — p2)/2 — p2/4) and G =
exp(t (p% + p2)/2) and determine the Grobner baggsandd of their annihilating ideals,
respectively:

Gr = {p2+20p, +1, p1 — 0} andGg = {2%—1,%—1‘1)1,1)_%4_192_ 20,),

whereGr is a Grobner basis with respect to the degree reverse lexicographical monomial
ordering suchthgt; > p> > d,, > J,, andGg is a Grobner basis with respectto the degree
reverse lexicographical monomial ordering such that> ¢, > p1 > p2 > ¢;.(Leading
monomials with respect to the monomial ordering are underlined.) Before proceeding, the
setGr is converted by adjunction into a Grébner bagjswith respect to the degree reverse
lexicographical monomial ordering such tlégt > 0,, > p1 > po:

Gp ={20p, + p2+1.0p, — p1}-

(The reader should not get confused by the peculiar situation of this example: here,
adjunction has not changed the polynomials, except for signs, but this is only a
coincidence.)

The initial value ofB is the empty set. For the sake of the example, we shall iterate on
monomialsx according to the degree reverse lexicographical order suclithato,, >
p2 > 0p, > p1, and perform reductions when inserting into the basis according to the
elimination order sorting first by the degree reverse lexicographical order suah),jhat
p2 > 0p, > p1, and breaking ties by the degreedin

We now briefly sketch the run of the algorithm untibbecomeg10,, and then illustrate
the steps of the main loop in more details.

Foroa = 1 andps, the algorithm inserts no polynomial into the baBig he next iteration
of the loop, fore = d,,,, produces:r = d,,, — p1, which is inserted int® as is, andig =

Jp, — tp1, Whose insertion putg; into B. Next, the case: = p2 inserts no polynomial
before, fora = 0pyy 0 = 20p, + p2 + 1 gets inserted as is, and the insertiorugf =
20p, —t puts p2 + (¢ + 1)ﬁo B. The iteration foro = ¢, has no effect orB. For
%= pf, or = 0 is not inserted, andg = pf + p2 — 20, gets inserted in the form
p2—20, — (1 +1). o

~ Atthis point, the algorithm is about to treat= p10,, and the value oB is

B:{%—Pl,ﬂ,2%+P2+1,&+(t+1),p_%—28,—(t+1)}, (6)
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where we have written elements in the order of introduction into the set. In matrix notation,
the column vector of elements Bfreads

5
0O 0 0O 1 -1 0 0 ﬁpz
00 00 1 0 0 i
002 1.0 0 O 1 Oy
0O 0O 1 O 0 0 r+1 p1
1.0 00 0 -2 —¢+0]/] o

1

Here, we have chosen to keep the rows in the order of creation by the algorithm and to sort
the column according to the monomial order used by the elimination step. Observe that
in this way, no two rows have their left-most non-zero entry on the same column: simply
reordering rows would put the matrix in row echelon form.

Then, the algorithm computes

aF = o — (areds G9) = o — (2% red<, Gr)° = p1dp, — p2+1
and
oG = 0o — (‘“red<gg) = p10p, +tp2 — 2t0;.

(Note thatxr is really (0, — p1) p1, an element of theight ideal generated bg..) Next,
we updateB to include these two values. We inseftinto B after one reduction, leading to

B := B U {p10,, — 20; —t}.

In matrix notation, this insertion adds a new column to the left of the matrix, corre-
sponding to the new monomialid,,, and one more row at the bottom of the matrix,
(1 00 0 0 0~-2 —r).Thenthealgorithminsertg;.Itsleadingmonomigb10,,

is already present iB, leading to an initial reduction tops + 2(1 — #)d; + ¢. One final
reduction byt times the pre-last element in E@)(results in the step

B:=BU{2(1-1)d, —1?).

The intersection of this an®, (r) is non-trivial, and the algorithm output$®— 1)d, — ¢2.
We conclude thatr2(¢) satisfies the differential equation

2(1 — 1)GH(t) — 12Ga(t) = 0.
Table1l summarizes the results by the same algorithnmkfer 2, 3, 4. These match with
the results in [13].

3.3. Efficient enumeration of k-regular graphs

An efficient procedure for the enumerationlefegular graphs is immediately derived
from the differential equations for the generating serie&-oégular graphs collected in
Table 1. Indeed, one simply needs to convert the differential equatiotfan into a
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Table 1
Differential equationp, G, + ¢1G), + ¢oG = 0 satisfied byGy (1), k = 2,3, 4

2-Regular graphs

) —2

¢ —2t+2

¢2 0

3-Regular graphs

do 34 + 212 - 2)2

b1 -39+ 6:8 + 36 — 6t — 262 + 9)

¢ —o3(4+ 212 -2

4-Regular graphs

$o —tAS + 2% + 212 + 8 — 4)2

o —4t183 4 4412 _ 1610 _ 1009 — 368 — 2207 — 3486
—48° + 200% — 3363 — 2402 + 416 — 96)

b 162(t — 125 + 2% + 22 + 81 — 4)(1 + 2)2

recurrence relation for its coefficierg,%‘] and to determine sufficiently many starting values
gg‘], g&k], .... Then, one can efficiently compqﬁéﬂ for anyn by unrolling the recurrence.

Implementations are available to help with this approach. For example, the Maple package
gfun 3by Salvy and Zimmerman [31] contains commands dedicated to the conversion
step and the iterative calculations based on a linear recurrence. Computations in the case
k = 4 result in a recurrence relation of order 15 already published by Read and Wormald
[29] and can be found as a formula accompanying sequence humber A005815 in Sloane’s
encyclopedia of integer sequences [32]. From this recurrence relation and initial terms, it
is then a matter of seconds to compute the exact integer values for hundreds of terms in the
sequence.

It should be stressed that this method proves much more efficient than the direct com-
putation of the scalar product based on a termwise expansion and application of formula
(2). For example, Stembridge’s implementation in the package SF for symmetric function
manipulation in Maple [35] already requires several minutes to compu@ﬁhﬁor nup
to 15, and becomes unsuitable to handle the symmetric functions that would be necessary
to obtainggg. Far from showing any weakness of SF’s general approach, this illustrates the
computational progress provided by our techniques in the specific setting of differentiably
finite series.

3.4. Generalization

The series given by Eq. (3) is determined combinatorially in a direct fashion using the
theory of species [1]. This can be extended naturally to handle a wider family of combinato-

3 This package is part of thalgolib library, which is available athttp://algo.inria.fr/
packages/ .
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rial structures, such as hypergraphs, set covers, latin rectangles. For an in-depth treatment,
consult[26].

4. Hammond series

In the example above, it turned out that except for monomials of degree 1, we needed
only examine the two monomia]sf and p10p, in order to reach the solution. However,
depending on the monomial ordering, the algorithm might well consider many monomials
before it adds the ones that eliminate thés and?d,,’s. The problem becomes far more
serious as the number of variables and the degree of the monomials increase. It turns out
that in the common case when the scalar product is of the {Fpél; (¢)) it is possible
to modify the approach and eliminate tpeand thed,, in a more efficient manner using
theHammond serie$(or H-series) introduced by Goulden, Jackson, and Reilly in [13]: for
F € K[[p1, p2, .. .]], the Hammond series &fis defined as

H(F) (1,12, ...) = <F, Zkiti/m(/l)!>,

mi

where the sum is over all partitions, andif= 11...k" thent* = "t -..4" and
m(2)! = mq!ma!---my!. These are very closely related to the Hammond operators, defined
by Hammond15] and used extensively by MacMahon [22]. A Hammond operator can be
described a?, and thus the Hammond seriesrofvith all of thet variables set to 1 results
essentially i in‘a sum of Hammond operators actingron

Observe that the generating function keregular graphs is

Gi(t) =H(G)(O,...,0,1,0,...),

where thet occurs in positiork. This is true for any generating function which takes the
form (F, Hy (1)) for someF.

Atheorem fron]13] is specially useful: Goulden, Jackson, and Reilly’s H-series theorem
states that{ (0, - F) andH(p, F) can be expressed in terms of he- H(F)'s. In terms
of Grobner bases, this corresponds to introducing the additional vartablesz (instead
of t = 1 alone) and work with the seriég; (1, ..., %) = >, hzt*/m(},)! with sum over
partitions/ whose largest part is (instead of working with the univariatdy (¢)). The H-
series theorem therefore implies that for an appropriate monomial order, there is a Grébner
basis of the idealy,;, of all operators oW, ; annihilating?{;, with elements of the form

pi_Pi(taal)v 8[7[_Qi([ﬂal)! izl,...,k, (7)

where all theP; and Q; are polynomials in, 0;.

41n [12, Section 3.5this is referred to as th@amma seriesf F.
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The algorithm in this case is as follows.

Algorithm 2 (Hammond serigs
Input: An integer kand F € K{[[p1, ..., pull-
Output A differential equation satisfied by

<F, th,-t,i> =H(F)O,...,0,%,0,...),

wherety is in position k

(1) Computegr, a Grobner basis for the left idealr annihilating FinW,.

(2) ComputeGy, , a Grobner basis of the forify).

(3) ForeachU e Gr, computery € W; as the reduction of/ ® by Gy, for an order which
eliminatesp, ¢,. Let Rg be the set ofy’s.

(4) Forifrom1tok —1eliminated, from R;_1 and set; = 0in the resulting polynomiajs
call R; the new set

(5) ReturnR;_1.

As with Algorithm 1, the first step is to determine an annihilating idea¥in Again, one
can possibly first determine a D-finite description and use Weyl cldgird1] to obtain
the annihilating ideal.

After Step (3), all thep;’s and 0,,'s have been eliminated angly contains a set of
generators of a D-finit®, (¢)-ideal annihilating F, Hy ). Then, in order to obtain differential
equations satisfied by the specializatiomat - - - = 1,1 = 0, Step (4) proceeds in order
by eliminating differentiation with respect tp and then settingg = 0 in the remaining
operators.

Note that the Grébner basis of Step (2) can be precomputed for the rekjgitalthough
most of the time is actually spent in Step (4)).

Inorderto compute the elimination in Step (4), one should not compute a Grébner basis for
an elimination order, since this would in particular perform the unnecessary computation of a
Grdbner basis of the eliminated ideal. Instead, one can modify the main loop in the Grobner
basis computation so that it stops as soon as sufficient elimination has been performed
or revert to skew elimination by the non-commutative version of the extended Euclidean
algorithm as described in [5]. This is the method we have adopted in the example session
given in Appendix B

This calculation is comparatively rapid since the size of the basis is greatly reduced.
Further, the basis grows smaller as the algorithm progresses, on account of setting variables
to 0. We can compute the case of 4-regular graphs in a second, instead of a couple of
minutes using the general algorithm. The 5-regular expression requires significantly more
computation time, and we could not compute it.

5An implementation of the algorithms presented here is available in the Maple package ScalarProduct
available ahttp://algo.inria.fr/mishna
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A mathematically equivalent but slightly faster way of performing Step (3) is to com-
putery by simply replacing each monomiﬁﬁ1 o p 6/;1 e aﬁ; in U with the product

n ﬂl Olp oy
Oy" -+ QP -+ Pt

In order to explain the relative speed of Algorithm 2, compared to Algorithm 1, it needs
to be said that the Hammond series approach searches a smaller space, which can well result
in a differential equation of order higher than that obtained by Algorithm 1. This occurs,
for instance, in the case of 4-regular graphs: Algorithm 2 returns a differential equation of
order 3 only when that returned by Algorithm 1 is of order 2.

In the same vein, note that the order in which the eliminations are done in Step (4) could
be changed, possibly leading to a different (but correct) output.

4.1. Proof of termination and correctness

Termination of Algorithm 2 is obvious. On the other hand, the full proof of correctness
requires technical results to be proved in Secfohe following corollary articulates a
property of D-finite functions in the simple language of symmetric functions and D-finite
descriptions, and is a corollary of Proposition 9 that will be proved independently.

Corollary 4. LetFand G be D-finite symmetric serieHf[ p1, ..., p,l1andK |1, ..., t]
[[p1, ..., pall, respectivelywith corresponding annihilatordr C W, andZg C W,
(p, ). Under these conditionghe vector space

(JEWi(t) + Zg) N W, (1)

is non-trivial and contains a D-finite description of, G).
Proposition 5. Algorithm2 terminates and is correct

Proof. First, we remark that for fixeH,

k
Hi(tn ... i) =exp| Y hjt

j=1

is a D-finite symmetric series by Theoréhsince each is a finite combination opy, ...,
pn- Thus,f = H(F)(t1,...,t) = (H(t1, ..., tz), F) is a D-finite function ofty, ..., #,
by Theorem 3.
We proceed by proving the following invariant of the main loop: thersel generates
a D-finite description oH(F)(O, ..., 0, t;, t;+1, ..., tx). This establishes the result since
it implies that R;_; contains a D-finite description G{(F)(0, ..., 0, ), in this case, a
single differential equation. This is precisely what the algorithm claims to determine.
To prove the base case of this invariant, note tRgtcontains the generators of the
intersection(JﬁW,(t) +IHk) N W;(¢). We appeal to Corollary 4, to conclude th&g

contains a D-finite description GL(F)(t1, ..., t).
The general case is proven with the known result [5] that given a D-finite description of a
functionF (x1, x2, ..., x,), one can compute the D-finite descriptiorrafxy, . . ., x,—1, 0),

for example, by first eliminating,,, removing factors ofx, in the remaining polyno-
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mials, and finally, settinge, = 0 in the equations, precisely the process outlined in
Algorithm 2. O

5. Example: k-uniform tableaux

Another family of combinatorial objects whose generating function can be resolved with
our method is a certain class of Young tableaux, narkelgiform Young tableaux.

For a partition = (41, ..., /) Fn, a Young tableau of shages an arrayl" = (7; ;) of
positive integerd; ; defined when Xi <k and 1< j <4;. When a Young tableau is strictly
increasing on each of its rows and columiig;( < T;;1,; and7; ; < T; j+1, whenever this
makes sense) and thentegersT; ; are all integers from 1 ta, it is called standard.

Standard Young tableaux are in direct correspondence with many different combinatorial
objects. For example, Stanlg84] has studied the link between standard tableaux and paths
in Young's lattice, the lattice of partitions ordered by inclusion of diagrams. This link was
generalized by Gessel [10] to tableaux with repeated entries. Gessel remarks that such paths
have arisen in the work of Sundaram on the combinatorics of representations of symplectic
groups [36].

The weight of a tableau is = (y4, ..., i) Wherey, is the number of 1'sy, is the
number of 2's, etc., in the tableau entries. Here we consider Young tableaux that are column
strictly increasing and row weakly increasing, and with wejght 12% . . . n¥: each entry
appearktimes. We call Young tableaux with these properkiasmiform These correspond
to paths in Young's lattice with steps of lendthThe set ok-uniform tableaux of siz&n
is also in bijection with symmetria x n matrices with non-negative integer entries with
each row sum equal ta Gessel notes that for fixdd the generating series of the number
of k-uniform tableaux is D-finite [9]. Our method makes this effective.

Two observations from [21] are essential. Fifsﬁl . ~x,f’f]s;, is the number of (column
strictly increasing, row weakly increasing) tableaux with weighSecondly,

Zsf—h[ﬂ-i-ez]—eXp ZP,/ZIJF > pili],

i odd

which is D-finite. Definey!*! to be the number dé-uniform tableaux of siz&n, and lety;
be the generating series of these numbers. The previous two observations imply

1 = Dol _<exp >+ > i 2h> ®

i odd

This problem is well-suited to our methods since again we treat an exponential of a poly-
nomial in thep;’s, with an explicit closed form in terms d&ffor this polynomial.

Calculating the equations fér= 1, 2, 3, 4 is fast with either Algorithm 1 or Algorithm 2.
The resulting differential equations are listed in TéhlBork = 1, 2 these results agree with
known results [14,34], and are the entries AO0O0085, and A000985, respectively in Sloane’s
encyclopedia of integer sequences [32]. The first few value)sl,kéfare summarized in
Table 3. Fork = 3, 4 these appear to be new.
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Table 2
Differential equationp, Y}’ + ¢1Y; + ¢o¥x = O satisfied byr; (1), k =1, ..., 4

1-Uniform tableaux

$o —-t-1

$1 1

b2 0

2-Uniform tableaux

bo 2t —2)

o —2(t — 1)2

¢ 0

3-Uniform tableaux

bo (14720 69 — 48 4 107 — 156 485 — 213 4 1242 — 24¢ — 24)

o —3r(r10 - 28 + 26 — &5 1 8% + 23 182 + 16r — 8)

¢y O3(—12 241 +1%

4-Uniform tableaux

o; (see AppendiXd)

Table 3

The numbery,[lk], of k-uniform tableaux of siz&n
Kkl [kl [k

k SR RS

1 1,1,2, 4,10, 26, 76,232, 764, 2620, 9496, 35696, 140152, 568504

2 1,1, 3,11, 56, 348, 2578, 22054, 213798, 2313638, 27627434, 360646314,
5107177312, 77954299144

3 1,1, 4,23, 214, 2698, 44288, 902962, 22262244, 648446612, 21940389584,
849992734124

4 1,1,5,42,641, 14751, 478711, 20758650, 1158207312, 80758709676,

6877184737416, 701994697409136

Concerning the dual problem, where instaads fixed andk varies, the sequences

(), appear, respectively, as A019298, A053493, and A053494 fer3, 4, 5. Stanley

[33, Proposition 4.6.21] reports that the generating functiGper) = ), y,[,k]xk are ra-

tional with denominator of the forril — x)* (1 — x2)’ wheres andt are positive integers.

6. Algorithm for scalar product: the general situation

So far, we have limited the scope of the algorithms to pairs of D-finite symmetric functions
where only one of the two functions depends on the variables, #;,. While this is sufficient
in many applications, it is possible to modify Algorithm 1 in order to accommodatg’she
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in both functions and thus make the full power of Theo@effective. While no additional
ideas are to be used, the description of the algorithm is more technical.

Algorithm 1 manipulates monomiatsand reduces them modulo the idedjsandZs
in order to determine equations of the form

(F,(x— (xred< Z7)) - G)=0 and (F,(x— (zreds Zg)) - G) =0, 9)

where on the lefty supposedly does not involve any of tgs. What makes the situation
of Algorithm 1 and the left-hand identity irBf simple is the assumption thBtdoes not
depend ort, making the action o, on (F, G) act on the right-hand argument only. The
difficulty in generalizing lies in that now, the action@f onF may be non-trivial and must
be considered in the differentiation rule for scalar products,

oy - (F,G) = (0, - F,G)+(F, 9, - G), (10)

which itself stems from the differentiation rule for usual products on the level of coefficients.
The idea is therefore to manipulate operatorshiree sets ofd,,’'s: one which acts on

the full scalar productF, G), and one for each of its components, acting directly on the

component. To facilitate the description of this situation, we denote the formey,lifre

one acting on the left component by,, and the one acting on the right componént

Using this notation, we wish to view EdL@) as

Oy, = 0p; + 0y, (11)

We thus modify Algorithm 1 by enlarging the family of monomials over which we iterate,
and use EqJ(1) to eliminate thé,, 's before we begin Gaussian elimination. Here, we iterate

over monomialscafaf of the free commutative monoig, d,,, d¢, 01 with o € [p, 0,1 to
examine the following generalizations of Eq. (9):

((mf — @ redgp)) - F, o - G> =0 (12)
and

(of - F. (0] - (20} reddg))-G) =0,
or, with a change of notation,

(2°3) — (2°0) redG))al - (F. G) =0
and

o (207 — (20! redGe))- (F, G) = 0.

Upon making use of Eq1Q) and applying adjunction to the first equation in Eq. (12), we get

a linear combination of terms of the forﬁff . (F, o - G) with coefficients inK [¢], where

B e NF ando W, (¢). The algorithm proceeds as before by performing Gaussian
elimination overk (¢) to eliminatep, d,, andd,. In our implementation, the monomial
order< is DegRevLexd, > d; > 0, > p). The method is summarized in Algorithm 3.
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Algorithm 3 (General scalar produgt

Input: F € K[t][[p]]landG € K[t][[p]], both D-finite inp, ¢, given by D-finite descrip-
tions inW,, ;(¢).

Output A D-finite description of F, G) in W, (¢).

(1) Determine a Grobner basi#; for the leftideabnny, , ) G with respectto any monomial
ordering<, as well as a Grobner basigr- for the right idealanny, , F* with respect
to the same ordering

(2) B :={}.
(3) lterate through each monomialin p, d,,, d, 0, in any order
(@) oy := “|p[ =0;,0,=1"
(b) ap =0y — e red< Gro).
(€) o= alﬁ,:o,,cz:l
(d) oG = o, — (o redg Gg).
(e) Introduce(ocﬂg[ —0,— (/r)(oc| 0p=dy= 1) and (oc| =0, _1)o¢ into B and reduce so

as to eliminatep, 0, 0.
() Compute the dimension of the ideal generatedlyy W, (¢). If this dimension i€,
break and outpuB N W;(¢).

As in Algorithm 1, if m = 1, there is only one variable and the condition in (3f) is
simplified to:

If B contains a non-zero element P frdim (¢), break and return P

The same remarks as those made after Algorithm 1 at the end of S2aiso apply
here.

7. Termination and correctness of Algorithms 1 and 3
7.1. Sketch of the proof

The common goal of Algorithms 1 and 3 is to find differential equations satisfied by
(F, G), which is equivalent to non-zero elementd¥which annihilatg F, G). Although
Algorithm 1 is a specialization of Algorithm 3, parts of the proof would become artificially
more involved if restricted to the simple case. We thus treat both algorithms simultaneously.
The discussion at the beginning of Section 2 has illustrated how to manipulate the annihi-
lators of F andG to determine a combinatioR°S + T Q € W; with P € 7, Q € Ig,
SeW,@),T e Wy,(),which annihilategF, G). Not all of the elements in any (F, G)
are of this form, however, as the following simple example illustrates.# p; — p> and
G = p1+ p2/2,then(F,G) = 1 -1 = 0 and thus le anny, (F, G). However, it can
be established that 1 can not be written as a combination of the #§i8n+- T Q for those
F andG. Nonetheless, we show that the annihilating elements that can be written this way
form a non-trivial subideal of any (F, G), which we generate with the algorithms.

Although the problem of finding differential equations appears at first inherently analytic
in nature, we rephrase it algebraically into a question amenable to the theory of D-modules.
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The adjunction properties of the scalar product are naturally accommodated by tensor
products. Specifically, the proof below centers around a céifaimoduleSwhose elements
are tensors, and where, for example,

(7pi W) @v=(u-0p) ®v=u® @, V),

which correspondstothe equivaletiée 1 p;) - F, G) = (F., é; - G). (See also Eqs18-16))
below.) On the other hand, tlég, andd,, that are involved in the description of Algorithm
3 really are the operatos, ® 1 and 1® 0, acting on§, respectively, where 1's denote
identity maps.

The moduleS can be expressed in terms of the ideal @i ® ® G), itself contained
in anny, (F, G). The former ideal is non-trivial and in fact, is sufficient to describe the
scalar product as holonomic, a property whose definition is recalled shortly and which
implies D-finiteness. In fact, we show that the algorithms calculate a Grobner basis for
anny, ) (F° ® G), in other words a D-finite description of the scalar productG).

The main result is summarized by the following theorem.

Theorem 6. Suppose F and G are symmetric functions subject to the conditions of Algo-
rithm 1 (resp. AlgorithnB). Then Algorithm1 (resp. Algorithn8) determinegin finite time
a Grobner basis for a non-zero D-finite ideal containecimy, ) (F, G).

The notion of holonomy to be used in the proof folloj@s7]. Introduce a filtration o#V,
by the K-vector spaceg¢, of all operators inW, of total degree at mostin ¢, J;. These

spaces are finite-dimensional, of dimens( +k2k> = 0(d%*) asd tends to infinity. A

W;-moduleM = ), W, - g; generated by a finite family of generatgssis holonomic
whenever thek -vector spaced _; F, - g; have dimension growing lik® (dk). A function

of tthat is an element of a holonomii;-module is called holonomic. From the definition, it

is a basic result that a holonomic function is D-finite; the converse is a more difficult result to
be found in [38, Theorem 2.4 and Appendix 6]. Similar definitions appf’ta-modules,

with a dimension growth 0 (¢**") in place ofO (d*).

The discussion so far has not relied on the definition of the scalar product. Rather, remark
that Algorithms 1 and 3 are essentially parameterized by the adjunction property of the
scalar product of symmetric functions, and can easily be redefined and adapted to other
adjunctions. It suits our needs for the proof to consider adjoints for the usual scalar product
of functions, (flg) := [ f(x)g(x)dx. To avoid confusion, we notationally distinguish
(flg) from (F, G) for the two scalar products, as well asfrom ¢ for the respective
adjunction operations.

Indeed, guided by existing results concerning the preservation of holonomy under oper-
ations involving the usual scalar product, we link the symmetric case to the usual one with
a map from one adjunction to the other. This reduction also demonstrates how algorithms
analogous to Algorithms 1 and 3 for other scalar products could be shown to terminate with
the correct output. (See Section 9.1.)

To make this comparison more intuitive, we could identify G) with the integral

/ L(q — F(q1,2q2, . ...nqy))(p) G(p)dp1---dpn,

R"
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where/ is the modified Laplace transform

L(F)(p) =/ F(q)e(Part+rman) gg.
Rn
which satisfies

L(qg — qiF(@)(p) = —(0p, o LYF)(p).

Note, for example

<i*lpi . F, G) = /R" L(q — qiF(q1....,nq,))(p) G(p)dp1---dpy
- /R" (0p; 0 LY(F)(p) (04, - G)(p)dp1---dpy

:/W E(q = F(ql,...,nqn))(p) (Og; - G)(p)dp1---dpy
=<F’ Op; 'G)- (13)

Formally, we must work on the level of abstract modules, however. This avoids situations
where the integral is not convergent or the Laplace transform is not defined as a function.
Thus, to prove Theore@ we show Corollary 10 below which states that,a;mﬁl«"o ® G)
is a non-zero subideal of apn(F, G) such that the quotien; /anny, (F<> ® G) is a
holonomic module. This is done in several stages. First, in Section 7.2, we &efime
algebraic structure in which our calculations take place, and prove that it is holonomic
by reducing the problem to the usual scalar product analogue, where similar results are
known. This analogue is detailed in Section 7.3. Next, in Section 7.4 we expESS
quotient. Corollary 10 follows from this discussion. Finally, to conclude that the algorithm
terminates, we relat8to the algorithm in more detail and prove in Section 7.5 that all of
the generators are determined in finite time. Together, these results prove Theorem 6 and
thus the correctness and termination of Algorithms 1 and 3.

7.2. The scalar product of symmetric functions

We now formally define théV;,-moduleS Begin withU = W,,; - FandV =W, ; - G,
two holonomicW, ;-modules. We shall denote B} the adjoint module of): asK -vector
spaces[/ = U*®, and a rightW[t]-action is defined o@/® by u - P = P° - u for any
u € U®andP e W,[t], where the last operation is taken for the left structurt) oBetS
as the tensor produét® ®w,[r1 V, which makes it & [¢]-module. This has the desirable
effect of encoding the scalar product adjunction relations: far a@lU and allv € V,

Op W ®v=(u-3)@v=(-i " p)®v=u® i p-v), (14)
(Pi-w)®v=(u-p))@v=(u-ilp) @V =u® (idp - v), (15)
-V =0(-uwQR@uv=>W -4)Qv=u® (f -v). (16)

To endowSwith a W;-module structure, let, act on a pure tenser® v by

O - W Q®v)= (0 - u)@v+u® (0 -v), a7
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and extend t& by K -linearity. In other wordsg,, = d¢, + 0,; after definingd,, = J;, ® 1
andd,, = 1® d;,, where 1’s are identity maps.

Armed with this definition and Theorefh (formally stated and proven independently
in Section 7.3), we prove th&is holonomic. Theorem 7 is an analogous result for the
usual scalar product, corresponding adjunction, and corresponding adjoint Métofea
moduleM. It states that for holonomi®l andN, M* ®w,in N is a holonomicW;-module
under the action of;, given by (17). We shall appeal to this theorem with an appropriate
choice forM andN.

To determine the relationship between the two scalar products and make our chidce for
andN, we compare both adjunction operations. In the symmetric case, adjunction is defined
as the anti-automorphismwhich mapsp; toid,, andd,, to i~1p;, foralli, and the usual
scalar product adjunction is defined as the anti-automorphigiich mapsd,, to —d,,,
and leaves the; variables unchanged. One way to connect both adjunctions is to factor
into the composition of three algebra morphisms:

(1) the automorphism mapping(p;, d;) to (ip;, i ~1d;). This corresponds to the dilation
which maps a functiof to p — F(p1, 2p2, ..., npy);

(2) the automorphisnF mapping(p;, d;) to (—ad;, p;) and named ‘Fourier transform’ in
D-module theory (sep, proof of Theorem 3.1.8] or [7, p. 39]). Informally speaking,
this corresponds to mapping a functirto its Laplace transfornf (F);

(3) the anti-automorphissmapping(p;, d;) to (p;, —0;).

The important property to note is that each of these three maps preserves holonomy since
they preserve total degree, hence are filtration-preserving bijections. A direct calculation on
p; ando; verifies thato = x o F o 7, so that the compositealso is a holonomy-preserving
linear bijection. Thus, we introduce two holonomic modulés= (F o 7)(U) also denoted

U7°t, andN = V, so as to appeal to TheoreiOne concludes that

S=U°®w,nV = (Ufor> ®w,inV = M" @w,;) N (18)

is a holonomicW,-module. After we have described the quotient structurgiaofSection
7.4, this information will be used to prove that annF°® ® G) is non-trivial and that the
quotient modulé¥, /anny, (F° ® G) is holonomic, a fact we use to show that the algorithms
terminate.

7.3. Preservation of holonomy under the usual scalar product

In the previous section, we reduced the proof of the holonomy &f U° ®@w, ;) V to
an analogous result in terms of the usual scalar product, to be proven in this section: the
moduleT = M* ®w,11 N is holonomic wherM andN are.

The following notion will be used in the proof: the integral ofig ;-moduleP, denoted
[P =[Pdpy---dpy,, is defined a/(}_; 0, - P). Itis the image of composed maps:
the Fourier transfornd, the inverse image, under the projectiom from K" to K"
defined byr(p,t) = ¢, and the inverse Fourier transform. Specifically we hgve, =
F~ln,F(P). These maps preserve holonomy (see [2, Theorem 3.3.4] or [7, Theorem
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18.2.2 and Section 20.3]), so that the integral of a holond#jg-module is a holonomic
W;-module. (See also [2, Theorem 3.1.8].)

The module€T fits naturally in between an existing holonomy-preserving surjection from
the W;-module [ M Q. N to the spacé M|N). Factoring this map to pass through
T =M* ®W,,[t] N yields

¢ . v
/ M ®xipa N 2 M* @y i N L (MIN), (19)

wherey surjectively maps ® n to (m|n), and¢ is a naturalW,-linear surjection that we
are about to define in the course of the next theorem. After proving that the first module in
(29) is holonomic, the surjectivity ap implies the holonomy of.

Theorem 7. Suppose that M and N are two holononiig, ,-modules and define T as
M* ®w, (] N. Then T is a holonomid¥;-module under the action @f, given by

O -(m®@n) = (0 -m)@n+mQ (0 - n).

Proof. First, we focus our attention on the modyle ®p.,) N in (19). Consider the
W, -moduleP := M ®k|p,,] N, with action ofd,, defined byd,,, - (m @ n) = (0, -m) ®
n+mQ® (0p, - n), and action ob,, defined similarly. We can also write this as the inverse
imager* (M ®k N), wherer is the map fromk ”+” to K (*+m+(+m) which sendgp, 1) to
(p,t, p, t). The advantage of the second presentation is that the holonokig obtained
from the holonomic closure under inverse image under embeddings (see [2, Theorem 3.2.3]
or [7, Section 15.3 and Example 15.4.5]) and the holonomic closure under tensor product
overK [7, Corollary 13.4.2]. Therefore/ P is also holonomic.

Next, we define &;-linear surjection td. Define a map fronM x N to T which sends
(m,n) to m ® n. This map isK[p, t]-balanced K [p, t]-bilinear, and surjective. By the
universality of the tensor product, this induces a surjective thipm P = M ®k(p. N
toT. Observe thateach derivatiép mapsPinto the kernel ofp, as the following calculation
indicates:

G(0p - (m@n) =d((@p, -m)@n+m@ (0, -n))
=(0p -m)@n—+me (0, -n)
=m® (=0p, -n)+m® (0, -n) =0.
In other words,) ", 0,, - P C ker¢, and thus¢ also induces a well-defined surjective
map from [ P to T. Any good filtration of / P will induce a good filtration fofT (see

[2, Proposition 1.11] or [7, Lemma 7.5.1]). Thusjs finitely generated with dimension
bounded by that of P. Therefore T is holonomic. O

7.4. The quotient structure of S

Subsequent developments to expr8sss a quotient involve modules ov#r, ; and
ideals ofW), ;, rather tharW,, , (). We therefore introduce the annihilatdis = anny, , F
and /g = anny,,G, to be used in place dfr = anny,,,F andZg = anny, )G,
respectively. Note thair = Zr N W, , andZr = K(t) @k Ir, and similarly forG.
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Finally, although adjunction has not been defined’fowe use the notatiol; , to denote
W, endowed with both a structure &¥;-module on the left and a structure vf,[r]-
module on the right.

Proposition 8. The module§ = (W, ; - F)° ®w, ;] (W, - G) is isomorphic to
Wy, ®w,in W, )/ Ug @w,ie1 Wy, + Wy, ®w, 111 16)-

Proof. The W;-moduleS = U° ®w,[11 V is also aw;j,, ®w,,; Wp..-module. As such, it
is generated by® ® G. Consider the two exact sequences of respectively right and left

W, [t]-modules
o - 1 L ows, % v - o
0o - Iz % w, L v - o

wherea(P) = F° - P, B(Q) = Q - G, andp andg are inclusions. (Herd; and F° denote
the same element of the ddf but we write F° when viewed as an element of the right
moduleU°, F when viewed as in the left modulé.) We combine them to make a third
exact sequence:

®p
kera® f) — W;J Qw,i1 Wt ki S — 0, (20)

P®Q — (F°-P)®(Q-G),
where, by Bourbakj3, 11.59, Proposition 6],
ker(x ® B) = im(p ® 1w, ) +iMLye ® 0) = Iz Qw,in W), + W, ®w, 11 Ic
asK|[t]-modules. We conclude that, #-modules,
S > (W, ®w,in W,/ Ker(@® )
~ (W;_y, W, 1] Wp,t)/(lﬁ Ow,in W, + W;,, ®w, i1 16)- [l
To be more explicit, note that this isomorphism maps the classflln the quotient
to F° ® G € S. Remark also that, a@¥,-modules,
kerx® f)={P®Q € W, ® Wy, : (2 ® p)(P ® Q) = 0}
={P®QeW,, ®W,,:(F°-P)®(Q-G) =0}
={P®Q¢€ W;,,®W,,,,:(P®Q)-(F°®G)=O}
=annye o ,W,, (F°® G),
so that we also have
annye gy w,, (F°®G) =kera® B) = I @w,ig W, + W, , @w,in I-
(21)

Proposition 9. TheW;-moduleS’ = W; - (F° ® G) is a submodule of,$somorphic to
W [ (U ®w,in Wy, + Wy, @w,in I6) N W),
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where W/ ~ W, is the smalles -subalgebra oﬂ)VI?,, ®w,i11 Wy, generated byK[t],
10, +0,®1,...,180;, +0;, ®1.Inthe simplified situation whefy = o, W, ; + W, Jr
for Jr = anny, F, §" is isomorphic to

Wi [ (Wi Jg + Ig) N Wy).

We first prove this proposition, then in the next section we discuss how to connect the
description ofS’ above directly to the algorithm and how to apply it to show that the
algorithms terminate.

Proof. The annihilator ofF° ® G in W/ - (F° ® G)
anny/ (F° ® G) = anr1W]<)>J®Wp[r]WW(F<> ® G)NW,.

In view of the action of; on S’ through the isomorphism betweév and W;, we thus
have thatS’ is isomorphic toW, /anny, (F° ® G), itself isomorphic to

W/ /anny, (F° ® G) = Wt//(anrlwﬁ w (F°®G)NW)).

.I®Wp[f] p.t

Owing to 1), this proves the general quotient expressio§farthe proposition statement.
Now, to prove the formula in the simpler case, observe that whea o, W, ; + W, Jr,

I;Z ®Wp[;] Wp,t = al‘ W;,t ®Wp[t] Wp,t + WIJ;«Z ®Wp[,] Wp,t
=0;W: ®kn Wy + W ®kin W,JI?

while W, ®w, 111 I¢ = Wi ®kin I, whence the relation ké&x ® f) = 0, Wi Qkin) Wy +
W: Qk1) (Wt-]}?" + Ig). SlnceWIj, ®Wp[t] Wp,t = W; Qk] Wp’,, we obtain

S~ Wy /(Widp + 1),

as (Wy ki) Wp)/ ket @ B) =~ (K[t] ®ki Wp.0)/(K[t] @k (Widg + 1)) ~
Wy.i/ (Wi Jp + Ig). Following these isomorphismsy, can be identified as the copy of
W; included inW,, ; in the last quotient above. Therefore, the submodute Sis isomor-
phic to the quotient announced in the proposition statement.

Corollary 10. The idealanny, (F° ® G) is

(1) isomorphic to(7}, Qw,in W, + le, ®w, i1 Ic) N W, as aW;-module
(2) anon-trivialideal containedianny, (F, G) and such that the quotieft; /anny, (F°®
G) ~ S’ is holonomic

Proof. From 1),
annw,/(F° ®G)= <ann’V]<a>,1‘g’WpltJWPJ(FO ® G)> N Wt/
— <II<<Z ®Wp[t] Wp,t + W;’, ®Wp[t] IG) N Wt/’ (22)

and we have shown (1) in the corollary statement. WhenoduleS’ ~ W, /anny, (F°®G)
is a holonomicW,;-module, as it is a submodule of the holonolicmoduleS. Now since
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W, is not holonomic, anw, (F° ® G) must be non-trivial by a simple dimension argument.
Finally, we recall that this non-trivial ideal is contained in antF, G), since there is a
surjection fromsS’ to W, /anny, (F, G) given byys : (u ® v) — (u, v). This proves (2) in
the corollary statement.J

7.5. Termination

We now link the module$ and $’ to the algorithms and prove their termination. The
termination of Algorithm 3 is more technical to prove than that of Algorithm 1 siijcean
act separately ok andG. Thus, for ease of presentation, we consider Algorithms 1 and 3
in turn, to show that they eventually generate a Grobner basis foy, g/ (F° ® G).

7.5.1. Termination of Algorithm 1

The basic idea of Algorithm 1 is to compute filtrationsZof andZs independently and
incrementally and to recombine them at each step. The algorithm terminates when condition
(3e) in the algorithm description is satisfied. We show that the algorithm will satisfy this
condition by eventually producing a Grébner basis forigan(F°® ® G). This subideal
describes® ® G and(F, G) as D-finite.

Proof (Theorem 6, Algorithm)1 Algorithm 1 places a constraint dathat allows us to
take advantage of the simpl8f;-structure oV = W, ; - F: since eacld;, - F is 0, we have
U=K[t]®k (W, F)andlr = 0;W,; + W;Jr. Taking the intersection witW, is then

far more transparent: from the previous section, we obtain the following simplification of
Eq. 22):

anny, (F° ® G) = (JEW; + Ig) N W,. (23)

Considering the monoid of monomials generatedpby ,, ¢;, ordered by the monomial
orderx specified by the algorithm, we denote By the fiItration@,Kﬂ K(1)y.

Assume that Algorithm 1 fails to terminate on some inpaindG. For anyg, Algorithm
1 thus eventually reaches a value for the main loop indexch that all the monomials that
have been considered in the algorithm span a vector space cont&jpiadter Step (3d)
in the main loop for this value of the loop indexB generates a vector space containing

Lg:= (J;,ZW,(Z‘) N V[;) + (IG N V/}).

By our choice of elimination term ordeB, N W, () consists of generators of a vector space
which contains the intersectidry N W, (¢).

Next, for eachy, (J;Z Wi (t) + IG) NV, is a subspace at s for somegp. Indeed, since
V, is finite dimensional, so is the intersection under consideration. Let us introduce a basis
b1, ..., bq of it. Eachb; can be written in the forny; + g; for f; € Zy = JZW;(r) and
gi € I, so that, providedg = max{max degf;, max degg;}, the intersection

d

(JEWi() +Ze) NV = P KO + )
i=1
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is a subspace of
d d
STKOfi+ Y K®)gi € (W) N Vg) + (Ze NVg) = L.
i=1 i=1

Since anwy, ;) (F° ® G) is finitely generated by noetherianity &f, (), we can choose a
finite set of generators for it, and seto their maximal leading monomial. Consequently,
the chosen generators are in

anny, o) (F° ® G) NV, = (W, (1) J7 + ) N W, (1) N V.

By the reasoning above, the latter is a subspace pofor somef, and when the loop
index reaches a sufficiently highanny, ;) (F° ® G) is a subideal of the ideal generated in
W;(¢) by B N W, (). Since, by Corollaril0, W, /anny, (F® ® G) is a holonomic module,
anny, ) (F°®G) is of dimension 0, and condition (3e) is satisfied. The algorithm terminates,
a contradiction to our assumption]

A limitation of the algorithm is that we cannot predict in advance how many monomials
must be tested, and hence cannot estimate the running time.

7.5.2. Termination of Algorithm 3
The termination of Algorithm 3 can be proved similarly, but we must use greater care
when treating thé, .

Proof (Theorem 6, Algorithm )3 Since there is no adjoint action fay,, we consider
occurrences of;, in the left argument of the scalar product differently from those on the
right side. This is modelled i8by tensoring oveW, [¢], whered; is absent and thus,, @ 1
differs from 1® ¢,,. Both still obey the same commutation law withasd,,. Denote the
former byd,, and the latter by),, .

Having distinguished these two cases, we rewrite several of the important elements from
the previous proof using this new notation. For example,

Wy @w,in Wy, =K(p,1,0p, ¢, 05 [0p;, pj1 = [0, 171 = [0, 171 = i,
lpi, pjl =pi,tjl1=1ti, tj1 = [0¢;, pj1 = [0r, pj]
= [0p,. tj1= 0>’
and its subalgebr#; is generated bX[¢], d¢; + 0ry, ..., O¢, + 0r,. We can also rewrite
1;2 W, [1] Wp,t + W;;,t W, [1] I in the form1;2|a’:a(K[8r] + K[ag]IG|aI:ar. Algorithm
3 actually computes with coefficients that are rational functiortsamd so with elements
of I;;|a’=a[1<[a,] + K[ag]zc‘atza )

In order to endowW; , ®w, (1] er,, with a filtration, let us extend the ordering to
monomials inp, 0, d¢, &, by considering any ordering which, after settihg= ¢;, 0, =
loro, = 0, 0¢ = 1, respectively, induces the orderiggWe denote the extended ordering
by < as well. Then, we lel/; denote the fiItratior@y<ﬁ K (r)p for p, y ranging over the

monomials in the variablgs, 0, d,, d¢. Turning our attention tdV; (1), Ietvb be the image
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of theVg of the previous section, under the same transformation which ekesto W, (1),
that is,

Vi= @ Kopd) (0e+0) .

b ~c
P“apa/ <p

For eachp, there isp’ such thaﬂ/[} C Uy.

Assume that Algorithm 3 fails to terminate on some inp@&ndG. Since the main loop
enumerates all monomialsjn d,, d,, d, in some order, for ang there exists a value of the
index loopa such that when the loop reaches it, all monomials that have been enumerated
span a vector space containidg. After the algorithm has introduced (variants ef) and
ag at Step (3e) for this value af, let us callV, the vector space generated by theBet
Settingd, = ¢, — d, mapsV,, to a vector space which contains

Hy = (T35 _o, K10:1) Ny + (K10)Ta | _y ) N Up.

We use this fact to conclude termination.
At this point we show that for each the vector spac& N V; where

X =T Qw,a) Wp.i(t) + W, () ®w, 1) L

is a subspace afi; for somef. Indeed, choos¢’ such thatV; C Uy, so thatt N V; C
X NUy. The latter intersection is finite-dimensional, sidteis so. Suppose it has for basis
b1, ..., by, with eachh; of the formb; = fir; +1;g;, wheref; I§|a _51 8 € IG|a o

t— L t—Vr

ri € K[0,], andl; € K[d,], and setf = maxmax degf;r;, max degl; g;}, where here
deg extracts the leading monomial. Then,

d d d
XNV, CEOKOiri +lig) C Y K@ firi + ) KDligi C Hy.
i=1 i=1 i=1

By noetherianity, we can choose afinite set of generators fay,an(F °®G), and set to
their maximal leading monomial. The generators are thus elements@fanA°®G)NY,,
which is isomorphic to angr,,(F° ® G) N V.. By (22) the latter is alsé’ N V;, and, as
explained above, there fssuch that this is a subspace/d.

By our earlier loop invariant, the same generators, after seitirg o, — 0, are contained
in the space spanned Byvhen the loop index reaches a sufficiently highlhus, it suffices
to run the algorithm until this; and generators of apn(F° ® G) will be contained irB.
At this point the termination conditions are satisfied, and the algorithm termindies.

8. Asymptotic estimates

We now illustrate how the differential equations computed by our algorithms may be
exploited in order to derive asymptotic estimates of combinatorial quantities.
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8.1. QOutline of the method

A very general principle in asymptotic analysis is that the asymptotic behaviour of a
sequence is governed by the local behavior of its generating series at its singularity of
smallest modulus, see for instarj28, Section 10]. Our approach is thus based on applying
the classical analysis of linear differential equations as presented in textbooks such as[17,43]
in order to derive asymptotic estimates for the coefficients. Moreover, large parts of this
analysis can be automated thanks to the algorithms described in [23,39,42], many of which
have been implemented in computer algebra systeArs alternative approach based on
Birkhoff’'s work can be found in [44].

In the special case of solutions of linear differential equations, the possible location of
singularities is restricted to the roots of the coefficient of the highest derivative. Then, the
analysis depends on the nature of the singularity. The classical theory distinguishes two
kinds of singular points: regular singular points, where the solutions have an algebraic—
logarithmic behavior; and irregular singular points where the solutions have an essential
singularity of the type exponential of a rational power. Accordingly, the asymptotic behavior
of the coefficients is deduced either by singularity analysis [8,18], or by the saddle-point
method [16,45]; both approaches are implemented imlkpalib library.

This asymptotic analysis of D-finite generating series extends to the divergent case.
Indeed, the coefficienis, of a divergent D-finite series grow at most like a powet ofvith
a rational exponent /g which can be computed (see example below). Then one constructs
an auxiliary differential equation satisfied by the convergent generating serigé(efn —

q)(n — 2q) ---r)P (wherer denotes the remainder of the divisionroby q), to which the
previous method applies. This construction is achieved thanks to the closure properties of
D-finite series, by multiplying:, with the solution of the recurrend@ + ¢)”v,14 = va,

which, up to a constant, grows like?/4,7@~/24 This operation is implemented in the
gfun package.

8.2. k-Uniform Young tableaux

We now illustrate this method in the special case ofkhaiform Young tableaux of
Section 5. We treat in detail the cake= 3; other cases are similar. To the best of our
knowledge, these asymptotic estimates are new.

We start from the differential equation fbr= 3 to be found in Table 2. This is a second-
order differential equation and its leading coefficient vanishes at the origin. This indicates
a possible singularity of3(z) at the origin, which would be reflected by the divergence of
this series. Indeed, from this differential equation, a linear recurrence is readily computed

for the coefficients,, := y,[,3]:

Uy +upy1— 3Gn 4+ 12up12 — 4upy 3+ (6n + 39uy14 — 154,45
+(9n° 4 931 + 242 u 46 + (181 + 126)1,47 — (9% + 159 + 698 u, 18
+(9n? 4 147 + 606)u,49 — (181° + 3661 + 1884 u, 110
— (481 + 552 u 411 + (24n + 288)u,412 = 0.

6in Maple, this functionality is provided bpEtools[formal_sol]
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8.2.1. Divergence

From this recurrence it is easy to compute a couple hundred coefficients and observe
their rapid growth. Simple experiments indicate that the growth of these coefficients is
of order+/n!. That this growth is the exact exponent:dfin the behavior follows upon
considering the degrees of the coefficients in the recurrence: the terms of order 12 and 11
have coefficients of degree 1, while the term of order 10 has a coefficient of degree 2 (the
maximal degree). Thus, up to first order, the behavior is dictated by

2
24nuy 112 = 181°u, 10,

which leads to a growth of ordeg)"/2a!%/2. In order to derive a more precise estimate,

we compute a linear differential equation satisfied bydtevergengenerating function of

y,[Lg] v, Wherev,, satisfiesv, 12 = v,,/(n + 2). This differential equation is obtained by first
computing a linear recurrence fg),?] vy, Which exists thanks to the closure properties of
linear recurrent sequences. This closure operation produces a linear recurrence of order 24
with coefficients of degree 29. From there we obtain a linear differential equation of order
29 with coefficients of degree 37, which we now analyze.

8.2.2. Singular behavior

The leading coefficient of the previous equationd§3r2 — 4), up to a constant factor.
This reveals a dominant singularity@at= 2/+/3, thus confirming the growth ordé3/4)"/2
expected from the previous stag@he next step consists in analyzing the behavior of our
convergent generating series in the neighborhoaggal @f local analysis of the differential
equation reveals that all solutions of this equation of order 29 behave like

3
g(u)+2#(l—£5 _ﬁu2+0<u3)), 1—z/p=u— 0,

144"~ 41472
whereg is an analytic function at 0, andis a constant depending on the solution.

8.2.3. Asymptotic estimate
This behavior is typical of an irregular singular point and can thus be dealt with using
the saddle-point method. Putting everything together, we finally obtain

v = Can1t/? (@) e)(’;#(lﬁ- 0(1/n)),

for some constan€'z, and where thé®-term hides the beginning of an expansion in de-
scending powers af that could be computed with the same method.

The constan€’; can then be approximated numerically by using Romberg’s acceleration
method, adapted to powersof'/2, and we get

C3~ 0.377200

7 We could also have incorporated this factor in the recurrence,for
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Table 4
Asymptotic number ok-uniform Young tableaux
exp./n
1 C C1 ~ 0.347829
! Vninl/4 !
V2
2 c, SV Cy ~ 0.282094
Jn
n
3\ expyV3
3 Covi [ V3) exRv3e C3 ~ 0.377200
2 n3/4
2 n
4 Can! <§> exp2/n C4 ~ 0.831565
n

8.2.4. Other values of k

The computation of the asymptotic behavioryé"f] for other values ok is completely
similar, provided one has computed the differential equation. We summarize our results in
Table4. This serves to illustrate a typical use of our techniques in experimental mathematics
to obtain conjectures such as the following.

Conjecture 11. The numbegz,[f‘] of k-uniform Young tableaux of size n behaves asymptot-
ically according to

_o\ k/4
g L (VI e (RN xR
noo 2\ 2n ' k! nk/4

This conjecture is proved fdr = 1 and 2: the constant is obtained from a closed form
solution of the differential equation. Fér= 3 and 4, only the value of the constant is
conjectural. The proof of the general case of the conjecture requires techniques such as
those of[11,25], which fall outside of the scope of this article.

, n— oo

8.3. Conclusion

The main advantages of our method are its general applicability, its ability to produce
full asymptotic expansions up tine constant factor, the availability of computer algebra
programs that automate many of its steps. The price to pay for this generality is that the
method can only produce numerical estimates for the constant factor. In some special cases,
specific approaches often exist that provide this constant term.

9. Conclusions and directions for future work
9.1. Applying the method to other scalar products

Let us note that the method of this article can be applied in the case of other scalar
products, provided that the corresponding adjunctigno longer denoting the symmetric
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adjunction) is a linear involution that preserves the total degreg, @) of the differential
operators. In effect, one should simply 3ét= (U°)* and N = V to obtain a suitable
analogue to18) and prove the holonomy, thus D-finiteness, of the scalar protue:
holonomic if and only ifU is. Since the statement and proof of Algorithms 1 and 3 do
not make use of any other special propertydhan being a degree-preserving involution,
correctness of the algorithms can then be established along the same lines as for the case
of the scalar product of symmetric functions.

We use this idea in the next two sections by introducing various scalar products given by
an adjunction relation involving a formal parameter.

9.2. Calculating the Kronecker product of symmetric functions

Another symmetric function operation, closely related to the scalar product, is the Kro-
necker product, also known as the tensor product. One can define it on the power basis as
Pi* puy = (pz, p'u) p,- Gessel showed in [9] that given two D-finite symmetric seFies
andG, the Kronecker produck * G is also a D-finite symmetric series. Algorithm 1 can
be used to make this fact effective via the following observation:

pit pe=(pars pu) e

More precisely, we rewrite a Kronecker product as a scalar product by multiplyingseach
in F by #;. In the system which results we make the substitutica p; andd;, = 0, .

We formalize this in the following algorithm, which merely calls Algorithm 1 on modified
input systems.

Algorithm 4 (Kronecker produgt

Input: Symmetric functiong € K[[p]] andG € K[[p]], both D-finite in p each given
by a D-finite description ifW,.

Output A D-finite description of * G in W;.

(1) Call G the system defining G and $Et= {r10;, — p10p,. ... 1201, — Pn0p, }.
(a) For each element ig, replacep; with¢; p;, 0, with t;la,,,. and add tog’;
(b) For each element i, replace p; with #; p;, J,, with plfléli, clear denominators
and add tog’;
(2) Follow the steps of Algorithrth on the input system for F and the modified sysém
for G.
(3) In the output of Algorithni make the substitution = p; andd,, = d,, and return
this value

Many interesting problems which use this operation require an infinite numipgr ahd
are thus at first glance seemingly unsuitable for direct application of our algorithms. How-
ever, applying our algorithms for several truncations of a combinatorial problem can serve
as a means to generate information upon which reasonable conjectures can be formulated.
For example, Eq.25) below was initially conjectured after a clear pattern emerged from a
sequence of appeals to Algorithm 4. For each of these, we render the problem applicable
by setting mosp,’s to 0. In some cases, notably symmetric series arising from plethysms,
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there is sufficient symmetry and structure which can be exploited to verify these guesses
by applying one of Algorithm 4 to well chosen subproblems. That is, in certain cases, such
as the example that follows, the Kronecker product of two functions each with an infinite
number ofp, variables can be reduced to a finite number of symbolic calculations.

For example, if two symmetric seri€sandG can be expressed, respectively, in the form

F(pr.p2...) =[] fa(pw) and  G(pr.pa...) =[] gu(p).

n>1 n=>1

for functions f;,, g, then one can easily deduce that

F+xG= l_[ Sn(Pn) * gn(pu)- (24)
n=1

Remark that series which arise as plethyms of the flofun or ¢[u], whereu can be written
as a sumd_, u,(px), for some functions:,,, are precisely of this form. For example, we
can use this fact to compute the Kronecker product of the sum of all Schur functions

2
— .= 2 _ _ Pi | P2i-1
F(p1, p2,...) = % s; = hlp1+1/2p1 — 1/2p>] eXlO( % to 1>,

and itself. Due to the patterns present, we can reduce the calculation of the entire product
to two symbolic calculations. More precisely, in order to determine a system of differential
equations satisfied b§ = F *« F we consider only the even and odd cases, and set

fon = €xp(p3,/4n) and  fa,_1 = exp((p3, 1/2+ pan_1)/(2n — 1)).

All ofthe functionsg,, = f2,* f2, are obtained from a single computation by our Algorithm

4, adapted to handle a formal parameter. This modification is of the same nature of that
described in Section 9.1. Here we introduce the scalar product given by the adjunction
formulap® = nd for aformal parameter rirom the fieldK. Thus computing exip?/4n) *
exp(p?/4n) with this variant algorithm results in a first-order operatopiandd, which,

once interpreted back in terms pf becomes

0gn(pn)

1— 2
@Q-pp) 7,

+ pn&n(pn) =0, for evenn.

A second calculation fogo,—1 = f2,-1 * f2,—1 resultsin

0gn(pn)

Pn

n(L+ p)(L— py)? — (14 01+ Dpu = np2) gu(pa) =0, for oddn.

These linear equations are satisfied respectively by the functions
-1/2
gon = (1 — p%n) and

P2n—1 2 -1/2
1= 1-— .
g2i-1 exp(@n - p%n) (1=r50)
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Applying Eq. 24) above, we get the following result.

Proposition 12. The Kronecker product of the sum of the Schur functions with itself is

~1/2
P2n—1
L] | L) =eo| X mrga g ) | 1 (2-42)

A A n>1 n=1

(25)

9.3. A g-analogue

A g-calculus parameter can be incorporated in symmetric functions in several ways.

Apart from the scalar product defined ldy) (several other ones are of interest in relation
to symmetric functions, notably the following two, which lead to the definitions of Hall and
Macdonald polynomials, respectively:

1(7) 1(A)

’ (1—1%)
(Pus P2) = 220,2 1_[(1 —t%) and  (pu, pi) =210, 1_[ 1o
i=1 i=1
wheret (1) is the lengthk of a partitionZ = (11, ..., /). The same approach as in this

article works in this setting and our Maple code has been adapted very ®asily.
As a related problem, the ring homomorphigm: A — K[q][[¢]] defined as

0 (f G x2...)) = f(L—t. A= @)qt, A= q)g°t. ...

is useful for studying partitions and for counting permutatif84§. This is one possibility
for ag-analogue to the magpfrom Theorem 1 (named exponential specialization in [34]),
sincelim,_,1 0, (F) = 0(F)(x). Analgorithm to computé,, possibly mapping differential
equation toD,, equation should be of interest.

9.4. Other conditions for D-finite closure

Remark that Theorem 3 requires tlgabe a function of only a finite number ¢f,. The
necessity of this condition is evident in the following example. Find a sequgrsteh that
> ¢t is not D-finite. However, according to the given definition of D-finite symmetric
series)_, ¢, py isD-finite, asisy", pat"/n. Theserie§y", capn. Y., put"/n) =Y, cat"
is not D-finite by construction.

On the other hand, the condition is not essential. We have(fiat), H(r)) = l—ft
which is D-finite despitéd being a function oéll p,,. Perhaps a closer investigation on the
level of modules could reveal a refined condition.

8 This variant is also available ttp://algo.inria.fr/mishna
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Appendix A. 4-Uniform Young tableaux

The differential equation satisfied By (z) is
644 (1 — 2)2(t + D)%) Y (1) — 16%(t — 2)(t + D20 Y2 (1)
+4y(1)Y4(t) — 6(1)Ya(t) =0
whereu(t), p(t), y(t), 6(¢t) are irreducible polynomials given by

a(r) =114 — 113 — 5112 _ 7411 4 610 4 359 4 397 — 50/° — 162° — 924
42283 + 4242 + 248 + 48,

B(r) =122 — 3?8 — 1627 + 24:%% + 1472 + 1474 — 770 — 66622 + 141671
+3567%° — 9161% — 1659818 + 177667 + 4067816 — 1025561°
—532721% + 390656'3 + 36408012 — 707936 — 1406336°
—552544° + 1397664° 4 2020864’ + 176256° — 916864°
+304896* + 1283328° + 8770562 + 253440 + 27648

p(1) =128 — 127 — 1426 — 201?54+ 11074 4 27822 — 1962 — 121621
—138420 4 276519 + 317018 — 340017 + 1214016 + 1558815
—70280% — 1089462 4 1217962 + 34905611
+1169921° — 481704° — 7063208 + 30407 + 581184° + 158688°
—297408* — 1739523 + 222722 + 35712 + 6912

o) =201 — 320 — 17:%° — 2118 4 7417 + 10516 — 10815 — 17214 — 25213
+43212 — 6671 + 150010 + 7336° — 37728 — 23056 — 20584°
+15504° + 38160* + 17904° — 45122 — 5568 — 1152

Appendix B. Sample maple session for 3-regular graph computation

The following Maple session indicates the user-level routines required to program Algo-
rithm 2. Itrequires the librarggolib  , which is available atttp:algo.inria.fr/
packages/
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# Load the packages.

with(Ore_algebra): with(Mgfun): with (Groebner):

# Determine the DE satisfied by the generating function

# for 3-regular graphs.

k:=3: Fp:= exp(1l/2*pl™2-1/4*p2°2-1/2*p2+p3°2/6):

Gp:=exp(1/6*t3*p1"3+1/2*t2*p1 2+t1*p1+1/2*t3*p2*pl
+1/2*t2*p2+1/3*t3*p3):

# Define the variables.

vars:= seq(p||i, i=1..k): dvars:= seq(d|]i, i=1..k):

tvars:= seq(t||i, i=1..k): dtvars:= seq(dt|]i, i=1..k):

# Define the algebra.

A:= diff_algebra(seq([dvars[i], vars[i]], i=1..k),
seq([dtvars[i], tvars[i]], i=1..k), polynom={vars}):
At:= diff_algebra(seq([dtvars][i], tvars[i]], i=1..k)):

# Define the monomial orders.
T[g]:=termorder(A, lexdeg([dvars, vars],[dtvars])):
T[f]:=termorder(A,tdeg(vars, dvars, dtvars)):

# Define the systems.
sys[g]:=dfinite_expr_to_sys(Gp, F(seq(p||i::diff, i=1..k),
seq(t||i::diff, i=1..k))):
newsys[g]:=subs(
[seq(diff(F(vars,tvars),vars[i])=dvars]i],i=1..k),
seq(diff(F(vars, tvars), tvars[i])=dtvars][i], i=1..k),
F(vars,tvars)=1], sys[qg]):

# Find the Groebner basis for G.
GBJg]:=gbasis(newsys|[g],T[g]);

# Do the same for F.

sys|[f]:=dfinite_expr_to_sys(Fp, F(seq(p]|i::diff, i=1..k))):
newsys|[f]:=subs([seq(diff(F(vars),vars[i])=dvars]i],i=1..k),
F(vars)=1],sys|[f]);

GBJf]:=gbasis(newsys[f], T[f]);

# Define the adjoint and reduction procedures.
star:= x->subs(

[seq(d]i=1/i*p]|i, i=1..k),seq(p||i=d|[i*i, i=1..k)],x):
rdc[f]:=x->star(star(x)-map(normalf, star(x), GBI[f], T[f]));
rdc[g] := x->normalf(x, GBJ[g], T[a]);
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# Reduce the Groebner basis of F.
for pol in GBI[f] do m[pol]:=rdc[g](pol) end do:

# Small optimization: we will always try to reduce
# with respect to a linear term when possible.
Ipol:=[seq(m([i],i=subsop(1=NULL,GB|f])),m[GB[f][1]]]:

for indelim from k-1 by -1 to 1 do
# eliminate dt.indelim
for j from 2 to nops(lpol) do
newpol[j]:=skew_elim(Ipol[j],Ipol[1],dt||indelim,At)
end do;
# set tindelim = 0
Ipol:=map(primpart,subs(t|[indelim=0,
[seq(newpollj],j=2..nops(Ipol))]),[dtvars])
end do:

# The only term left is the correct one.
ode:=op(Ipol):
# Convert to recurrence.
REC:=diffeqtorec(

{applyopr(ode, F(t||k), At), F(0)=1}, F(tllk), a(n)):
# Calculate some terms.
GRAPH:=rectoproc(REC, a(n),list)(20):
[seq(GRAPH(10)[i]*(i-1)!,i=1..20)];

[1,0,0,0,1,0,70,0,19355,0,11180820,0,11555272575,0,
19506631814670,0,50262958713792825,0,
187747837889699887800,0]
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