
Journal of Combinatorial Theory, Series A 112 (2005) 1–43

www.elsevier.com/locate/jcta

Effective scalar products of D-finite symmetric
functions�

Frédéric Chyzaka, Marni Mishnab, Bruno Salvya
aProjet Algorithmes, INRIA Rocquencourt, France

bLaCIM, Dépt. de Mathématiques Université du Québec à Montréal CP 8888, succ. Centre-ville Montréal,
QC, Canada H2X 3Y7

Received 9 October 2003

Abstract

Many combinatorial generating functions can be expressed as combinations of symmetric functions,
or extracted as sub-series and specializations from such combinations. Gessel has outlined a large class
of symmetric functions for which the resulting generating functions are D-finite. We extend Gessel’s
work by providing algorithms that compute differential equations, these generating functions satisfy
in the case they are given as a scalar product of symmetric functions in Gessel’s class. Examples
of applications tok-regular graphs and Young tableaux with repeated entries are given. Asymptotic
estimates are a natural application of our method, which we illustrate on the same model of Young
tableaux. We also derive a seemingly new formula for the Kronecker product of the sum of Schur
functions with itself.
© 2005 Elsevier Inc. All rights reserved.

MSC:05E05; 05E10; 13N10; 13P10

Keywords:Symmetric functions; Differentiably finite functions; Non-commutative Groebner bases; Hammond
series; Holonomic D-modules; Kronecker products; Regular graphs; Uniform Young tableaux

0. Introduction

A power series in one variable is called differentiably finite, or simply D-finite, when it
is solution of a linear differential equation with polynomial coefficients. This differential

� This article completes the extended abstract published in the proceedings of FPSAC’02 under the title
“Effective D-Finite Symmetric Functions”.

E-mail addresses:frederic.chyzak@inria.fr(F. Chyzak),marni.mishna@inria.fr(M. Mishna),
bruno.salvy@inria.fr(B. Salvy).

0097-3165/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcta.2005.01.001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82584911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jcta
mailto:frederic.chyzak@inria.fr
mailto:marni.mishna@inria.fr
mailto:bruno.salvy@inria.fr


2 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

equation turns out to be a convenient data structure for extracting information related to the
series and many algorithms operate directly on this differential equation. In particular, the
class of univariate D-finite power series is closed under sum, product, Hadamard product,
and Borel transform, among other operations, and algorithms computing the corresponding
differential equations are known (see for instance[34]). Moreover, the coefficient sequence
of a univariate D-finite power series satisfies a linear recurrence, which makes it possible to
compute many terms of the sequence efficiently. These closure properties are implemented
in computer algebra systems [24,31]. Also, the mere knowledge that a series is D-finite
gives information concerning its asymptotic behavior. Thus, whether it be for algorithmic
or theoretical reasons, it is often important to know whether a given series is D-finite or not,
and it is useful to compute the corresponding differential equation when possible.

D-finiteness extends to power series in several variables: a power series is called D-finite
when the vector space spanned by the series and its derivatives is finite-dimensional. Again,
this class enjoys many closure properties and algorithms are available for computing the
systems of linear differential equations generating the corresponding operator ideals [4,5].
Algorithmically, the key tool is provided by Gröbner bases in rings of linear differential
operators and an implementation is available in Chyzak’sMgfun package.1 An additional,
very important closure operation on multivariate D-finite power series is definite integration.
It can be computed by an algorithm calledcreative telescoping, due to Zeilberger [46].
Again, this method takes as input (linear) differential operators and outputs differential
operators (in fewer variables) satisfied by the definite integral. It turns out that the algorithmic
realization of creative telescoping has several common features with the algorithms we
introduce here.

Beyond the multivariate case, Gessel considered the case of infinitely many variables and
laid the foundations of a theory of D-finiteness for symmetric functions [9]. He defines a
notion of D-finite symmetric series and obtains several closure properties. The motivation for
studying D-finite symmetric series is that new closure properties occur and can be exploited
to derive the D-finiteness of usual multivariate or univariate power series. Thus, the main
application of [9] is a proof of the D-finiteness for several combinatorial counting functions.
This is achieved by describing the counting functions as combinations of coefficients of D-
finite symmetric series, which can then be computed by way of a scalar product of symmetric
functions. Under certain conditions, the scalar product of symmetric functions depending
on extra parameters is D-finite in those parameters, where D-finiteness is that of (usual)
multivariate power series. Most of Gessel’s proofs are not constructive. In this article, we
give algorithms that compute the resulting systems of differential equations for the scalar
product operation. Besides Gessel’s work, these algorithms are inspired by methods used
by Goulden, Jackson, and Reilly in [12,13]. Finally, Gröbner bases are used to help make
these methods into algorithms. One outcome is a simplification of the original techniques
of [12,13].

Considering some enumerative combinatorial problem of a symmetric flavor and param-
eterized by a discrete parameter (denoted byk in the examples below), it is often so that
the enumeration is solved by first forming a scalar product of two symmetric functions in
k variables. Moreover, in the examples envisioned (the enumeration ofk-regular graphs, of

1 This package is part of thealgolib library available athttp://algo.inria.fr/packages/ .

http://algo.inria.fr/packages/


F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 3

k-uniform tableaux, etc.), this scalar product is the specialization tok variables of a scalar
product between two “closed-form” symmetric functions in infinitely many variables. Both
symmetric functions are sufficiently well-behaved that nice “closed forms” are obtained
under specialization, leading to descriptions in terms of linear differential operators that are
easy to derive. This nice behavior is well exemplified by Eqs. (5) and (8) below and is what
delimits the scope of our method in applications.

Additionally, our method extends to other scalar products whose associated adjunctions
satisfy a certain condition of preservation of degree (see Section 9.1), as well as to the
Kronecker product of symmetric functions (see Section 9.2).

A very basic example of application of our method is the enumeration of labeled graphs.
A finite graph onn vertices labeled with non-negative integersi1, . . . , in, of respective
valenciesv1, . . . , vn, is given as a weight the monomialx

v1
i1
· · · xvn

in
. This encoding leads

to generating functions that are symmetric series: the set of all finite simple graphs is
enumerated by the product

G(x) =
∑
G∈G

∏
(i,j)∈E(G)

xixj =
∏
i<j

(1+ xixj ),

as each edge(i, j) ∈ E(G) is either in the graph or not. This series is obviously invari-
ant under renamings of thexi ’s, which motivates the involvement of symmetric function
theory in the application. Finite simple graphs whose vertices all have valency two are
called2-regular graphs. Such a graph contributes toG by a term of the formx2

i1
· · · x2

in
.

Therefore, extracting the sub-series ofG with same monomials as in the series expansion
of

∏
i∈N\{0}(1+ x2

i ), another symmetric series, results in the generating series of 2-regular
graphs according to the same encoding. By symmetry, monomials based on different sets
of indicesi1, . . . , in of cardinalityn share the same coefficient in this extracted series. In
this spirit, it will be shown in Section3 that the number of 2-regular graphs onn vertices is
given as the coefficient oftn in the series

G2(t) =
〈
exp

(
(p2

1 − p2)/2− p2
2/4

)
,exp

(
t (p2

1 + p2)/2
)〉

.

Here, the scalar product is a scalar product for symmetric functions, to be defined in the
next section; it implements the coefficient extraction. The variablest, p1, andp2 can be
viewed as standard variables, althoughp1 andp2 will be assigned the symmetric function
interpretationp1 = x1+x2+· · ·,p2 = x2

1+x2
2+· · ·. Our purpose in the present paper is to

describe scalar products of symmetric functions likeG2(t) by a linear differential equation.
By our method, Algorithm 1 below calculates thatG2(t) satisfies the differential equation

2(1− t)G′
2(t)− t2G2(t) = 0,

which is easily solved to recover the classical seriesG2(t) = e− 1
4 t (t+2)/

√
1− t . More

details on this calculation as well as similar examples will be given in Section3. In general,
the derived differential equation will not admit of such a closed form solution. However,
it is possible to extract asymptotic information on the sequence being enumerated directly
from this differential equation. This will be exemplified in Section 8.

This article is organized as follows. After recalling the necessary part of Gessel’s work in
Section 1, we start by focusing on the special situation when a single argument of the scalar



4 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

product depends on extra parameters. We present an algorithm for computing the differential
equations satisfied by the scalar product in this case in Section2. The application to the
example ofk-regular graphs is detailed in Section 3. Then a special case where the algorithm
can be further refined is described in Section 4. We treat a variant of Young tableaux where
each element is repeatedk times in Section 5. (These are in bijection with a generalization of
involutions [19].) The general form of the main algorithm, when both arguments depend on
extra parameters, is given in Section 6. Termination and correctness of the main algorithms
are proved in Section 7. Next, in Section 8 we employ our algorithms to derive asymptotic
estimates of the enumerating sequences ofk-regular graphs fork = 1,2,3,4. Following this
approach of experimental mathematics, we state a conjecture for generalk. A discussion on
several extensions and applications of the method closes the paper in Section 9, including
the calculation of a seemingly new formula for the Kronecker product of the sum of all
Schur functions with itself.

1. Symmetric D-finite functions

In this section, we recall the facts we need about symmetric functions, D-finite functions,
and symmetric D-finite functions.

1.1. Symmetric functions

We first collect basic definitions, notation, and results of the theory of symmetric func-
tions. We refer to [21,34] for further results.

Symmetric functions are series in the infinite set of variablesx1, x2, . . . over a fieldK
of characteristic 0, subject to a certain invariance under renumberings of the variables.
TheK-algebra� of symmetric functions is formally defined as follows. For each positive
integerm, theK-vector space consisting of the polynomials ofK[x1, . . . , xm] that are fixed
under any permutation of the variables is a gradedK-algebraGm, the algebra of symmetric
polynomials inm variables. Here the grading is with respect to the total degree in the
m variables and it induces a chain of graded surjective homomorphisms�m from Gm+1
ontoGm defined by settingxm+1 to 0. Taking the inverse limit (a.k.a. projective limit) of
the system({Gm}, {�m}) results in the gradedK-algebra� of symmetric functions. By
restriction of the algebrasGm and the maps�m to homogeneous polynomials in a fixed
degreen, the inductive limit becomes a vector subspace�n of �. We have the relation
� = ⊕

n�0 �n.
We now recall the definitions of the most frequently used bases of the ring� and vector

spaces�n. Denote by� = (�1, . . . , �k) a partition of the integern. This means thatn =
�1 + · · · + �k and�1� · · · ��k > 0, which we also denote��n. Alternatively, the power
notation� = 1r1 · · · krk for partitions indicates thati occursri times in�, for i = 1,2, . . . , k.
Partitions serve as indices for the five principal symmetric function families that we use:

• the homogeneous symmetric functionsh� = h�1 · · ·h�k
, for hn defined as the sum of all

monomials of degreen in x1, x2, . . . ,with possible repetition (i.e., with any non-negative
exponents),



F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 5

• the elementary symmetric functionse� = e�1 · · · e�k
, for en defined as the sum of all

monomials of degreen in x1, x2, . . . , with no possible repetition (i.e., with exponents 0
or 1, exclusively),

• the power symmetric functionsp� = p�1 · · ·p�k
, for pn defined as the sum of thenth

power of all variables,
• the monomial symmetric functionsm� = ∑

�(r1! r2! . . .)−1x
�1
�(1) · · · x�k

�(k), where�
ranges over all permutations of the non-negative integers,

• the Schur symmetric functionss�, whose intuitive definition is in terms of the represen-
tations of the permutation groupSn, and that can alternatively be defined as the limit
symmetric function whenn tends to infinity of the determinant of then× n-matrix with
(i, j)-entryh�i−i+j .

When the indices are restricted to all partitions of the same positive integern, any of the
five families forms a basis for the vector space of symmetric polynomials of degreen in
x1, x2, . . . . On the other hand, any of the three families indexed by the integersi ∈ N,
(pi), (hi), and(ei), is algebraically independent overQ and generates the algebra� of
symmetric functions overK : � = K[p1, p2, . . .] = K[h1, h2, . . .] = K[e1, e2, . . .]. In
this work, we shall focus on the basis(pi), as we shall endow� with a differential structure
will regard to the variablespi .

Generating series of symmetric functions live in the larger ring of symmetric series,
K[t][[p1, p2, . . .]]. There, we have the generating series of homogeneous and elementary
functions:

H(t) =
∑
n

hnt
n = exp

(∑
i

pi

t i

i

)
, E(t) =

∑
n

ent
n = exp

(∑
i

(−1)ipi

t i

i

)
.

1.2. Scalar product and coefficient extraction

The ring of symmetric series is endowed with a scalar product defined as a bilinear
symmetric form such that the bases(h�) and(m�) are dual to each other:

〈
m�, h�

〉 = ��,�, (1)

where��,� is 1 if � = � and 0 otherwise.
For a partition in power notation,� = 1n1 · · · knk , the normalization constant

z� := 1n1n1! · · · knknk!
plays the role of the square of a norm ofp� in the following important formula:

〈
p�, p�

〉 = ��,�z�. (2)

The scalar product is a basic tool for coefficient extraction. Indeed, if we writeF(x1,

x2, . . .) in the form
∑

� f�m�, then the coefficient ofx�1
1 · · · x�k

k in F is f� = 〈F, h�〉, by
(1). Moreover, when� = 1n, the identityh1n = p1n yields a simple way to compute this



6 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

coefficient whenF is written in the basis of thep’s:

Theorem 1(Gessel; Goulden and Jackson). Let� be theK-algebra homomorphism from
the algebra of symmetric functions overK to the algebraK[[t]] of formal power series in
t defined by�(p1) = t , �(pn) = 0 for n > 1.Then if F is a symmetric function,

�(F ) =
∞∑
n=0

an
tn

n! ,

wherean is the coefficient ofx1 · · · xn in F.

Gessel also provides an analogue for this theorem when� = 1n2m and� = 1n3m [9,
Theorems 2–4]. Combinations of other degree patterns quickly become arduous to write
explicitly.

1.3. Plethysm

Plethysm is a way to compose symmetric functions, which in the simplest case, amounts
to simply scaling the indices on the power sums. This inner law of�, denotedu[v] for u, v
in �, is, forw = ∑

� c�p�, defined by the rules [34]

pn[w] =
∑
�

c�pn×�1pn×�2 . . . ,

(�u+ �v)[w] = �u[w] + �v[w], (uv)[w] = u[w]v[w],
where �, � in K. For example, consider thatw[pn] = pn[w], and in particular that
pn[pm] = pn×m. Thus, we see that when we writew ∈ � in the power sum basis as
w = w(p1, p2, . . . , pk, . . .), the scaling effect appears on the indices as

w[pn] = w(p1×n, p2×n, . . . , pk×n, . . .).

1.4. D-finiteness of multivariate series

Recall that a seriesF ∈ K[[x1, . . . , xn]] isD-finitein x1, . . . , xn when the set of all partial
derivatives and their iterates,�i1+···+inF/�xi1

1 · · · �xin
n , spans a finite-dimensional vector

space over the fieldK(x1, . . . , xn). A D-finite descriptionof a seriesF is a set of differential
equations whose solutions in anyK(x1, . . . , xn)-vector space share this property. A typical
example of such a set is a system ofn differential equations of the form

q1(x)f (x)+ q2(x)
�f
�xi

(x)+ · · · + qk(x)
�kf
�xk

i

(x) = 0,

wherei ranges over 1, . . . , n, eachqj is inK(x1, . . . , xn) for 1�j �k, andkandqj depend
on i. Observe that by a theorem of Stafford[2, Chapter 5], any D-finite seriesF admits a
D-finite description consisting of only two differential equations. However, we do not know
how to benefit from this theoretical result in our computational setting, and it will be more
efficient to compute in a systematic way with non-minimal sets.



F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 7

The properties of D-finite series we need here are summarized in the following theorem.

Theorem 2. (1)The set of D-finite power series forms aK-subalgebra ofK[[x1, . . . , xn]]
for the usual product of series.

(2) If F is D-finite inx1, . . . , xn then for any subset of variablesxi1, . . . , xik the special-
ization of F atxi1 = · · · = xik = 0 is D-finite in the remaining variables.

(3) If P is a polynomial inx1, . . . , xn, thenexpP(x) is D-finite inx1, . . . , xn.
(4) If F and G are D-finite in the variablesx1, . . . , xm+n, then the Hadamard product

F �G with respect to the variablesx1, . . . , xn is D-finite inx1, . . . , xm+n.

(Recall that the Hadamard product of two series
∑

�∈Nk a�u
��∑

�∈Nk b�u
� is

∑
�∈Nk a�

b�u
�, whereu� = u

�1
1 · · · u�k

k .)
These properties are classical[34]. The first three are elementary, the last one relies on

more delicate properties of dimension and is due to Lipshitz [20].
We note at this point that it is usually simple in applications to provide a D-finite descrip-

tion for a D-finite function, as the latter is most often given as a polynomial expression in
“atomic” D-finite functions, usually well-known special functions. Given a table of atomic
D-finite descriptions, one bases on the closure properties of Theorem 2 above and uses al-
gorithms described in [5] in order to derive a D-finite description for the whole expression.
In our examples, doing this will be straightforward since our functions will be exponentials
of polynomials.

1.5. D-finite symmetric functions

The definition of D-finiteness for series in an infinite number of variables is achieved
by generalizing property (2) in Theorem 2:F ∈ K[[x1, x2, . . .]] is calledD-finite in the
infinitely many variablesxi if, for any choice of a finite setS of positive integers, the
specialization to 0 of eachxi for i not inS results in a power series that is D-finite, in the
classical sense, in the variablesxi for i in S. In this case, all the properties in Theorem 2
hold in the infinite multivariate case.

The definition is then tailored to symmetric series by considering the algebra of symmetric
series as generated overK by the set{p1, p2, . . .}: a symmetric series is calledD-finitewhen
it is D-finite in thepi ’s.

Property (4) in Theorem 2 has the following very important consequence:

Theorem 3(Gessel). Let f and g be elements ofK[[t1, . . . , tk]][[p1, p2, . . .]], D-finite in
thepi ’s andtj ’s, and suppose that g involves only finitely many of thepi ’s. Then〈f, g〉 is
D-finite in thetj ’s provided it is well-defined as a power series.

We return to the example of regular graphs given in the introduction. We shall see in
Section3 that the exponential generating seriesG2 of 2-regular graphs is given as an
extraction of coefficients from the generating seriesGof all finite simple graphs in the form
G2 = 〈G,exp(h2t)〉 and we shall provide the explicit representations

G = exp

(∑
i

(−1)i
p2
i − p2i

2i

)
and h2 = p2

1 + p2

2
.



8 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

BothG and exp(h2t) are clearly D-finite symmetric by the definition above. Now,G2 is
equal to the scalar product〈

exp

(∑
i

(−1)i(p2
i − p2i )/2i

)
,exp

(
t (p2

1 + p2)/2
)〉

,

and thus by Theorem3 the resulting power series is D-finite int. Note the effect of the
requirement thatg be dependent on finitely manypi ’s only in the theorem—here exph2t

depends onp1 andp2 only. As a consequence, the scalar product extracts those terms from
G that are supported by monomials int, p1, andp2 only. In other words, we can set allpi ’s
to 0 inGwheni > 2, which yields

G2(t) =
〈
exp

(
(p2

1 − p2)/2− p2
2/4

)
,exp

(
t (p2

1 + p2)/2
)〉

.

This scalar product is between symmetric functions in finitely manypi ’s.

1.6. Effective D-finite symmetric closures

Our work consists in making Theorem3 effective by giving algorithms for producing
linear differential equations annihilating〈f, g〉. The input to our algorithms consists of
closed forms forg and the specialization off in the finite number ofpi ’s appearing ing,
from which generators of ideals of differential operators which annihilate them can then be
computed.

Providing algorithms to manipulate linear differential equations amounts to making the
closure properties of univariate D-finite series effective; similarly, algorithms operating on
systems of linear differential operators make the closure properties of multivariate D-finite
series effective. Our title is thus motivated by the fact that our algorithm makes it possible
to compute all the information on a scalar product that can be predicted from D-finiteness.
Note that we do not check that the resulting power series is well-defined: our algorithm
merely computes equations that the scalar product series must satisfy if it is well-defined.

In our examples, we make use of symmetric series that are built by plethysm. Closure
properties are given by Gessel, but our applications require only a simple consequence of
property (3) in Theorem 2, namely that ifg is a polynomial in thepi ’s, thenh[g] ande[g]
are D-finite forh = H(1) ande = E(1).

2. Algorithm for scalar product: the simple case

We proceed to give a new algorithm to compute the differential equation satisfied by a
scalar product of two D-finite symmetric series under the hypotheses of Theorem 3 and
with the additional simplifying condition that only one of the symmetric series depends
on t. When the number oft variables is 1, the output is a single differential equation for
which existing computer algebra algorithms might find a closed-form solution. In most
cases however, no such solution exists and we are content with a differential equation from
which useful information can be extracted.



F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 9

The basic tool we use here is non-commutative Gröbner bases in extensions of Weyl
algebras. An introduction to this topic can be found in[30]. By Wt , we denote the Weyl
algebra

Wt =K
〈
t1, . . . , tk, �t1, . . . , �tk ;

[�ti , tj ] = �i,j , [ti , tj ] = [�ti , �tj ] = 0, 1� i, j �k
〉
,

where the bracket[a, b] denotesab − ba and�i,j is the Kronecker notation. This algebra
can be identified with the algebra of linear differential operators with coefficients that are
polynomial int = t1, . . . , tk. We correspondingly denoteWp for variablesp = p1, . . . , pn,
as well as�t for �t1, . . . , �tk , �p for �p1, . . . , �pn , etc. For the algorithm, we work in the
extension

Wp,t (t) = K(t)⊗K[t] Wp,t

of the Weyl algebraWp,t = Wp ⊗K Wt in which the coefficients of the differential oper-
ators are still polynomial inp but rational int. SupposeF andG belong toK[t][[p]] and
are D-finite symmetric series as in Theorem3. In particular, they both satisfy systems of
linear differential equations with polynomial coefficients fromK(t)[p]. We can write these
equations as elements ofWp,t (t) acting onF andG. The setIF = annWp,t (t)F (resp.IG) of
all operators ofWp,t (t) annihilatingF (resp.G) is then aleft ideal ofWp,t (t). Given as input
Gröbner bases ofIF andIG, our algorithm outputs non-zero elements of the annihilating
left ideal annWt(t) 〈F,G〉.

To combine elements ofIF andIG in a meaningful way we use the adjunction map,
denoted� here,2 defined for an operatorP ∈ Wp by imposing the relation〈P · F,G〉 =〈
F,P � ·G〉

for all seriesF andG. As a consequence, we have the relation(PQ)� = Q�P �
and the adjointP � is computed formally fromp�

i = i�pi
and��pi

= pi/i; in particular
(pi�pi

)� = pi�pi
[21]. This makes the adjunction map an involution as well as an algebra

anti-automorphism ofWp. Note that, although adjunction extends toWp(t) by settingt�i =
ti , no adjoint for the�ti can be defined in any consistent way. Assume that an adjoint��ti
existed. For reasons to be explained later, this adjoint has to be of the form��ti +�ti + 	 for
complex constants�, �, 	, with �� �= 0. Now, for any seriesF andGwe have

〈
�ti · F,G

〉 =〈
F, ��ti ·G

〉
. Choose any non-zero seriesF independent ofti ; then by the method of variation

of parameters for series, one finds a seriesG satisfying��ti · G = F . Upon evaluation, we
obtain 0= 〈F,F 〉 �= 0, a contradiction.

We now proceed to outline the algorithm for the simple case, meaning that from this point
on we elect to haveF ∈ K[[p]], i.e.,F independent oft. The condition onF that it does
not involvet implies that�ti · F = 0 for i from 1 tok. We can use this fact to simplify our
calculations. In this case, we consider a different annihilator, annWpF , hereafter denoted
JF . Note thatJF = IF ∩Wp.

This allows us to determine the action of combinations ofP ∈ J �
F andQ ∈ IG. For

example, given anyS ∈ Wp, T ∈ Wp,t (t), andU ∈ Wt(t),〈
F, (P �SU + TQ) ·G〉 = 〈

S�P · F,U ·G〉 + 〈F, TQ ·G〉 = 0.

2 Macdonald denotes the adjunction operator by⊥.



10 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

It follows that, if we can find a combination such that
∑

j P
�
j SjUj +∑

j TjQj = R ∈ Wt ,
we have 0= 〈F,R ·G〉 = R · 〈F,G〉. Note that eachP �

j Sj is an element ofJ �
F while each

TjQj is an element ofIG. Therefore, we conduct our search for an element of annWt
〈F,G〉

by determining a non-zero element of
(
J �
FWt(t)+ IG

)∩Wt . We shall prove in Section7.1
that such an element exists. Basically, the goal of our algorithms is to compute sufficiently
many non-zero elements of

(
J �
FWt(t)+ IG

) ∩Wt so as to generate a D-finite description
of the scalar product.

Note, however, that whileIG is a leftWp,t (t) ideal,J �
FWt(t) is a right Wp,t (t)-ideal

and the sumsP + Q for P ∈ J �
FWt(t) andQ ∈ IG do not form an ideal. This problem

is very similar to the problem of creative telescoping: given an idealI ⊂ Wp,t (t), the
aim in the first step of this method is to determine an element of�pWp,t (t) + I that does
not involvep. There also,�pWp,t (t) := ∑

j �pj
Wp,t (t) is a right ideal. The algorithm we

present thus bears a non-fortuitous resemblance with that of [37]: in this reference, trunca-
tions of the left idealI and of the right ideal�pWp,t (t) at a given total degree inp, �p, �t
are recombined linearly, this for higher and higher truncation degrees until the correspond-
ing truncation of the intersection

(
�pWp,t (t)+ I) ∩Wt is non-trivial. In our situation, we

determine truncations of the left idealIG and the right idealJ �
FWt(t) at a given trunca-

tion order, recombine those two vector spaces linearly, and iterate over higher and higher
truncation orders until the corresponding truncation of

(
J �
FWt(t)+ IG

) ∩Wt is a D-finite
description.

To some extent, the approach of the present paper also shares features with that in [27].
However, this reference focuses on determining a bound on a truncation order that permits
to compute generators of an intersectionL = (

�pWp,t +I
)∩Wt for a given idealI of Wp,t ,

and also generators for a whole free resolution ofL. From there, the cohomology groups
of the module-theoretic integralWt/L of the quotient moduleWp,t/I are derived. Roughly
speaking, we are not concerned here with more than the first cohomology group, and fur-
thermore, we treat the similar but different problem for ideals ofWp,t (t) and intersections
in Wt(t).

Being a module overWt(t), the sumJ �
FWt(t)+ IG is a vector space overK(t). It is this

second structure that is adapted to our method. We could try using the module structure
in this section, but this would not generalize to the case when alsoF depends ont. The
idea is to useK(t)-linear algebra in the vector space structure to eliminate the�pi

andpi .
Roughly speaking, we incrementally generate lines in a matrix corresponding to generators
of J �

FWt(t)+ IG, and perform Gaussian elimination to remove the monomials involvingp
and�p.

The main loop of the algorithm considers monomials of increasing degree with respect to
any ordering on the monomials inp, �p, �t . We use the notation4 to denote the monomial
comparison associated with this ordering. We reduce each monomial� with respect to
(the Gröbner bases for)I�

F andIG. Note that the chosen monomial ordering is the same
for both IG andI�

F . Equivalently, the remainder of the reduction of a monomial� with
respect toI�

F can be viewed as the adjoint of the remainder of the reduction of�� with
respect toIF . However, to reflect the fact that adjunction modifies the variables, when
reducing with respect toIF we need to use a different order, specifically, the ordering4�
defined by�14��2 onWp if and only if��14��2. In our implementation, we use the ordering



F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 11

DegRevLex(�p > p > �t ) which sorts by total degree first, breaking ties by a reverse
lexicographic order on the variables. The order4� is then DegRevLex(p > �p).

Once we have computed these values, we add two rows (and for sufficiently large�
only one column) in a matrix where we perform Gaussian elimination to cancel entries
corresponding to monomials involvingp and�p.

We now state the algorithm more formally as Algorithm1, followed by an example in the
next section. After this example, we describe the modifications necessary to handle specific
cases more efficiently, and how to treat the general case. The proofs that these algorithms
work and terminate are delayed until Section 7.

Algorithm 1 (Scalar product).
Input: Symmetric functionsF ∈ K[[p]] andG ∈ K[t][[p]], both D-finite inp, t , given

by D-finite descriptions inWp andWp,t (t), respectively.
Output: A D-finite description of〈F,G〉 inWt(t).

(1) DetermineaGröbnerbasisGG for the left idealannWp,t (t)Gwith respect toanymonomial
ordering4, as well as a Gröbner basisGF � for the right idealannWpF

� with respect to
the monomial ordering induced by4 onWp.

(2) B := {}.
(3) Iterate through each monomial� in p, �p, �t .

(a) Write� = �	 with � ∈ Wp and	 ∈ K[�t ].
(b) �F := (

� − (� red4 GF �)
)
	.

(c) �G := � − (� red4 GG).
(d) Introduce�F and�G as two new elements into B and reduce so as to eliminatep, �p.
(e) Compute the dimension of the ideal generated byB ∩Wt(t). If this dimension is0,

break and outputB ∩Wt(t).

Notice, if m = 1, as is the case in our examples, there is only one variablet, and the
dimension condition in (3e) is simplified to:

If B contains a non-zero element P fromWt(t), break and return P.

Note that Step (1) requires to determine both ideals annWp,t (t)G and annWpF , not just
annWp,t (p,t)G and annWp(p)F . In other words, one generally needs to pass from a D-finite
description{Pi} generating the ideal annWp(p)F as

∑
i Wp(p)Pi to a set{Qi} generating

the ideal annWpF = Wp ∩ annWp(p)F as
∑

i WpQi , and similarly forG. The operation
of computing such intersections is calledWeyl closure, in the terminology of[40,41]. It is
a non-obvious task, owing to the change of module structure (coefficients inWp(p) are
replaced with coefficients inWp). Algorithms are provided in [40,41].

Sometimes, the input set{Pi} already constitutes a generating set for the Weyl closure.
In this case, one can skip Step (1) of the algorithm. This is the case in our examples.

The remainder of the reduction with respect to the Gröbner basisGG is a multivariate
analogue of the remainder of the Euclidean division. It is such that for any�, �G = � −
(� redG) belongs to the ideal generated byG. A similar statement holds forGF .

For this description we have assumed that Gröbner bases could be computed for both
left and right ideals. If they can only be computed on one side, say for left ideals, then the



12 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

operators�F can be obtained as follows: first, determine the monomial ordering4� induced
by adjunction onWp viewed as a left structure from the ordering4 onWp viewed as a right
structure; then, replace the Gröbner basisGF � with the Gröbner basisGF for the left ideal
annWpF with respect to4�; �F is then computed as

(
� − (�� red4� G�

F )
)
	. This way we

getGF � = (GF )
�.

We represent the basisBas a matrix, with columns indexed by monomials in thepi ’s, the
�pi

’s, and the�ti ’s. Each row in the matrix corresponds to the row vector of the coefficients of
some element ofBwith regard to the indexing monomial basis. Introducing an element into
the basis consists of adding a new row at the bottom of the matrix, performing row reduction
(also known as Gaussian elimination), and then returning the new matrix as the updated
basis. In practice,B can be handled (not inefficiently) by a Gröbner basis computation
with respect to a monomial ordering that eliminates thepi ’s and the�pi

’s, performing
calculations in the freeK[t]-module with a basis the list of indexing monomials.

Finally, some remembering can be done at Step (3b) to avoid reducing the same� again
and again, for different�’s involving the same�.

3. Example: k-regular graphs

The enumeration of regular graphs has been treated by a number of authors[6,9,13,29].
We present it here because of its expository value and as it is the simplest in a family of
examples. After expressing the problem as a scalar product, we describe in detail how our
algorithm treats it. We conclude this section with an indication of how the scenario may be
generalized.

3.1. A generating series for graphs as a scalar product

Recall from the introduction that a generating series for the set of all finite simple graphs
labeled with integers fromN \ {0} is

G(x) =
∑
G∈G

∏
(i,j)∈E(G)

xixj =
∏
i<j

(1+ xixj ),

under the encoding that a graph onn verticesi1, . . . , in of respective valenciesv1, . . . , vn
contributes a monomialxv1

i1
· · · xvn

in
. We can similarly make a generating function for graphs

with multiple edges (multigraphs) by

M(x) =
∏
i<j

1

(1− xixj )
,

for an edge(i, j) of a graph with multiplicitym contributes a monomialxm
i xm

j and any
non-negative multiplicity is allowed.

Clearly bothG andM are symmetric functions, and in fact, we have the relationsG =
e[e2] andM = h[e2], as determined by a method that we discuss in Section3.4. Both are



F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 13

easily rewritten in terms of thepi ’s:

G = exp

(∑
i

(−1)i(p2
i − p2i )/2i

)
and M = exp

(∑
i

(
p2
i + p2i

)
/2i

)
.

(3)

In any given term, the degree ofxk gives the valency of vertexk. So, for example, the
coefficientgn of x1 · · · xn in G, hereafter denoted[x1 · · · xn]G, gives the number of 1-
regular graphs, or perfect matchings on the complete graph onn vertices, and in general the
coefficientg[k]n = [xk

1 · · · xk
n]G, also given as[mkn ]G, gives the number ofk-regular graphs

onn vertices. By virtue of Eq. (1), coefficient extraction amounts to a scalar product, and
the generating functionGk(t) of k-regular graphs is given by

Gk(t) :=
∑
n

g[k]n

tn

n! = 〈G,Hk〉 ,

where

Hk(t) :=
∑
n

hkn
tn

n! =
∑
n

(hkt)
n

n! = exp(hkt). (4)

Now, sincehk = ∑
��k p�/z� (where the sum is over all partitions� of k), the exponential

generating functionHk(t) is also exp
(
t
∑

��n p�/z�
)
, an exponential in a finite number of

pi ’s. By property (3) in Theorem2, this is D-finite. Further, as a result of scalar product
property (2), we can rewrite Eq. (4) as

Gk(t)=
〈
exp


 ∑

i even, i�k

(−1)i/2p
2
i

2i
+ pi

i
+

∑
i odd, i�k

p2
i

2i


 , exp


t

∑
��k

p�

z�


〉

(5)

and now by Theorem3 this generating functionGk(t) is D-finite.
Note how the closed form forG in (3), in infinitely many variables, and the closed form

for Hk(t) in (4), in terms of theh’s, have led to the scalar product (5) between two closed
forms, explicitly written in terms of finitely manypi for eachk. This reduction is what has
made the algorithm applicable.

3.2. Effective computation fork = 2

To illustrate a typical calculation, we calculateG2(t), the generating function for 2-regular
graphs which, according to Eq. (5), is determined by

G2(t) =
〈
exp

(
(p2

1 − p2)/2− p2
2/4

)
,exp

(
t (p2

1 + p2)/2
)〉

.



14 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

Algorithm 1 calculates thatG2(t) satisfies the differential equation

2(1− t)G′
2(t)− t2G2(t) = 0,

which is easily solved to findG2(t) = e− 1
4 t (t+2)/

√
1− t .

In order to appeal to Algorithm 1, setF = exp((p2
1 − p2)/2 − p2

2/4) and G =
exp(t (p2

1+p2)/2) and determine the Gröbner basesGF andGG of their annihilating ideals,
respectively:

GF = {p2 + 2�p2 + 1, p1 − �p1} andGG = {2�p2 − t, �p1 − tp1, p
2
1 + p2 − 2�t },

whereGF is a Gröbner basis with respect to the degree reverse lexicographical monomial
ordering such thatp1 > p2 > �p1 > �p2 andGG is a Gröbner basis with respect to the degree
reverse lexicographical monomial ordering such that�p1 > �p2 > p1 > p2 > �t . (Leading
monomials with respect to the monomial ordering are underlined.) Before proceeding, the
setGF is converted by adjunction into a Gröbner basisG�

F with respect to the degree reverse
lexicographical monomial ordering such that�p1 > �p2 > p1 > p2:

G�
F = {2�p2 + p2 + 1, �p1 − p1}.

(The reader should not get confused by the peculiar situation of this example: here,
adjunction has not changed the polynomials, except for signs, but this is only a
coincidence.)

The initial value ofB is the empty set. For the sake of the example, we shall iterate on
monomials� according to the degree reverse lexicographical order such that�t > �p2 >

p2 > �p1 > p1, and perform reductions when inserting into the basis according to the
elimination order sorting first by the degree reverse lexicographical order such that�p2 >

p2 > �p1 > p1, and breaking ties by the degree in�t .
We now briefly sketch the run of the algorithm until� becomesp1�p1 and then illustrate

the steps of the main loop in more details.
For� = 1 andp1, the algorithm inserts no polynomial into the basisB. The next iteration

of the loop, for� = �p1, produces�F = �p1 − p1, which is inserted intoB as is, and�G =
�p1 − tp1, whose insertion putsp1 into B. Next, the case� = p2 inserts no polynomial

before, for� = �p2, �F = 2�p2 + p2 + 1 gets inserted as is, and the insertion of�G =
2�p2 − t putsp2 + (t + 1) into B. The iteration for� = �t has no effect onB. For

� = p2
1, �F = 0 is not inserted, and�G = p2

1 + p2 − 2�t gets inserted in the form

p2
1 − 2�t − (t + 1).

At this point, the algorithm is about to treat� = p1�p1 and the value ofB is

B =
{
�p1 − p1, p1,2�p2 + p2 + 1, p2 + (t + 1), p2

1 − 2�t − (t + 1)
}
, (6)



F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 15

where we have written elements in the order of introduction into the set. In matrix notation,
the column vector of elements ofB reads




0 0 0 1 −1 0 0
0 0 0 0 1 0 0
0 2 1 0 0 0 1
0 0 1 0 0 0 t + 1
1 0 0 0 0 −2 −(t + 1)







p2
1

�p2

p2
�p1

p1
�t
1




.

Here, we have chosen to keep the rows in the order of creation by the algorithm and to sort
the column according to the monomial order used by the elimination step. Observe that
in this way, no two rows have their left-most non-zero entry on the same column: simply
reordering rows would put the matrix in row echelon form.

Then, the algorithm computes

�F = � − (� red4 G�
F ) = � − (�� red4� GF )

� = p1�p1 − p2
1 + 1

and

�G = � − (�red4GG
) = p1�p1 + tp2 − 2t�t .

(Note that�F is really(�p1 − p1)p1, an element of theright ideal generated byG�
F .) Next,

we updateB to include these two values. We insert�F intoBafter one reduction, leading to

B := B ∪ {p1�p1 − 2�t − t}.
In matrix notation, this insertion adds a new column to the left of the matrix, corre-
sponding to the new monomialp1�p1, and one more row at the bottom of the matrix,
( 1 0 0 0 0 0 −2 −t ). Then the algorithm inserts�G. Its leading monomialp1�p1

is already present inB, leading to an initial reduction totp2 + 2(1 − t)�t + t . One final
reduction byt times the pre-last element in Eq. (6) results in the step

B := B ∪ {2(1− t)�t − t2}.
The intersection of this andWt(t) is non-trivial, and the algorithm outputs 2(1− t)�t − t2.
We conclude thatG2(t) satisfies the differential equation

2(1− t)G′
2(t)− t2G2(t) = 0.

Table1 summarizes the results by the same algorithm fork = 2,3,4. These match with
the results in [13].

3.3. Efficient enumeration of k-regular graphs

An efficient procedure for the enumeration ofk-regular graphs is immediately derived
from the differential equations for the generating series ofk-regular graphs collected in
Table 1. Indeed, one simply needs to convert the differential equation forGk(t) into a



16 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

Table 1
Differential equation
2G

′′
k
+ 
1G

′
k
+ 
0Gk = 0 satisfied byGk(t), k = 2,3,4

2-Regular graphs

0 −t2


1 −2t + 2

2 0

3-Regular graphs

0 t3(t4 + 2t2 − 2)2


1 −3(t10 + 6t8 + 3t6 − 6t4 − 26t2 + 8)

2 −9t3(t4 + 2t2 − 2)

4-Regular graphs

0 −t4(t5 + 2t4 + 2t2 + 8t − 4)2


1 −4(t13 + 4t12 − 16t10 − 10t9 − 36t8 − 220t7 − 348t6

−48t5 + 200t4 − 336t3 − 240t2 + 416t − 96)

2 16t2(t − 1)2(t5 + 2t4 + 2t2 + 8t − 4)(t + 2)2

recurrence relation for its coefficientsg[k]n and to determine sufficiently many starting values
g
[k]
0 , g

[k]
1 , . . . . Then, one can efficiently computeg[k]n for anynby unrolling the recurrence.

Implementations are available to help with this approach. For example, the Maple package
gfun 3 by Salvy and Zimmerman [31] contains commands dedicated to the conversion
step and the iterative calculations based on a linear recurrence. Computations in the case
k = 4 result in a recurrence relation of order 15 already published by Read and Wormald
[29] and can be found as a formula accompanying sequence number A005815 in Sloane’s
encyclopedia of integer sequences [32]. From this recurrence relation and initial terms, it
is then a matter of seconds to compute the exact integer values for hundreds of terms in the
sequence.

It should be stressed that this method proves much more efficient than the direct com-
putation of the scalar product based on a termwise expansion and application of formula
(2). For example, Stembridge’s implementation in the package SF for symmetric function
manipulation in Maple [35] already requires several minutes to compute theg

[4]
n for n up

to 15, and becomes unsuitable to handle the symmetric functions that would be necessary
to obtaing[4]20 . Far from showing any weakness of SF’s general approach, this illustrates the
computational progress provided by our techniques in the specific setting of differentiably
finite series.

3.4. Generalization

The series given by Eq. (3) is determined combinatorially in a direct fashion using the
theory of species [1]. This can be extended naturally to handle a wider family of combinato-

3 This package is part of thealgolib library, which is available athttp://algo.inria.fr/
packages/ .

http://algo.inria.fr/packages/
http://algo.inria.fr/packages/


F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 17

rial structures, such as hypergraphs, set covers, latin rectangles. For an in-depth treatment,
consult[26].

4. Hammond series

In the example above, it turned out that except for monomials of degree 1, we needed
only examine the two monomialsp2

1 andp1�p1 in order to reach the solution. However,
depending on the monomial ordering, the algorithm might well consider many monomials
before it adds the ones that eliminate thepi ’s and�pi

’s. The problem becomes far more
serious as the number of variables and the degree of the monomials increase. It turns out
that in the common case when the scalar product is of the type〈F,Hk(t)〉 it is possible
to modify the approach and eliminate thepi and the�pi

in a more efficient manner using
theHammond series4 (or H-series) introduced by Goulden, Jackson, and Reilly in [13]: for
F ∈ K[[p1, p2, . . .]], the Hammond series ofF is defined as

H(F )(t1, t2, . . .) =
〈
F,

∑
�

h�t
�/m(�)!

〉
,

where the sum is over all partitions, and if� = 1m1 · · · kmk then t� = t
m1
1 · · · tmk

k and
m(�)! = m1!m2! · · ·mk!. These are very closely related to the Hammond operators, defined
by Hammond[15] and used extensively by MacMahon [22]. A Hammond operator can be
described ash��, and thus the Hammond series ofFwith all of thet variables set to 1 results
essentially in a sum of Hammond operators acting onF.

Observe that the generating function fork-regular graphs is

Gk(t) = H(G)(0, . . . ,0, t,0, . . .),

where thet occurs in positionk. This is true for any generating function which takes the
form 〈F,Hk(t)〉 for someF.

A theorem from[13] is specially useful: Goulden, Jackson, and Reilly’s H-series theorem
states thatH(�pn · F) andH(pnF ) can be expressed in terms of the�ti · H(F )’s. In terms
of Gröbner bases, this corresponds to introducing the additional variablest1, …, tk (instead
of t = tk alone) and work with the seriesHk(t1, . . . , tk) = ∑

� h�t
�/m(�)! with sum over

partitions� whose largest part isk (instead of working with the univariateHk(t)). The H-
series theorem therefore implies that for an appropriate monomial order, there is a Gröbner
basis of the idealIHk

of all operators ofWp,t annihilatingHk, with elements of the form

pi − Pi(t, �t ), �pi
−Qi(t, �t ), i = 1, . . . , k, (7)

where all thePi andQi are polynomials int, �t .

4 In [12, Section 3.5]this is referred to as theGamma seriesof F.



18 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

The algorithm in this case is as follows.

Algorithm 2 (Hammond series).
Input: An integer k, andF ∈ K[[p1, . . . , pn]].
Output: A differential equation satisfied by

〈
F,

∑
i

hki t
i
k

〉
= H(F )(0, . . . ,0, tk,0, . . .),

wheretk is in position k.

(1) ComputeGF , a Gröbner basis for the left idealJF annihilating F inWp.
(2) ComputeGHk

, a Gröbner basis of the form(7).
(3) For eachU ∈ GF , computerU ∈ Wt as the reduction ofU� byGHk

for an order which
eliminatesp, �p. LetR0 be the set ofrU ’s.

(4) For i from1 to k−1eliminate�ti fromRi−1 and setti = 0 in the resulting polynomials;
call Ri the new set.

(5) ReturnRk−1.

As with Algorithm 1, the first step is to determine an annihilating ideal inWp. Again, one
can possibly first determine a D-finite description and use Weyl closure[40,41] to obtain
the annihilating ideal.

After Step (3), all thepi ’s and �pi
’s have been eliminated andR0 contains a set of

generators of a D-finiteWt(t)-ideal annihilating〈F,Hk〉. Then, in order to obtain differential
equations satisfied by the specialization att1 = · · · = tk−1 = 0, Step (4) proceeds in order
by eliminating differentiation with respect toti and then settingti = 0 in the remaining
operators.

Note that the Gröbner basis of Step (2) can be precomputed for the requiredk’s (although
most of the time is actually spent in Step (4)).

In order to compute the elimination in Step (4), one should not compute a Gröbner basis for
an elimination order, since this would in particular perform the unnecessary computation of a
Gröbner basis of the eliminated ideal. Instead, one can modify the main loop in the Gröbner
basis computation so that it stops as soon as sufficient elimination has been performed
or revert to skew elimination by the non-commutative version of the extended Euclidean
algorithm as described in [5]. This is the method we have adopted in the example session
given in Appendix B.5

This calculation is comparatively rapid since the size of the basis is greatly reduced.
Further, the basis grows smaller as the algorithm progresses, on account of setting variables
to 0. We can compute the case of 4-regular graphs in a second, instead of a couple of
minutes using the general algorithm. The 5-regular expression requires significantly more
computation time, and we could not compute it.

5 An implementation of the algorithms presented here is available in the Maple package ScalarProduct
available athttp://algo.inria.fr/mishna .

http://algo.inria.fr/mishna


F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 19

A mathematically equivalent but slightly faster way of performing Step (3) is to com-

puterU by simply replacing each monomialp�1
1 · · ·p�n

n ��1
p1

· · · ��n
pn

in U with the product

Q
�n
n · · ·Q�1

1 P
�n
n · · ·P �1

1 .
In order to explain the relative speed of Algorithm 2, compared to Algorithm 1, it needs

to be said that the Hammond series approach searches a smaller space, which can well result
in a differential equation of order higher than that obtained by Algorithm 1. This occurs,
for instance, in the case of 4-regular graphs: Algorithm 2 returns a differential equation of
order 3 only when that returned by Algorithm 1 is of order 2.

In the same vein, note that the order in which the eliminations are done in Step (4) could
be changed, possibly leading to a different (but correct) output.

4.1. Proof of termination and correctness

Termination of Algorithm 2 is obvious. On the other hand, the full proof of correctness
requires technical results to be proved in Section7. The following corollary articulates a
property of D-finite functions in the simple language of symmetric functions and D-finite
descriptions, and is a corollary of Proposition 9 that will be proved independently.

Corollary 4. LetFandGbeD-finite symmetric series inK[[p1, . . . , pn]]andK[t1, . . . , tk]
[[p1, . . . , pn]], respectively, with corresponding annihilatorsJF ⊂ Wp andIG ⊂ Wp,t

(p, t). Under these conditions, the vector space(
J �
FWt(t)+ IG

) ∩Wt(t)

is non-trivial and contains a D-finite description of〈F,G〉.

Proposition 5. Algorithm2 terminates and is correct.

Proof. First, we remark that for fixedk,

Hk(t1, . . . , tk) = exp


 k∑

j=1

hj tj




is a D-finite symmetric series by Theorem2 since eachhj is a finite combination ofp1, …,
pn. Thus,f = H(F)(t1, . . . , tk) = 〈Hk(t1, . . . , tk), F 〉 is a D-finite function oft1, …, tk,
by Theorem 3.

We proceed by proving the following invariant of the main loop: the setRi−1 generates
a D-finite description ofH(F )(0, . . . ,0, ti , ti+1, . . . , tk). This establishes the result since
it implies thatRk−1 contains a D-finite description ofH(F )(0, . . . ,0, tk), in this case, a
single differential equation. This is precisely what the algorithm claims to determine.

To prove the base case of this invariant, note thatR0 contains the generators of the
intersection

(
J �
FWt(t)+ IHk

) ∩ Wt(t). We appeal to Corollary 4, to conclude thatR0
contains a D-finite description ofH(F )(t1, . . . , tk).

The general case is proven with the known result [5] that given a D-finite description of a
functionF(x1, x2, . . . , xn), one can compute the D-finite description ofF(x1, . . . , xn−1,0),
for example, by first eliminating�xn , removing factors ofxn in the remaining polyno-



20 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

mials, and finally, settingxn = 0 in the equations, precisely the process outlined in
Algorithm 2. �

5. Example: k-uniform tableaux

Another family of combinatorial objects whose generating function can be resolved with
our method is a certain class of Young tableaux, namelyk-uniform Young tableaux.

For a partition� = (�1, . . . , �k) � n, a Young tableau of shape� is an arrayT = (Ti,j ) of
positive integersTi,j defined when 1� i�k and 1�j ��i . When a Young tableau is strictly
increasing on each of its rows and columns (Ti,j < Ti+1,j andTi,j < Ti,j+1, whenever this
makes sense) and then integersTi,j are all integers from 1 ton, it is called standard.

Standard Young tableaux are in direct correspondence with many different combinatorial
objects. For example, Stanley[34] has studied the link between standard tableaux and paths
in Young’s lattice, the lattice of partitions ordered by inclusion of diagrams. This link was
generalized by Gessel [10] to tableaux with repeated entries. Gessel remarks that such paths
have arisen in the work of Sundaram on the combinatorics of representations of symplectic
groups [36].

The weight of a tableau is� = (�1, . . . , �k) where�1 is the number of 1’s,�2 is the
number of 2’s, etc., in the tableau entries. Here we consider Young tableaux that are column
strictly increasing and row weakly increasing, and with weight� = 1k2k · · · nk: each entry
appearsk times. We call Young tableaux with these propertiesk-uniform. These correspond
to paths in Young’s lattice with steps of lengthk. The set ofk-uniform tableaux of sizekn
is also in bijection with symmetricn × n matrices with non-negative integer entries with
each row sum equal tok. Gessel notes that for fixedk, the generating series of the number
of k-uniform tableaux is D-finite [9]. Our method makes this effective.

Two observations from [21] are essential. First,[x�1
1 · · · x�k

k ]s� is the number of (column
strictly increasing, row weakly increasing) tableaux with weight�. Secondly,

∑
�

s� = h[e1 + e2] = exp


∑

i

p2
i /2i +

∑
i odd

pi/i


 ,

which is D-finite. Definey[k]n to be the number ofk-uniform tableaux of sizekn, and letYk

be the generating series of these numbers. The previous two observations imply

Yk(t) =
∑
n

y[k]n tk =
〈
exp


 k∑

i=1

p2
i /2i +

k∑
i odd

pi/i


,

∑
n

hkn t
n

〉
. (8)

This problem is well-suited to our methods since again we treat an exponential of a poly-
nomial in thepi ’s, with an explicit closed form in terms ofk for this polynomial.

Calculating the equations fork = 1,2,3,4 is fast with either Algorithm 1 or Algorithm 2.
The resulting differential equations are listed in Table2. Fork = 1,2 these results agree with
known results [14,34], and are the entries A000085, and A000985, respectively in Sloane’s
encyclopedia of integer sequences [32]. The first few values ofy

[k]
n are summarized in

Table 3. Fork = 3,4 these appear to be new.



F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 21

Table 2
Differential equation
2Y

′′
k
+ 
1Y

′
k
+ 
0Yk = 0 satisfied byYk(t), k = 1, . . . ,4

1-Uniform tableaux

0 −(t − 1)

1 1

2 0

2-Uniform tableaux

0 t2(t − 2)

1 −2(t − 1)2


2 0

3-Uniform tableaux

0 (t11 + t10 − 6t9 − 4t8 + 11t7 − 15t6 + 8t5 − 2t3 + 12t2 − 24t − 24)

1 −3t (t10 − 2t8 + 2t6 − 6t5 + 8t4 + 2t3 + 8t2 + 16t − 8)

2 9t3(−t2 − 2+ t + t4)

4-Uniform tableaux

i (see AppendixA)

Table 3
The number,y[k]n , of k-uniform tableaux of sizekn

k y
[k]
0 , y

[k]
1 , y

[k]
2 , . . .

1 1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568504

2 1, 1, 3, 11, 56, 348, 2578, 22054, 213798, 2313638, 27627434, 360646314,

5107177312, 77954299144

3 1, 1, 4, 23, 214, 2698, 44288, 902962, 22262244, 648446612, 21940389584,

849992734124

4 1, 1, 5, 42, 641, 14751, 478711, 20758650, 1158207312, 80758709676,

6877184737416, 701994697409136

Concerning the dual problem, where insteadn is fixed andk varies, the sequences(
y
[k]
n

)
k

appear, respectively, as A019298, A053493, and A053494 forn = 3,4,5. Stanley

[33, Proposition 4.6.21] reports that the generating functionsGn(x) = ∑
k y

[k]
n xk are ra-

tional with denominator of the form(1− x)s(1− x2)t wheresandt are positive integers.

6. Algorithm for scalar product: the general situation

So far, we have limited the scope of the algorithms to pairs of D-finite symmetric functions
where only one of the two functions depends on the variablest1, …, tk. While this is sufficient
in many applications, it is possible to modify Algorithm 1 in order to accommodate theti ’s



22 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

in both functions and thus make the full power of Theorem3 effective. While no additional
ideas are to be used, the description of the algorithm is more technical.

Algorithm 1 manipulates monomials� and reduces them modulo the idealsIF andIG

in order to determine equations of the form〈
F,

(
� − (� red4 I�

F )
) ·G〉 = 0 and

〈
F,

(
� − (� red4 IG)

) ·G〉 = 0, (9)

where on the left,� supposedly does not involve any of the�ti ’s. What makes the situation
of Algorithm 1 and the left-hand identity in (9) simple is the assumption thatF does not
depend ont, making the action ofWt on 〈F,G〉 act on the right-hand argument only. The
difficulty in generalizing lies in that now, the action of�ti onFmay be non-trivial and must
be considered in the differentiation rule for scalar products,

�ti · 〈F,G〉 = 〈
�ti · F,G

〉 + 〈
F, �ti ·G

〉
, (10)

which itself stems from the differentiation rule for usual products on the level of coefficients.
The idea is therefore to manipulate operators inthreesets of�ti ’s: one which acts on

the full scalar product〈F,G〉, and one for each of its components, acting directly on the
component. To facilitate the description of this situation, we denote the former by�ti , the
one acting on the left component by�1i , and the one acting on the right component�ri .
Using this notation, we wish to view Eq. (10) as

�ti = �1i + �ri . (11)

We thus modify Algorithm 1 by enlarging the family of monomials over which we iterate,
and use Eq. (11) to eliminate the�1i ’s before we begin Gaussian elimination. Here, we iterate

over monomials���
1�

	
r of the free commutative monoid[p, �p, �1, �r ] with � ∈ [p, �p] to

examine the following generalizations of Eq. (9):〈(
����

t − (����
t redGF )

) · F, �	
t ·G

〉
= 0 (12)

and 〈
��
t · F,

(
��	

t − (��	
t redGG)

)·G〉
= 0,

or, with a change of notation,(
����

1 − (����
1 redGF )

)
�	
r · 〈F,G〉 = 0

and

��
1

(
��	

r − (��	
r redGG)

)· 〈F,G〉 = 0.

Upon making use of Eq. (11) and applying adjunction to the first equation in Eq. (12), we get

a linear combination of terms of the form��′
t · 〈F, �′ ·G〉

with coefficients inK[t], where
�′ ∈ Nk, and�′ ∈ Wp,t (t). The algorithm proceeds as before by performing Gaussian
elimination overK(t) to eliminatep, �p, and�r . In our implementation, the monomial
order4 is DegRevLex(�r > �1 > �p > p). The method is summarized in Algorithm 3.



F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 23

Algorithm 3 (General scalar product).
Input: F ∈ K[t][[p]] andG ∈ K[t][[p]], both D-finite inp, t , given by D-finite descrip-

tions inWp,t (t).
Output: A D-finite description of〈F,G〉 inWt(t).

(1) DetermineaGröbnerbasisGG for the left idealannWp,t (t)Gwith respect toanymonomial
ordering4, as well as a Gröbner basisGF � for the right idealannWp,t F

� with respect
to the same ordering.

(2) B := {}.
(3) Iterate through each monomial� in p, �p, �1, �r in any order.

(a) �l := �|�1=�t ,�r=1.
(b) �F := �l − (�l red4 GF �).
(c) �r := �|�r=�t ,�1=1.
(d) �G := �r − (�r red4 GG).
(e) Introduce(�F |�1=�t−�r

)(�|p=�p=�1=1) and (�|p=�p=�r=1)�G into B and reduce so

as to eliminatep, �p, �r .
(f) Compute the dimension of the ideal generated byB ∩Wt(t). If this dimension is0,

break and outputB ∩Wt(t).

As in Algorithm 1, if m = 1, there is only one variablet, and the condition in (3f) is
simplified to:

If B contains a non-zero element P fromWt(t), break and return P.

The same remarks as those made after Algorithm 1 at the end of Section2 also apply
here.

7. Termination and correctness of Algorithms 1 and 3

7.1. Sketch of the proof

The common goal of Algorithms 1 and 3 is to find differential equations satisfied by
〈F,G〉, which is equivalent to non-zero elements inWt which annihilate〈F,G〉. Although
Algorithm 1 is a specialization of Algorithm 3, parts of the proof would become artificially
more involved if restricted to the simple case. We thus treat both algorithms simultaneously.
The discussion at the beginning of Section 2 has illustrated how to manipulate the annihi-
lators ofF andG to determine a combinationP �S + TQ ∈ Wt with P ∈ I�

F , Q ∈ IG,
S ∈ Wp(t), T ∈ Wp,t (t), which annihilates〈F,G〉. Not all of the elements in annWt

〈F,G〉
are of this form, however, as the following simple example illustrates. IfF = p1 − p2 and
G = p1 + p2/2, then〈F,G〉 = 1 − 1 = 0 and thus 1∈ annWt

〈F,G〉. However, it can
be established that 1 can not be written as a combination of the formP �S + TQ for those
F andG. Nonetheless, we show that the annihilating elements that can be written this way
form a non-trivial subideal of annWt

〈F,G〉, which we generate with the algorithms.
Although the problem of finding differential equations appears at first inherently analytic

in nature, we rephrase it algebraically into a question amenable to the theory of D-modules.



24 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

The adjunction properties of the scalar product are naturally accommodated by tensor
products. Specifically, the proof below centers around a certainWt -moduleSwhose elements
are tensors, and where, for example,

(i−1pi · u)⊗ v = (u · �pi
)⊗ v = u⊗ (�pi

· v),
which corresponds to the equivalence

〈
(i−1pi) · F,G

〉 = 〈
F, �i ·G

〉
. (See also Eqs. (13–16))

below.) On the other hand, the�1i and�ri that are involved in the description of Algorithm
3 really are the operators�ti ⊗ 1 and 1⊗ �ti acting onS, respectively, where 1’s denote
identity maps.

The moduleScan be expressed in terms of the ideal annWt (F
� ⊗ G), itself contained

in annWt
〈F,G〉. The former ideal is non-trivial and in fact, is sufficient to describe the

scalar product as holonomic, a property whose definition is recalled shortly and which
implies D-finiteness. In fact, we show that the algorithms calculate a Gröbner basis for
annWt(t)(F

� ⊗G), in other words a D-finite description of the scalar product〈F,G〉.
The main result is summarized by the following theorem.

Theorem 6. Suppose F and G are symmetric functions subject to the conditions of Algo-
rithm1 (resp. Algorithm3).Then,Algorithm1 (resp. Algorithm3)determines, in finite time,
a Gröbner basis for a non-zero D-finite ideal contained inannWt(t) 〈F,G〉.

The notion of holonomy to be used in the proof follows[2,7]. Introduce a filtration ofWt

by theK-vector spacesFd of all operators inWt of total degree at mostd in t, �t . These

spaces are finite-dimensional, of dimension
(
d+2k

2k

)
= O

(
d2k

)
asd tends to infinity. A

Wt -moduleM = ∑
i Wt · gi generated by a finite family of generatorsgi is holonomic

whenever theK-vector spaces
∑

i Fd · gi have dimension growing likeO
(
dk

)
. A function

of t that is an element of a holonomicWt -module is called holonomic. From the definition, it
is a basic result that a holonomic function is D-finite; the converse is a more difficult result to
be found in [38, Theorem 2.4 and Appendix 6]. Similar definitions apply toWp,t -modules,
with a dimension growth ofO

(
dk+n

)
in place ofO

(
dk

)
.

The discussion so far has not relied on the definition of the scalar product. Rather, remark
that Algorithms 1 and 3 are essentially parameterized by the adjunction property of the
scalar product of symmetric functions, and can easily be redefined and adapted to other
adjunctions. It suits our needs for the proof to consider adjoints for the usual scalar product
of functions,〈f |g〉 := ∫

f (x)g(x) dx. To avoid confusion, we notationally distinguish
〈f |g〉 from 〈F,G〉 for the two scalar products, as well as5 from � for the respective
adjunction operations.

Indeed, guided by existing results concerning the preservation of holonomy under oper-
ations involving the usual scalar product, we link the symmetric case to the usual one with
a map from one adjunction to the other. This reduction also demonstrates how algorithms
analogous to Algorithms 1 and 3 for other scalar products could be shown to terminate with
the correct output. (See Section 9.1.)

To make this comparison more intuitive, we could identify〈F,G〉 with the integral∫
Rn

L(
q �→ F(q1,2q2, . . . , nqn)

)
(p)G(p) dp1 · · · dpn,



F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 25

whereL is the modified Laplace transform

L(F )(p) =
∫

Rn
F (q)e−(p1q1+···+pnqn) dq,

which satisfies

L(
q �→ qiF (q)

)
(p) = −(�pi

◦ L)(F )(p).

Note, for example〈
i−1pi · F,G

〉
=

∫
Rn

L(
q �→ qiF (q1, . . . , nqn)

)
(p)G(p) dp1 · · · dpn

=−
∫

Rn
(�pi

◦ L)(F )(p) (�qi ·G)(p) dp1 · · · dpn

=
∫

Rn
L(

q �→ F(q1, . . . , nqn)
)
(p) (�qi ·G)(p) dp1 · · · dpn

= 〈
F, �pi

·G〉
. (13)

Formally, we must work on the level of abstract modules, however. This avoids situations
where the integral is not convergent or the Laplace transform is not defined as a function.

Thus, to prove Theorem6, we show Corollary 10 below which states that annWt

(
F � ⊗G

)
is a non-zero subideal of annWt

〈F,G〉 such that the quotientWt/annWt

(
F � ⊗G

)
is a

holonomic module. This is done in several stages. First, in Section 7.2, we defineS, the
algebraic structure in which our calculations take place, and prove that it is holonomic
by reducing the problem to the usual scalar product analogue, where similar results are
known. This analogue is detailed in Section 7.3. Next, in Section 7.4 we expressS as a
quotient. Corollary 10 follows from this discussion. Finally, to conclude that the algorithm
terminates, we relateS to the algorithm in more detail and prove in Section 7.5 that all of
the generators are determined in finite time. Together, these results prove Theorem 6 and
thus the correctness and termination of Algorithms 1 and 3.

7.2. The scalar product of symmetric functions

We now formally define theWt -moduleS. Begin withU = Wp,t · F andV = Wp,t ·G,
two holonomicWp,t -modules. We shall denote byU� the adjoint module ofU: asK-vector
spaces,U = U�, and a rightWp[t]-action is defined onU� by u · P = P � · u for any
u ∈ U� andP ∈ Wp[t], where the last operation is taken for the left structure ofU. SetS
as the tensor productU� ⊗Wp[t] V , which makes it aK[t]-module. This has the desirable
effect of encoding the scalar product adjunction relations: for allu ∈ U and allv ∈ V ,

(�pi
· u)⊗ v = (u · ��pi

)⊗ v = (u · i−1pi)⊗ v = u⊗ (i−1pi · v), (14)

(pi · u)⊗ v = (u · p�
i )⊗ v = (u · i�pi

)⊗ v = u⊗ (i�pi
· v), (15)

ti · (u⊗ v) = (ti · u)⊗ v = (u · ti )⊗ v = u⊗ (ti · v). (16)

To endowSwith aWt -module structure, let�ti act on a pure tensoru⊗ v by

�ti · (u⊗ v) = (�ti · u)⊗ v + u⊗ (�ti · v), (17)



26 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

and extend toSby K-linearity. In other words,�ti = �1i + �ri after defining�1i = �ti ⊗ 1
and�ri = 1⊗ �ti , where 1’s are identity maps.

Armed with this definition and Theorem7 (formally stated and proven independently
in Section 7.3), we prove thatS is holonomic. Theorem 7 is an analogous result for the
usual scalar product, corresponding adjunction, and corresponding adjoint moduleM5 of a
moduleM. It states that for holonomicM andN, M5 ⊗Wp[t] N is a holonomicWt -module
under the action of�ti given by (17). We shall appeal to this theorem with an appropriate
choice forM andN.

To determine the relationship between the two scalar products and make our choice forM
andN, we compare both adjunction operations. In the symmetric case, adjunction is defined
as the anti-automorphism� which mapspi to i�pi

and�pi
to i−1pi , for all i, and the usual

scalar product adjunction is defined as the anti-automorphism5 which maps�pi
to −�pi

,
and leaves thepi variables unchanged. One way to connect both adjunctions is to factor�
into the composition of three algebra morphisms:

(1) the automorphism� mapping(pi, �i ) to (ipi, i
−1�i ). This corresponds to the dilation

which maps a functionF to p �→ F(p1,2p2, . . . , npn);
(2) the automorphismF mapping(pi, �i ) to (−�i , pi) and named ‘Fourier transform’ in

D-module theory (see[2, proof of Theorem 3.1.8] or [7, p. 39]). Informally speaking,
this corresponds to mapping a functionF to its Laplace transformL(F );

(3) the anti-automorphism5 mapping(pi, �i ) to (pi,−�i ).

The important property to note is that each of these three maps preserves holonomy since
they preserve total degree, hence are filtration-preserving bijections. A direct calculation on
pi and�i verifies that� = 5 ◦F ◦ �, so that the composite� also is a holonomy-preserving
linear bijection. Thus, we introduce two holonomic modules,M = (F ◦�)(U) also denoted
UF◦�, andN = V , so as to appeal to Theorem7. One concludes that

S = U� ⊗Wp[t] V =
(
UF◦�)5 ⊗Wp[t] V = M5 ⊗Wp[t] N (18)

is a holonomicWt -module. After we have described the quotient structure ofS in Section
7.4, this information will be used to prove that annWt (F

� ⊗ G) is non-trivial and that the
quotient moduleWt/annWt (F

�⊗G) is holonomic, a fact we use to show that the algorithms
terminate.

7.3. Preservation of holonomy under the usual scalar product

In the previous section, we reduced the proof of the holonomy ofS = U� ⊗Wp[t] V to
an analogous result in terms of the usual scalar product, to be proven in this section: the
moduleT = M5 ⊗Wp[t] N is holonomic whenM andN are.

The following notion will be used in the proof: the integral of aWp,t -moduleP, denoted∫
P = ∫

P dp1 · · · dpn, is defined asP
/(∑

i �pi
· P )

. It is the image of composed maps:
the Fourier transformF , the inverse image�∗ under the projection� from Kn+m to Kn

defined by�(p, t) = t , and the inverse Fourier transform. Specifically we have,
∫
P =

F−1�∗F(P ). These maps preserve holonomy (see [2, Theorem 3.3.4] or [7, Theorem



F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 27

18.2.2 and Section 20.3]), so that the integral of a holonomicWp,t -module is a holonomic
Wt -module. (See also [2, Theorem 3.1.8].)

The moduleT fits naturally in between an existing holonomy-preserving surjection from
theWt -module

∫
M ⊗K[p,t] N to the space〈M|N〉. Factoring this map to pass through

T = M5 ⊗Wp[t] N yields∫
M ⊗K[p,t] N


−→ M5 ⊗Wp[t] N
�−→ 〈M|N〉 , (19)

where� surjectively mapsm⊗ n to 〈m|n〉, and
 is a naturalWt -linear surjection that we
are about to define in the course of the next theorem. After proving that the first module in
(19) is holonomic, the surjectivity of
 implies the holonomy ofT.

Theorem 7. Suppose that M and N are two holonomicWp,t -modules, and define T as
M5 ⊗Wp[t] N . Then, T is a holonomicWt -module under the action of�ti given by

�ti · (m⊗ n) = (�ti ·m)⊗ n+m⊗ (�ti · n).

Proof. First, we focus our attention on the module
∫
M ⊗K[p,t] N in (19). Consider the

Wp,t -moduleP := M ⊗K[p,t] N , with action of�pi
defined by�pi

· (m⊗ n) = (�pi
·m)⊗

n+m⊗ (�pi
· n), and action of�ti defined similarly. We can also write this as the inverse

image
∗ (M ⊗K N), where
 is the map fromKm+n toK(n+m)+(n+m) which sends(p, t) to
(p, t, p, t). The advantage of the second presentation is that the holonomy ofP is obtained
from the holonomic closure under inverse image under embeddings (see [2, Theorem 3.2.3]
or [7, Section 15.3 and Example 15.4.5]) and the holonomic closure under tensor product
overK [7, Corollary 13.4.2]. Therefore,

∫
P is also holonomic.

Next, we define aWt -linear surjection toT. Define a map fromM ×N toTwhich sends
(m, n) to m ⊗ n. This map isK[p, t]-balanced,K[p, t]-bilinear, and surjective. By the
universality of the tensor product, this induces a surjective map
 from P = M ⊗K[p,t] N
toT. Observe that each derivation�pi

mapsP into the kernel of
, as the following calculation
indicates:



(
�pi

· (m⊗ n)
)=


(
(�pi

·m)⊗ n+m⊗ (�pi
· n))

= (�pi
·m)⊗ n+m⊗ (�pi

· n)
=m⊗ (−�pi

· n)+m⊗ (�pi
· n) = 0.

In other words,
∑

i �pi
· P ⊂ ker
, and thus
 also induces a well-defined surjective

map from
∫
P to T. Any good filtration of

∫
P will induce a good filtration forT (see

[2, Proposition 1.11] or [7, Lemma 7.5.1]). Thus,T is finitely generated with dimension
bounded by that of

∫
P . Therefore,T is holonomic. �

7.4. The quotient structure of S

Subsequent developments to expressS as a quotient involve modules overWp,t and
ideals ofWp,t , rather thanWp,t (t). We therefore introduce the annihilatorsIF = annWp,t F

and IG = annWp,tG, to be used in place ofIF = annWp,t (t)F andIG = annWp,t (t)G,
respectively. Note thatIF = IF ∩ Wp,t andIF = K(t) ⊗K[t] IF , and similarly forG.



28 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

Finally, although adjunction has not been defined for�t , we use the notationW�
p,t to denote

Wp,t endowed with both a structure ofWt -module on the left and a structure ofWp[t]-
module on the right.

Proposition 8. The moduleS = (Wp,t · F)� ⊗Wp[t] (Wp,t ·G) is isomorphic to

(W�
p,t ⊗Wp[t] Wp,t )/(I

�
F ⊗Wp[t] Wp,t +W�

p,t ⊗Wp[t] IG).

Proof. TheWt -moduleS = U� ⊗Wp[t] V is also aW�
p,t ⊗Wp[t] Wp,t -module. As such, it

is generated byF � ⊗ G. Consider the two exact sequences of respectively right and left
Wp[t]-modules

0 → I�F
�→ W�

p,t

�→ U� → 0,

0 → IG
�→ Wp,t

�→ V → 0,

where�(P ) = F � · P , �(Q) = Q ·G, and� and� are inclusions. (Here,F andF � denote
the same element of the setU, but we writeF � when viewed as an element of the right
moduleU�, F when viewed as in the left moduleU.) We combine them to make a third
exact sequence:

ker(� ⊗ �) → W�
p,t ⊗Wp[t] Wp,t

�⊗�−→ S → 0,
P ⊗Q �−→ (F � · P)⊗ (Q ·G),

(20)

where, by Bourbaki[3, II.59, Proposition 6],

ker(� ⊗ �) = im(� ⊗ 1Wp,t )+ im(1W�
p,t

⊗ �) = I�F ⊗Wp[t] Wp,t +W�
p,t ⊗Wp[t] IG

asK[t]-modules. We conclude that, asWt -modules,

S " (W�
p,t ⊗Wp[t] Wp,t )/ ker(� ⊗ �)

" (W�
p,t ⊗Wp[t] Wp,t )/(I

�
F ⊗Wp[t] Wp,t +W�

p,t ⊗Wp[t] IG). �

To be more explicit, note that this isomorphism maps the class of 1⊗ 1 in the quotient
to F � ⊗G ∈ S. Remark also that, asWt -modules,

ker(� ⊗ �)= {
P ⊗Q ∈ W�

p,t ⊗Wp,t : (� ⊗ �)(P ⊗Q) = 0
}

= {
P ⊗Q ∈ W�

p,t ⊗Wp,t : (F � · P)⊗ (Q ·G) = 0
}

= {
P ⊗Q ∈ W�

p,t ⊗Wp,t : (P ⊗Q) · (F � ⊗G) = 0
}

= annW�
p,t⊗Wp [t]Wp,t

(F � ⊗G),

so that we also have

annW�
p,t⊗Wp [t]Wp,t

(F � ⊗G) = ker(� ⊗ �) = I�F ⊗Wp[t] Wp,t +W�
p,t ⊗Wp[t] IG.

(21)

Proposition 9. TheWt -moduleS′ = Wt · (F � ⊗G) is a submodule of S, isomorphic to

W ′
t

/ (
(I�F ⊗Wp[t] Wp,t +W�

p,t ⊗Wp[t] IG) ∩W ′
t

)
,



F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 29

whereW ′
t " Wt is the smallestK-subalgebra ofW�

p,t ⊗Wp[t] Wp,t generated byK[t],
1⊗�t1+�t1⊗1, . . . ,1⊗�tk +�tk ⊗1. In the simplified situation whenIF = �tWp,t +WtJF
for JF = annWpF , S′ is isomorphic to

Wt

/ (
(WtJ

�
F + IG) ∩Wt

)
.

We first prove this proposition, then in the next section we discuss how to connect the
description ofS′ above directly to the algorithm and how to apply it to show that the
algorithms terminate.

Proof. The annihilator ofF � ⊗G in W ′
t · (F � ⊗G)

annW ′
t
(F � ⊗G) = annW�

p,t⊗Wp [t]Wp,t
(F � ⊗G) ∩W ′

t .

In view of the action ofWt on S′ through the isomorphism betweenWt andW ′
t , we thus

have thatS′ is isomorphic toWt/annWt (F
� ⊗G), itself isomorphic to

W ′
t /annW ′

t
(F � ⊗G) = W ′

t /
(
annW�

p,t⊗Wp [t]Wp,t
(F � ⊗G) ∩W ′

t

)
.

Owing to (21), this proves the general quotient expression forS′ in the proposition statement.
Now, to prove the formula in the simpler case, observe that whenIF = �tWp,t +WtJF ,

I�F ⊗Wp[t] Wp,t = �tW�
p,t ⊗Wp[t] Wp,t +WtJ

�
F ⊗Wp[t] Wp,t

= �tWt ⊗K[t] Wp,t +Wt ⊗K[t] WtJ
�
F

whileW�
p,t ⊗Wp[t] IG = Wt ⊗K[t] IG, whence the relation ker(�⊗�) = �tWt ⊗K[t]Wp,t +

Wt ⊗K[t] (WtJ
�
F + IG). SinceW�

p,t ⊗Wp[t] Wp,t = Wt ⊗K[t] Wp,t , we obtain

S " Wp,t/(WtJ
�
F + IG),

as (Wt ⊗K[t] Wp,t )/ ker(� ⊗ �) " (K[t] ⊗K[t] Wp,t )/
(
K[t] ⊗K[t] (WtJ

�
F + IG)

) "
Wp,t/(WtJ

�
F + IG). Following these isomorphisms,W ′

t can be identified as the copy of
Wt included inWp,t in the last quotient above. Therefore, the submoduleS′ of Sis isomor-
phic to the quotient announced in the proposition statement.�

Corollary 10. The idealannWt (F
� ⊗G) is

(1) isomorphic to(I�F ⊗Wp[t] Wp,t +W�
p,t ⊗Wp[t] IG) ∩W ′

t as aWt -module;
(2) anon-trivial ideal contained inannWt

〈F,G〉andsuch that thequotientWt/annWt (F
�⊗

G) " S′ is holonomic.

Proof. From (21),

annW ′
t
(F � ⊗G)=

(
annW�

p,t⊗Wp [t]Wp,t
(F � ⊗G)

)
∩W ′

t

=
(
I�F ⊗Wp[t] Wp,t +W�

p,t ⊗Wp[t] IG
)
∩W ′

t , (22)

and we have shown (1) in the corollary statement. TheWt -moduleS′ " Wt/annWt (F
�⊗G)

is a holonomicWt -module, as it is a submodule of the holonomicWt -moduleS. Now since



30 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

Wt is not holonomic, annWt (F
� ⊗G) must be non-trivial by a simple dimension argument.

Finally, we recall that this non-trivial ideal is contained in annWt
〈F,G〉, since there is a

surjection fromS′ to Wt/annWt
〈F,G〉 given by� : (u⊗ v) �→ 〈u, v〉. This proves (2) in

the corollary statement.�

7.5. Termination

We now link the modulesSandS′ to the algorithms and prove their termination. The
termination of Algorithm 3 is more technical to prove than that of Algorithm 1 since�ti can
act separately onF andG. Thus, for ease of presentation, we consider Algorithms 1 and 3
in turn, to show that they eventually generate a Gröbner basis for annWt(t)(F

� ⊗G).

7.5.1. Termination of Algorithm 1
The basic idea of Algorithm 1 is to compute filtrations ofIF andIG independently and

incrementally and to recombine them at each step. The algorithm terminates when condition
(3e) in the algorithm description is satisfied. We show that the algorithm will satisfy this
condition by eventually producing a Gröbner basis for annWt(t)(F

� ⊗G). This subideal
describesF � ⊗G and〈F,G〉 as D-finite.

Proof (Theorem 6, Algorithm 1). Algorithm 1 places a constraint onF that allows us to
take advantage of the simplerWt -structure ofU = Wp,t ·F : since each�ti ·F is 0, we have
U = K[t] ⊗K (Wp ·F) andIF = �tWp,t +WtJF . Taking the intersection withW ′

t is then
far more transparent: from the previous section, we obtain the following simplification of
Eq. (22):

annWt (F
� ⊗G) = (

J �
FWt + IG

) ∩Wt. (23)

Considering the monoid of monomials generated byp, �p, �t , ordered by the monomial
order4 specified by the algorithm, we denote byV� the filtration

⊕
	4� K(t)	.

Assume that Algorithm 1 fails to terminate on some inputF andG. For any�, Algorithm
1 thus eventually reaches a value for the main loop index� such that all the monomials that
have been considered in the algorithm span a vector space containingV�. After Step (3d)
in the main loop for this value� of the loop index,B generates a vector space containing

L� := (
J �
FWt(t) ∩ V�

) + (IG ∩ V�
)
.

By our choice of elimination term order,B ∩Wt(t) consists of generators of a vector space
which contains the intersectionL� ∩Wt(t).

Next, for each	,
(
J �
FWt(t) + IG

) ∩ V	 is a subspace ofL� for some�. Indeed, since
V	 is finite dimensional, so is the intersection under consideration. Let us introduce a basis
b1, . . . , bd of it. Eachbi can be written in the formfi + gi for fi ∈ I�

F = J �
FWt(t) and

gi ∈ IG, so that, provided� = max{maxi degfi,maxi deggi}, the intersection

(
J �
FWt(t)+ IG

) ∩ V	 =
d⊕

i=1

K(t)(fi + gi)



F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 31

is a subspace of

d∑
i=1

K(t)fi +
d∑

i=1

K(t)gi ⊂
(
Wt(t)J

�
F ∩ V�

) + (IG ∩ V�
) = L�.

Since annWt(t)(F
� ⊗G) is finitely generated by noetherianity ofWt(t), we can choose a

finite set of generators for it, and set	 to their maximal leading monomial. Consequently,
the chosen generators are in

annWt(t)(F
� ⊗G) ∩ V	 =

(
Wt(t)J

�
F + IG

) ∩Wt(t) ∩ V	.

By the reasoning above, the latter is a subspace ofL� for some�, and when the loop
index reaches a sufficiently high�, annWt(t)(F

� ⊗G) is a subideal of the ideal generated in
Wt(t) by B ∩Wt(t). Since, by Corollary10,Wt/annWt (F

� ⊗G) is a holonomic module,
annWt(t)(F

�⊗G) is of dimension 0, and condition (3e) is satisfied. The algorithm terminates,
a contradiction to our assumption.�

A limitation of the algorithm is that we cannot predict in advance how many monomials
must be tested, and hence cannot estimate the running time.

7.5.2. Termination of Algorithm 3
The termination of Algorithm 3 can be proved similarly, but we must use greater care

when treating the�ti .

Proof (Theorem 6, Algorithm 3). Since there is no adjoint action for�ti , we consider
occurrences of�ti in the left argument of the scalar product differently from those on the
right side. This is modelled inSby tensoring overWp[t], where�t is absent and thus,�ti ⊗1
differs from 1⊗ �ti . Both still obey the same commutation law withti as�ti . Denote the
former by�1i and the latter by�ri .

Having distinguished these two cases, we rewrite several of the important elements from
the previous proof using this new notation. For example,

W�
p,t ⊗Wp[t] Wp,t =K

〈
p, t, �p, �1, �r ; [�pi

, pj ] = [�1i , tj ] = [�ri , tj ] = �i,j ,

[pi, pj ] = [pi, tj ] = [ti , tj ] = [�1i , pj ] = [�ri , pj ]
= [�pi

, tj ] = 0
〉
,

and its subalgebraW ′
t is generated byK[t], �11 + �r1, …, �1k + �rk . We can also rewrite

I�F ⊗Wp[t] Wp,t +W�
p,t ⊗Wp[t] IG in the formI�F

∣∣
�t=�1

K[�r ] +K[�1]IG
∣∣
�t=�r

. Algorithm

3 actually computes with coefficients that are rational functions int, and so with elements
of I�

F

∣∣
�t=�1

K[�r ] +K[�1]IG

∣∣
�t=�r

.

In order to endowW�
p,t ⊗Wp[t] Wp,t with a filtration, let us extend the ordering4 to

monomials inp, �p, �1, �r by considering any ordering which, after setting�1 = �t , �r =
1 or�r = �t , �1 = 1, respectively, induces the ordering4. We denote the extended ordering
by 4 as well. Then, we letU� denote the filtration

⊕
	4� K(t)� for �, 	 ranging over the

monomials in the variablesp, �p, �r , �1. Turning our attention toW ′
t (t), letV ′

� be the image



32 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

of theV� of the previous section, under the same transformation which takesWt(t) toW ′
t (t),

that is,

V ′
� =

⊕
pa�b

p�c
t4�

K(t)pa�bp
(
�1 + �r

)c
.

For each�, there is�′ such thatV ′
� ⊂ U�′ .

Assume that Algorithm 3 fails to terminate on some inputF andG. Since the main loop
enumerates all monomials inp, �p, �1, �r in some order, for any� there exists a value of the
index loop� such that when the loop reaches it, all monomials that have been enumerated
span a vector space containingU�. After the algorithm has introduced (variants of)�F and
�G at Step (3e) for this value of�, let us callV� the vector space generated by the setB.
Setting�1 = �t − �r mapsV� to a vector space which contains

H� :=
(
I�
F

∣∣
�t=�1

K[�r ]
)
∩ U� +

(
K[�1]IG

∣∣
�t=�r

)
∩ U�.

We use this fact to conclude termination.
At this point we show that for each	, the vector spaceX ∩ V ′

	 where

X = I�
F ⊗Wp(t) Wp,t (t) +Wp,t (t)

� ⊗Wp(t) IG

is a subspace ofH� for some�. Indeed, choose	′ such thatV ′
	 ⊂ U	′ , so thatX ∩ V ′

	 ⊂
X ∩U	′ . The latter intersection is finite-dimensional, sinceU	′ is so. Suppose it has for basis
b1, . . . , bd , with eachbi of the formbi = firi + ligi , wherefi ∈ I�

F

∣∣
�t=�1

, gi ∈ IG

∣∣
�t=�r

,

ri ∈ K[�r ], andli ∈ K[�1], and set� = max{maxi degfiri,maxi degligi}, where here
deg extracts the leading monomial. Then,

X ∩ V ′
� ⊂

d⊕
i=1

K(t)(firi + ligi) ⊂
d∑

i=1

K(t)firi +
d∑

i=1

K(t)ligi ⊂ H�.

By noetherianity, we can choose a finite set of generators for annWt(t)(F
�⊗G), and set	 to

their maximal leading monomial. The generators are thus elements of annWt(t)(F
�⊗G)∩V	,

which is isomorphic to annW ′
t (t)

(F � ⊗ G) ∩ V ′
	. By (22) the latter is alsoX ∩ V ′

	, and, as
explained above, there is� such that this is a subspace ofH�.

By our earlier loop invariant, the same generators, after setting�1 = �t−�r , are contained
in the space spanned byBwhen the loop index reaches a sufficiently high�′. Thus, it suffices
to run the algorithm until this� and generators of annWt (F

� ⊗G) will be contained inB.
At this point the termination conditions are satisfied, and the algorithm terminates.�

8. Asymptotic estimates

We now illustrate how the differential equations computed by our algorithms may be
exploited in order to derive asymptotic estimates of combinatorial quantities.



F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 33

8.1. Outline of the method

A very general principle in asymptotic analysis is that the asymptotic behaviour of a
sequence is governed by the local behavior of its generating series at its singularity of
smallest modulus, see for instance[28, Section 10]. Our approach is thus based on applying
the classical analysis of linear differential equations as presented in textbooks such as [17,43]
in order to derive asymptotic estimates for the coefficients. Moreover, large parts of this
analysis can be automated thanks to the algorithms described in [23,39,42], many of which
have been implemented in computer algebra systems.6 An alternative approach based on
Birkhoff’s work can be found in [44].

In the special case of solutions of linear differential equations, the possible location of
singularities is restricted to the roots of the coefficient of the highest derivative. Then, the
analysis depends on the nature of the singularity. The classical theory distinguishes two
kinds of singular points: regular singular points, where the solutions have an algebraic–
logarithmic behavior; and irregular singular points where the solutions have an essential
singularity of the type exponential of a rational power. Accordingly, the asymptotic behavior
of the coefficients is deduced either by singularity analysis [8,18], or by the saddle-point
method [16,45]; both approaches are implemented in thealgolib library.

This asymptotic analysis of D-finite generating series extends to the divergent case.
Indeed, the coefficientsun of a divergent D-finite series grow at most like a power ofn!with
a rational exponentp/q which can be computed (see example below). Then one constructs
an auxiliary differential equation satisfied by the convergent generating series ofun/(n(n−
q)(n− 2q) · · · r)p (wherer denotes the remainder of the division ofn by q), to which the
previous method applies. This construction is achieved thanks to the closure properties of
D-finite series, by multiplyingun with the solution of the recurrence(n + q)pvn+q = vn,
which, up to a constant, grows liken!p/qnp(q−1)/2q . This operation is implemented in the
gfun package.

8.2. k-UniformYoung tableaux

We now illustrate this method in the special case of thek-uniform Young tableaux of
Section 5. We treat in detail the casek = 3; other cases are similar. To the best of our
knowledge, these asymptotic estimates are new.

We start from the differential equation fork = 3 to be found in Table 2. This is a second-
order differential equation and its leading coefficient vanishes at the origin. This indicates
a possible singularity ofY3(t) at the origin, which would be reflected by the divergence of
this series. Indeed, from this differential equation, a linear recurrence is readily computed
for the coefficientsun := y

[3]
n :

un + un+1 − (3n+ 12)un+2 − 4un+3 + (6n+ 35)un+4 − 15un+5

+(9n2 + 93n+ 242)un+6 + (18n+ 126)un+7 − (9n2 + 159n+ 698)un+8

+(9n2 + 147n+ 606)un+9 − (18n2 + 366n+ 1884)un+10

−(48n+ 552)un+11 + (24n+ 288)un+12 = 0.

6 In Maple, this functionality is provided byDEtools[formal_sol] .



34 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

8.2.1. Divergence
From this recurrence it is easy to compute a couple hundred coefficients and observe

their rapid growth. Simple experiments indicate that the growth of these coefficients is
of order

√
n!. That this growth is the exact exponent ofn! in the behavior follows upon

considering the degrees of the coefficients in the recurrence: the terms of order 12 and 11
have coefficients of degree 1, while the term of order 10 has a coefficient of degree 2 (the
maximal degree). Thus, up to first order, the behavior is dictated by

24nun+12 = 18n2un+10,

which leads to a growth of order(3
4)

n/2n!1/2. In order to derive a more precise estimate,
we compute a linear differential equation satisfied by theconvergentgenerating function of
y
[3]
n vn wherevn satisfiesvn+2 = vn/(n+ 2). This differential equation is obtained by first

computing a linear recurrence fory[3]n vn, which exists thanks to the closure properties of
linear recurrent sequences. This closure operation produces a linear recurrence of order 24
with coefficients of degree 29. From there we obtain a linear differential equation of order
29 with coefficients of degree 37, which we now analyze.

8.2.2. Singular behavior
The leading coefficient of the previous equation ist27(3t2 − 4), up to a constant factor.

This reveals a dominant singularity at� = 2/
√

3, thus confirming the growth order(3/4)n/2

expected from the previous stage.7 The next step consists in analyzing the behavior of our
convergent generating series in the neighborhood of�. A local analysis of the differential
equation reveals that all solutions of this equation of order 29 behave like

g(u)+ �
exp

(
3
4u

)
√
u

(
1− 145

144
u− 8591

41472
u2 +O

(
u3

))
, 1− z/� = u → 0,

whereg is an analytic function at 0, and� is a constant depending on the solution.

8.2.3. Asymptotic estimate
This behavior is typical of an irregular singular point and can thus be dealt with using

the saddle-point method. Putting everything together, we finally obtain

y[3]n = C3n!1/2

(√
3

2

)n
exp

√
3n

n3/4
(1+O(1/n)),

for some constantC3, and where theO-term hides the beginning of an expansion in de-
scending powers ofn that could be computed with the same method.

The constantC3 can then be approximated numerically by using Romberg’s acceleration
method, adapted to powers ofn−1/2, and we get

C3 ≈ 0.377200.

7 We could also have incorporated this factor in the recurrence forvn.



F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 35

Table 4
Asymptotic number ofk-uniform Young tableaux

1 C1
exp

√
n√

n! n1/4
C1 ≈ 0.347829

2 C2
exp

√
2n√

n
C2 ≈ 0.282094

3 C3
√
n!

(√
3

2

)n
exp

√
3n

n3/4
C3 ≈ 0.377200

4 C4n!
(

2

3

)n exp 2
√
n

n
C4 ≈ 0.831565

8.2.4. Other values of k
The computation of the asymptotic behavior ofy

[k]
n for other values ofk is completely

similar, provided one has computed the differential equation. We summarize our results in
Table4. This serves to illustrate a typical use of our techniques in experimental mathematics
to obtain conjectures such as the following.

Conjecture 11. The numbery[k]n of k-uniformYoung tableaux of size n behaves asymptot-
ically according to

y[k]n ∼ 1√
2

(
ek−2

2�

)k/4

n!k/2−1
(
kk/2

k!
)n

exp(
√
kn)

nk/4
, n → ∞.

This conjecture is proved fork = 1 and 2: the constant is obtained from a closed form
solution of the differential equation. Fork = 3 and 4, only the value of the constant is
conjectural. The proof of the general case of the conjecture requires techniques such as
those of[11,25], which fall outside of the scope of this article.

8.3. Conclusion

The main advantages of our method are its general applicability, its ability to produce
full asymptotic expansions up tooneconstant factor, the availability of computer algebra
programs that automate many of its steps. The price to pay for this generality is that the
method can only produce numerical estimates for the constant factor. In some special cases,
specific approaches often exist that provide this constant term.

9. Conclusions and directions for future work

9.1. Applying the method to other scalar products

Let us note that the method of this article can be applied in the case of other scalar
products, provided that the corresponding adjunction� (no longer denoting the symmetric



36 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

adjunction) is a linear involution that preserves the total degree (inp, �p) of the differential
operators. In effect, one should simply setM = (U�)5 andN = V to obtain a suitable
analogue to (18) and prove the holonomy, thus D-finiteness, of the scalar product:M is
holonomic if and only ifU is. Since the statement and proof of Algorithms 1 and 3 do
not make use of any other special property of� than being a degree-preserving involution,
correctness of the algorithms can then be established along the same lines as for the case
of the scalar product of symmetric functions.

We use this idea in the next two sections by introducing various scalar products given by
an adjunction relation involving a formal parameter.

9.2. Calculating the Kronecker product of symmetric functions

Another symmetric function operation, closely related to the scalar product, is the Kro-
necker product, also known as the tensor product. One can define it on the power basis as
p� ∗ p� = 〈

p�, p�
〉
p�. Gessel showed in [9] that given two D-finite symmetric seriesF

andG, the Kronecker productF ∗ G is also a D-finite symmetric series. Algorithm 1 can
be used to make this fact effective via the following observation:

p� ∗ p� =
〈
p�t

�, p�

〉 ∣∣
ti=pi

.

More precisely, we rewrite a Kronecker product as a scalar product by multiplying eachpi

in F by ti . In the system which results we make the substitutionti = pi and�ti = �pi
.

We formalize this in the following algorithm, which merely calls Algorithm 1 on modified
input systems.

Algorithm 4 (Kronecker product).
Input: Symmetric functionsF ∈ K[[p]] andG ∈ K[[p]], both D-finite in p, each given

by a D-finite description inWp.
Output: A D-finite description ofF ∗G in Wt .

(1) Call G the system defining G and setG′ = {t1�t1 − p1�p1, . . . , tn�tn − pn�pn}.
(a) For each element inG, replacepi with tipi , �pi

with t−1
i �pi

and add toG′;
(b) For each element inG, replacepi with tipi , �pi

with p−1
i �ti , clear denominators,

and add toG′;
(2) Follow the steps of Algorithm1 on the input system for F and the modified systemG′

for G.
(3) In the output of Algorithm1make the substitutionti = pi and�ti = �pi

and return
this value.

Many interesting problems which use this operation require an infinite number ofpn, and
are thus at first glance seemingly unsuitable for direct application of our algorithms. How-
ever, applying our algorithms for several truncations of a combinatorial problem can serve
as a means to generate information upon which reasonable conjectures can be formulated.
For example, Eq. (25) below was initially conjectured after a clear pattern emerged from a
sequence of appeals to Algorithm 4. For each of these, we render the problem applicable
by setting mostpn’s to 0. In some cases, notably symmetric series arising from plethysms,



F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 37

there is sufficient symmetry and structure which can be exploited to verify these guesses
by applying one of Algorithm 4 to well chosen subproblems. That is, in certain cases, such
as the example that follows, the Kronecker product of two functions each with an infinite
number ofpn variables can be reduced to a finite number of symbolic calculations.

For example, if two symmetric seriesF andG can be expressed, respectively, in the form

F(p1, p2, . . .) =
∏
n�1

fn(pn) and G(p1, p2, . . .) =
∏
n�1

gn(pn),

for functionsfn, gn, then one can easily deduce that

F ∗G =
∏
n�1

fn(pn) ∗ gn(pn). (24)

Remark that series which arise as plethyms of the formh[u] or e[u], whereu can be written
as a sum

∑
n un(pn), for some functionsun, are precisely of this form. For example, we

can use this fact to compute the Kronecker product of the sum of all Schur functions

F(p1, p2, . . .) =
∑
�

s� = h[p1 + 1/2p2
1 − 1/2p2] = exp

(∑
i

p2
i

2i
+ p2i−1

2i − 1

)
,

and itself. Due to the patterns present, we can reduce the calculation of the entire product
to two symbolic calculations. More precisely, in order to determine a system of differential
equations satisfied byG = F ∗ F we consider only the even and odd cases, and set

f2n = exp(p2
2n/4n) and f2n−1 = exp((p2

2n−1/2+ p2n−1)/(2n− 1)).

All of the functionsg2n = f2n∗f2n are obtained from a single computation by our Algorithm
4, adapted to handle a formal parameter. This modification is of the same nature of that
described in Section 9.1. Here we introduce the scalar product given by the adjunction
formulap� = n� for a formal parameter nfrom the fieldK. Thus computing exp(p2/4n)∗
exp(p2/4n) with this variant algorithm results in a first-order operator inp and�, which,
once interpreted back in terms ofpn becomes

(1− p2
n)

�gn(pn)

�pn

+ pngn(pn) = 0, for evenn.

A second calculation forg2n−1 = f2n−1 ∗ f2n−1 results in

n(1+ pn)(1− pn)
2�gn(pn)

�pn

−
(
1+ (n+ 1)pn − np2

n

)
gn(pn) = 0, for oddn.

These linear equations are satisfied respectively by the functions

g2n =
(
1− p2

2n

)−1/2
and

g2n−1 = exp

(
p2n−1

(2n− 1)(1− p2n−1)

) (
1− p2

2n−1

)−1/2
.



38 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

Applying Eq. (24) above, we get the following result.

Proposition 12. The Kronecker product of the sum of the Schur functions with itself is
∑

�

s�


 ∗


∑

�

s�


 = exp


∑

n�1

p2n−1

(2n− 1)(1− p2n−1)





 ∏

n�1

(
1− p2

n

)


−1/2

.

(25)

9.3. A q-analogue

A q-calculus parameter can be incorporated in symmetric functions in several ways.
Apart from the scalar product defined by (1), several other ones are of interest in relation

to symmetric functions, notably the following two, which lead to the definitions of Hall and
Macdonald polynomials, respectively:

〈
p�, p�

〉 = z���,�

l(�)∏
i=1

(1− t�i ) and
〈
p�, p�

〉 = z���,�

l(�)∏
i=1

(1− t�i )

1− q�i
,

where1(�) is the lengthk of a partition� = (�1, . . . , �k). The same approach as in this
article works in this setting and our Maple code has been adapted very easily.8

As a related problem, the ring homomorphism�q : � → K[q][[t]] defined as

�q
(
f (x1, x2, . . .)

) = f
(
(1− q)t, (1− q)qt, (1− q)q2t, . . .

)
is useful for studying partitions and for counting permutations[34]. This is one possibility
for aq-analogue to the map� from Theorem 1 (named exponential specialization in [34]),
since limq→1 �q(F ) = �(F )(x). An algorithm to compute�q , possibly mapping differential
equation toDq equation should be of interest.

9.4. Other conditions for D-finite closure

Remark that Theorem 3 requires thatg be a function of only a finite number ofpn. The
necessity of this condition is evident in the following example. Find a sequencecn such that∑

cnt
n is not D-finite. However, according to the given definition of D-finite symmetric

series,
∑

n cnpn is D-finite, as is
∑

n pnt
n/n. The series

〈∑
n cnpn,

∑
n pnt

n/n
〉 = ∑

n cnt
n

is not D-finite by construction.
On the other hand, the condition is not essential. We have that〈H(1),H(t)〉 = 1

1−t
,

which is D-finite despiteH being a function ofall pn. Perhaps a closer investigation on the
level of modules could reveal a refined condition.

8 This variant is also available athttp://algo.inria.fr/mishna .

http://algo.inria.fr/mishna


F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 39

Acknowledgments

The authors wish to thank François Bergeron for promoting D-finite symmetric functions
as an interesting area of study. M.M. also extends gratitude towards NSERC for funding,
and to Projet Algo, Inria, for their generous invitations during which much of the work
was completed. Finally, we thank the anonymous referees who read the work carefully and
offered many useful suggestion to improve the clarity.

Appendix A. 4-Uniform Young tableaux

The differential equation satisfied byY4(t) is

64t4(t − 2)2(t + 1)4�(t)Y (3)
4 (t)− 16t2(t − 2)(t + 1)2�(t)Y (2)

4 (t)

+4	(t)Y ′
4(t)− �(t)Y4(t) = 0

where�(t), �(t), 	(t), �(t) are irreducible polynomials given by

�(t)= t14 − t13 − 5t12 − 7t11 + 6t10 + 35t9 + 39t7 − 50t6 − 162t5 − 92t4

+228t3 + 424t2 + 248t + 48,

�(t)= t29 − 3t28 − 16t27 + 24t26 + 147t25 + 14t24 − 770t23 − 666t22 + 1416t21

+3567t20 − 916t19 − 16598t18 + 17766t17 + 40678t16 − 102556t15

−53272t14 + 390656t13 + 364080t12 − 707936t11 − 1406336t10

−552544t9 + 1397664t8 + 2020864t7 + 176256t6 − 916864t5

+304896t4 + 1283328t3 + 877056t2 + 253440t + 27648,

	(t)= t28 − t27 − 14t26 − 20t25 + 111t24 + 278t23 − 196t22 − 1216t21

−1384t20 + 2765t19 + 3170t18 − 3400t17 + 12140t16 + 15588t15

−70280t14 − 108946t13 + 121796t12 + 349056t11

+116992t10 − 481704t9 − 706320t8 + 3040t7 + 581184t6 + 158688t5

−297408t4 − 173952t3 + 22272t2 + 35712t + 6912,

�(t)= 2t21 − 3t20 − 17t19 − 2t18 + 74t17 + 105t16 − 108t15 − 172t14 − 252t13

+432t12 − 667t11 + 1500t10 + 7336t9 − 3772t8 − 23056t7 − 20584t6

+15504t5 + 38160t4 + 17904t3 − 4512t2 − 5568t − 1152.

Appendix B. Sample maple session for 3-regular graph computation

The following Maple session indicates the user-level routines required to program Algo-
rithm 2. It requires the libraryalgolib , which is available athttp:algo.inria.fr/
packages/ .

http:algo.inria.fr/


40 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

# Load the packages.
with(Ore_algebra): with(Mgfun): with (Groebner):
# Determine the DE satisfied by the generating function
# for 3-regular graphs.
k:=3: Fp:= exp(1/2*p1ˆ2-1/4*p2ˆ2-1/2*p2+p3ˆ2/6):
Gp:=exp(1/6*t3*p1ˆ3+1/2*t2*p1ˆ2+t1*p1+1/2*t3*p2*p1

+1/2*t2*p2+1/3*t3*p3):
# Define the variables.
vars:= seq(p||i, i=1..k): dvars:= seq(d||i, i=1..k):
tvars:= seq(t||i, i=1..k): dtvars:= seq(dt||i, i=1..k):

# Define the algebra.
A:= diff_algebra(seq([dvars[i], vars[i]], i=1..k),
seq([dtvars[i], tvars[i]], i=1..k), polynom={vars}):
At:= diff_algebra(seq([dtvars[i], tvars[i]], i=1..k)):

# Define the monomial orders.
T[g]:=termorder(A, lexdeg([dvars, vars],[dtvars])):
T[f]:=termorder(A,tdeg(vars, dvars, dtvars)):

# Define the systems.
sys[g]:=dfinite_expr_to_sys(Gp, F(seq(p||i::diff, i=1..k),

seq(t||i::diff, i=1..k))):
newsys[g]:=subs(

[seq(diff(F(vars,tvars),vars[i])=dvars[i],i=1..k),
seq(diff(F(vars, tvars), tvars[i])=dtvars[i], i=1..k),
F(vars,tvars)=1], sys[g]):

# Find the Groebner basis for G.
GB[g]:=gbasis(newsys[g],T[g]);

# Do the same for F.
sys[f]:=dfinite_expr_to_sys(Fp, F(seq(p||i::diff, i=1..k))):
newsys[f]:=subs([seq(diff(F(vars),vars[i])=dvars[i],i=1..k),
F(vars)=1],sys[f]);
GB[f]:=gbasis(newsys[f],T[f]);

# Define the adjoint and reduction procedures.
star:= x->subs(

[seq(d||i=1/i*p||i, i=1..k),seq(p||i=d||i*i, i=1..k)],x):
rdc[f]:=x->star(star(x)-map(normalf, star(x), GB[f], T[f]));
rdc[g] := x->normalf(x, GB[g], T[g]);



F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 41

# Reduce the Groebner basis of F.
for pol in GB[f] do m[pol]:=rdc[g](pol) end do:

# Small optimization: we will always try to reduce
# with respect to a linear term when possible.
lpol:=[seq(m[i],i=subsop(1=NULL,GB[f])),m[GB[f][1]]]:

for indelim from k-1 by -1 to 1 do
# eliminate dt.indelim
for j from 2 to nops(lpol) do

newpol[j]:=skew_elim(lpol[j],lpol[1],dt||indelim,At)
end do;
# set t.indelim = 0
lpol:=map(primpart,subs(t||indelim=0,

[seq(newpol[j],j=2..nops(lpol))]),[dtvars])
end do:

# The only term left is the correct one.
ode:=op(lpol):
# Convert to recurrence.
REC:=diffeqtorec(

{applyopr(ode, F(t||k), At), F(0)=1}, F(t||k), a(n)):
# Calculate some terms.
GRAPH:=rectoproc(REC, a(n),list)(20):
[seq(GRAPH(10)[i]*(i-1)!,i=1..20)];

[1,0,0,0,1,0,70,0,19355,0,11180820,0,11555272575,0,
19506631814670,0,50262958713792825,0,
187747837889699887800,0]

References

[1] F. Bergeron, G. Labelle, P. Leroux, Combinatorial Species and Tree-like Structures, Cambridge University
Press, Cambridge, 1998.

[2] A. Borel, P.-P. Grivel, B. Kaup, A. Haefliger, B. Malgrange, F. Ehlers, AlgebraicD-modules, Academic Press
Inc., Boston, MA, 1987.

[3] N. Bourbaki, Éléments de mathématique. Algèbre, Hermann, Paris, 1970 (Chapitres 1 à 3).
[4] F. Chyzak, Fonctions holonomes en calcul formel, Thèse universitaire, École polytechnique, 1998; INRIA,

TU 0531. 227pp.
[5] F. Chyzak, B. Salvy, Non-commutative elimination in Ore algebras proves multivariate identities, J. Symbolic

Comput. 26 (2) (1998) 187–227.
[6] L. Comtet, The art of finite and infinite expansions, Advanced Combinatorics, enlarged ed., D. Reidel

Publishing Co., Dordrecht, 1974.
[7] S.C. Coutinho, A Primer of AlgebraicD-modules, Cambridge University Press, Cambridge, 1995.
[8] P. Flajolet, A.M. Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete Math. 3 (2) (1990)

216–240.



42 F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43

[9] I.M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (2) (1990) 257–285.
[10] I.M. Gessel, Counting paths in Young’s lattice, J. Statist. Plann. Inference 34 (1) (1993) 125–134.
[11] C.D. Godsil, B.D. McKay, Asymptotic enumeration of Latin rectangles, J. Combin. Theory, B 48 (1990)

19–44.
[12] I.P. Goulden, D.M. Jackson, Combinatorial Enumeration, Wiley, New York, 1983.
[13] I.P. Goulden, D.M. Jackson, J.W. Reilly, The Hammond series of a symmetric function and its application to

P-recursiveness, SIAM J. Algebraic Discrete Methods 4 (2) (1983) 179–193.
[14] H. Gupta, Enumeration of symmetric matrices, Duke Math. J. 35 (1968) 653–659.
[15] J. Hammond, On the use of certain differential operators in the theory of equations, Proc. London Math. Soc.

14 (1883) 119–129.
[16] W.K. Hayman, A generalization of Stirling’s formula, J. Reine Angew. Math. 196 (1956) 67–95.
[17] E.L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1956 (reprint of the 1926 edition).
[18] R. Jungen, Sur les séries de Taylor n’ayant que des singularités algébrico-logarithmiques sur leur cercle de

convergence, Comment. Math. Helv. 3 (1931) 266–306.
[19] D.E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math. 34 (1970) 709–727.
[20] L. Lipshitz, The diagonal of aD-finite power series isD-finite, J. Algebra 113 (2) (1988) 373–378.
[21] I.G. Macdonald, Symmetric Functions and Hall Polynomials, second ed., The Clarendon Press, Oxford

University Press, New York, 1995.
[22] P.A. MacMahon, Combinatory Analysis, 2 vols. (bound as one), Chelsea Publishing Co., New York, 1960.
[23] B. Malgrange, Sur la réduction formelle des équations différentielles à singularités irrégulières, preprint,

1979.
[24] C. Mallinger, Algorithmic manipulations and transformations of univariate holonomic functions and

sequences, Master’s Thesis, RISC, Johannes Kepler Universität Linz, Austria, August 1996.
[25] B.D. McKay, The asymptotic numbers of regular tournaments, eulerian digraphs and eulerian oriented graphs,

Combinatorica 10 (4) (1990) 367–377.
[26] M.J. Mishna, Une approche holonome à la combinatoire algébrique, Doctorat en mathématiques, UQÀM,

Montreal, Canada, Nov 2003.
[27] T. Oaku, N. Takayama, An algorithm for de Rham cohomology groups of the complement of an affine variety

viaD-module computation, J. Pure Appl. Algebra 139 (1–3) (1999) 201–233 Effective Methods in Algebraic
Geometry, Saint-Malo, 1998..

[28] A.M. Odlyzko, Asymptotic enumeration methods, in: R. Graham, M. Grötschel, L. Lovász (Eds.), Handbook
of Combinatorics, vol. 2, Elsevier, Amsterdam, 1995, pp. 1063–1229.

[29] R.C. Read, N.C. Wormald, Number of labeled 4-regular graphs, J. Graph Theory 4 (2) (1980) 203–212.
[30] M. Saito, B. Sturmfels, N. Takayama, Gröbner deformations of hypergeometric differential equations,

Algorithms and Computation in Mathematics, vol. 6, Springer, Berlin, 2000.
[31] B. Salvy, P. Zimmermann, Gfun: a Maple package for the manipulation of generating and holonomic functions

in one variable, ACM Trans. Math. Software 20 (2) (1994) 163–177.
[32] N.J.A. Sloane, Ed. The On-Line Encyclopedia of Integer Sequences, 2003.http://www.research.att.com/

∼njas/sequences/.
[33] R.P. Stanley, Enumerative Combinatorics. vol. I, The Wadsworth & Brooks/Cole Mathematics Series,

Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986 (with a foreword by Gian-
Carlo Rota).

[34] R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge University Press, Cambridge, 1999.
[35] J.R. Stembridge, A Maple package for symmetric functions, J. Symbolic Comput. 20 (5–6) (1995) 755–768

Symbolic Computation in Combinatorics�1 Ithaca, NY, 1993.
[36] S. Sundaram, The Cauchy identity for Sp(2n), J. Combin. Theory Ser. A 53 (2) (1990) 209–238.
[37] N. Takayama, An algorithm of constructing the integral of a module—an infinite dimensional analog of

Gröbner basis, in: Proceedings of ISSAC’90, Kyoto, ACM, 1990, pp. 206–211.
[38] N. Takayama, An approach to the zero recognition problem by Buchberger algorithm, J. Symbolic Comput.

14 (2–3) (1992) 265–282.
[39] É. Tournier, Solutions formelles d’équations différentielles, Doctorat d’état, Université scientifique,

technologique et médicale de Grenoble, 1987.
[40] H. Tsai, Weyl closure of a linear differential operator, J. Symbolic Comput. 29 (4–5) (2000) 747–775 Symbolic

Computation in Algebra, Analysis, and Geometry, Berkeley, CA, 1998.

http://www.research.att.com/njas/sequences/
http://www.research.att.com/njas/sequences/


F. Chyzak et al. / Journal of Combinatorial Theory, Series A 112 (2005) 1–43 43

[41] H. Tsai, Algorithms for associated primes, Weyl closure, and local cohomology ofD-modules, in: Local
Cohomology and its Applications (Guanajuato, 1999), Lecture Notes in Pure and Applied Mathematics, vol.
226, Dekker, New York, 2002, pp. 169–194.

[42] M. van Hoeij, Formal solutions and factorization of differential operators with power series coefficients,
J. Symbolic Comput. 24 (1) (1997) 1–30.

[43] W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Dover Publications Inc., New York,
1987 (Reprint of the John Wiley 1976 edition).

[44] J. Wimp, D. Zeilberger, Resurrecting the asymptotics of linear recurrences, J. Math. Anal. Appl. 111 (1985)
162–176.

[45] M. Wyman, The asymptotic behavior of the Laurent coefficients, Canad. J. Math. 11 (1959) 534–555.
[46] D. Zeilberger, The method of creative telescoping, J. Symbolic Comput. 11 (3) (1991) 195–204.


