47 research outputs found

    ์ „์ž ์ฆ์—ฌ์ฒด์™€ ์ˆ˜์šฉ์ฒด๋กœ ์“ฐ์ด๋Š” ํŒŒ์ด๋ Œ ์œ ๋„์ฒด ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™”ํ•™๋ถ€, 2015. 8. ์†๋ณ‘ํ˜.์•ฝ 200 ๋…„ ์ „์— ํŒŒ์ด๋ Œ์ด ์ตœ์ดˆ๋กœ ๋ฐœ๊ฒฌ๋˜์—ˆ๊ณ , ๊ทธ ์ดํ›„๋กœ ์ด ๋ฌผ์งˆ์€ ์ „ ์„ธ๊ณ„์˜ ํ™”ํ•™์ž๋“ค์—๊ฒŒ ๋Š์ž„์—†๋Š” ๊ด€์‹ฌ์„ ๋ฐ›์•„์™”๋‹ค. ํŒŒ์ด๋ Œ์— ๊ด€ํ•œ ์ˆ˜๋งŽ์€ ํ™”ํ•™ ์—ฐ๊ตฌ ๋ถ„์•ผ ์ค‘, ์„ ํƒ์  ๊ธฐ๋Šฅํ™”๋Š” ํฐ ์กฐ๋ช…์„ ๋ฐ›์•„์˜จ ๋ถ„์•ผ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ์™œ๋ƒํ•˜๋ฉด ๋ถ„์ž์˜ ๋‹ค๋ฅธ ์œ„์น˜๋“ค์— ํŠน์ •ํ•œ ๊ธฐ๋Šฅํ™”๋ฅผ ํ•˜๋Š” ๊ฒƒ์€ ํ˜„์žฌ๊นŒ์ง€๋„ ๊ต‰์žฅํžˆ ์–ด๋ ค์šด ์ฃผ์ œ์ด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด๋ฒˆ ๋…ผ๋ฌธ์—์„œ๋Š” ํŒŒ์ด๋ Œ ์น˜ํ™˜์˜ ๋‘๊ฐ€์ง€ ์ƒˆ๋กœ์šด ์–‘์‹๋“ค์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ ์ ˆํ•œ ์กฐ๊ฑด์—์„œ 4,5,9,10-tetramethoxypyrene ์˜ ๋„ค ๊ฒน์˜ ๋ธŒ๋กฌํ™”๋Š” ์—ฌ๋Ÿ ๊ฒน์œผ๋กœ ๊ธฐ๋Šฅํ™”๋œ ํŒŒ์ด๋ Œ๋“ค์˜ ์ƒ์‚ฐ์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•ด์ค€๋‹ค. ์œ„์™€ ๊ฐ™์€ ๋ถ„์ž๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ 1,3,4,5,6,7,9,10 ์œ„์น˜๊ฐ€ ์น˜ํ™˜๋œ ์ƒˆ๋กœ์šด ํŒŒ์ด๋ Œ ํŒŒ์ƒ๋ฌผ๋“ค์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. Non-quinoidal ํ•ฉ์„ฑ๋ฒ•์€ ์ „์ž ์ˆ˜์šฉ์ฒด์˜ ์ค‘๊ฐ„์ฒด์— ์ ์ ˆํ•˜๊ฒŒ ์ ์šฉ๋  ์ˆ˜ ์žˆ์—ˆ์ง€๋งŒ, ์ „์ž๊ฐ€ ๊ฑฐ์˜ ์—†๋Š” ํŒŒ์ด๋ Œ ํŒŒ์ƒ๋ฌผ์„ ์–ป๋Š” ๋ฐ๋Š” ์‹คํŒจํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ „์ž ์ฆ์—ฌ์ฒด๋กœ์จ์˜ 4,5,9,10-tetramethoxypyrene ๋„ ํ•ฉ์„ฑ๋˜์—ˆ๊ณ , ์œ„ ๋ฌผ์งˆ๋“ค์˜ ์ „ํ•˜ ์ด๋™ ๋ณตํ•ฉ์ฒด๋กœ์„œ์˜ ์—ญํ• ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ๊ณ ์ฒด ์ƒํƒœ์—์„œ SFB/RT 49 ์„ ํ†ตํ•ด ์œ„ ๋ณตํ•ฉ์ฒด๋“ค์„ ๋ถ„์„ํ•˜์˜€๊ณ , non-TTF CT-complex ์—์„œ์˜ ์ „ํ•˜์ด๋™์„ HAXPES ์™€ NEXAFS ๋ฅผ ํ†ตํ•ด ์—ฐ๊ตฌํ•˜์˜€๋‹ค. Zรถphel ์™ธ ๋‘ ๋ช…์˜ ์—ฐ๊ตฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋น„๋Œ€์นญ์˜ 4,9,10 ์œ„์น˜๊ฐ€ ์น˜ํ™˜๋œ ํŒŒ์ด๋ Œ ํŒŒ์ƒ๋ฌผ์„ ์–ป์„ ์ˆ˜ ์žˆ๋‹ค. ์ด๊ฒƒ์€ ํŒํ˜•์ด ์•„๋‹Œ ์ „์ž ์ˆ˜์šฉ์ฒด ๋ถ„์ž์— ๋”ํ•˜์—ฌ ์ „์ž๊ฐ€ ํ’ํ‘ธํ•œ ํŒŒ์ด๋ Œ ํƒ€์ž…์˜ ๋ถ„์ž๋“ค์„ ํ•ฉ์„ฑํ•˜๊ธฐ ์œ„ํ•œ ๋ธ”๋ก์œผ๋กœ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋‘๊ฐ€์ง€ ๋ถ„๋ฆฌ๋œ ๊ตฌ์กฐ์˜ ๋ถ„์ž๋“ค์ด ์œ ๊ธฐ๋ฐœ๊ด‘์†Œ์ž์˜ ๋ฐœ๊ด‘์ฒด๋กœ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์œ ๊ธฐ๋ฐœ๊ด‘์†Œ์ž ์ค‘ ์—ดํ™œ์„ฑํ™” ์ง€์—ฐํ˜•๊ด‘์€ ํ˜•๊ด‘ ์œ ๊ธฐ๋ฐœ๊ด‘์†Œ์ž์˜ ํšจ์œจ์„ ์ฆ์ง„์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ํš๊ธฐ์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ํ•™๊ณ„์˜ ํฐ ๊ด€์‹ฌ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ด๋ฒˆ ์—ฐ๊ตฌ์—์„œ ํ•ฉ์„ฑํ•œ ๋ฌผ์งˆ๋“ค์€ ๊ต‰์žฅํžˆ ๊นŠ์€ ์ฒญ์ƒ‰ ๋ฐœ๊ด‘์„ ๊ฐ€์ง€๋ฉด์„œ ๋™์‹œ์— ๋†’์€ ํ˜•๊ด‘ ๋ฐœ๊ด‘ ํšจ์œจ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๋‹จ์ผ์ƒํƒœ์™€ ์‚ผ์ค‘์ƒํƒœ์˜ ์—๋„ˆ์ง€ ์ฐจ์ด๊ฐ€ ์ตœ์†Œ๊ฐ€ ๋˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ดˆ๊ธฐ์˜ OD ์‹œ๋ฆฌ์ฆˆ๋“ค์€ ๊ต‰์žฅํžˆ ์ž‘์€ ์—๋„ˆ์ง€ ์ฐจ์ด๋ฅผ ๊ฐ€์กŒ์ง€๋งŒ ์œ ๊ธฐ ๋ฐœ๊ด‘์†Œ์ž์— ์‚ฌ์šฉํ•˜๊ธฐ์—๋Š” ๋ถˆ์ถฉ๋ถ„ํ•œ ์ ˆ๋Œ€ ๋ฐœ๊ด‘ ํšจ์œจ์„ ๊ฐ€์ง€๊ณ  ์žˆ์—ˆ๋‹ค. ๋ฐ˜๋Œ€๋กœ ํŒŒ์ด๋ Œ ์‹œ๋ฆฌ์ฆˆ๋“ค์€ ์•ž์˜ ๋‘ ๊ฐ€์ง€ ํŠน์„ฑ๋“ค์„ ๋™์‹œ์— ๋ฐ˜์กฑ์‹œํ‚ด์œผ๋กœ์จ, ํšจ์œจ์ด ์ข‹์€ ์œ ๊ธฐ๋ฐœ๊ด‘์†Œ์ž์— ๋ฐœ๊ด‘์ฒด๋กœ ํšจ๊ณผ์ ์œผ๋กœ ์ ์šฉ๋˜์—ˆ๋‹ค.I. Introduction 1 I.1 Pyrene 1 I.2 Organic semiconducting materials 13 I.3 Organic light emitting diodes (OLEDs) 19 I.4 Objects and motivation 24 II. Functionalization of pyrene in positions 2 and 7 ... 29 II.1 Electron deficient materials 30 II.2 Electron-rich materials 48 II.3 Summary 55 III. Functionalization of pyrene in positions 1,3,6 and 8... 59 III.1 The 1,3,6,8-functionalization of 4,5,9,10-substituted pyrenes 60 III.2 Electron rich materials 70 III.3 Electron deficient materials 85 III.4 Summary and outlook 103 IV. Charge-transfer complexes 107 IV.1 Donor ? acceptor interactions 107 IV.2 New CT-complexes 108 IV.3 CT-complexes studied in the context of the SFB/TR 49 ...120 IV.4 ??????????????Summary 134 ??V. Emitters for thermally delayed fluorescence in OLEDs 135 ?V.1 Introduction 135 ?V.2 Molecular design 135 ?V.3 Synthesis 141 ?V.4 Characterization 146 ?V.5 Summary 169 VI. Functionalization of pyrene in the positions 4,9 and 10 ...171 VI.1 [4,4'-Bipyrene]-9,9',10,10'-tetraone (6-6) 172 ??????VI.2 New rylene-type molecules 175 VI.3 Summary and outlook 179 VII. Conclusion 183 VIII. Experimental Section 187 VIII.1 General methods 187 VIII.2 Analytical methods 188 VIII.3 Synthesis 191 VIII.4 Crystallographic data 236 IX. Bibliography 248 X. List of publications 261 XI. Acknowledgement 263 XII. Curriculum vitae 265 ๊ตญ๋ฌธ์ดˆ๋ก 267Docto

    Comparing charge transfer tuning effects by chemical substitution and uniaxial pressure in the organic charge transfer complex tetramethoxypyrene-tetracyanoquinodimethane

    Get PDF
    In the search for novel organic charge transfer salts with variable charge transfer degree we study the effects of two modifications to the recently synthesized donor-acceptor Tetramethoxypyrene (TMP)-Tetracyanoquinodimethane (TCNQ). One is of chemical nature by substituting the acceptor TCNQ molecules by F4TCNQ molecules. The second consists in simulating the application of uniaxial pressure along the stacking axis of the system. In order to test the chemical substitution, we have grown single crystals of TMP-F4TCNQ and analyzed its electronic structure via electronic transport measurements, ab initio density functional theory (DFT) calculations and UV/VIS/IR absorption spectroscopy. This system shows an almost ideal geometrical overlap of nearly planar molecules alternately stacked (mixed stack) and this arrangement is echoed by a semiconductor-like transport behavior with an increased conductivity along the stacking direction. This is in contrast to TMP-TCNQ which shows a less pronounced anisotropy and a smaller conductivity response. Our bandstructure calculations confirm the one-dimensional behavior of TMP-F4TCNQ with pro- nounced dispersion only along the stacking axis. Infrared measurements illustrating the CN vibration frequency shift in F4TCNQ suggest however no improvement on the degree of charge transfer in TMP-F4TCNQ with respect to TMP-TCNQ. In both complexes about 0.1 is transferred from TMP to the acceptor. Concerning the pressure effect, our DFT calculations on designed TMP-TCNQ and TMP-F4TCNQ structures under different pressure conditions show that application of uniaxial pressure along the stacking axis of TMP-TCNQ may be the route to follow in order to obtain a much more pronounced charge transfer

    A new charge-transfer complex in UHV co-deposited tetramethoxypyrene and tetracyanoquinodimethane

    Full text link
    UHV-deposited films of the mixed phase of tetramethoxypyrene and tetracyanoquinodimethane (TMP1-TCNQ1) on gold have been studied using ultraviolet photoelectron spectroscopy (UPS), X-ray-diffraction (XRD), infrared (IR) spectroscopy and scanning tunnelling spectroscopy (STS). The formation of an intermolecular charge-transfer (CT) compound is evident from the appearance of new reflexes in XRD (d1= 0.894 nm, d2= 0.677 nm). A softening of the CN stretching vibration (red-shift by 7 cm-1) of TCNQ is visible in the IR spectra, being indicative of a CT of the order of 0.3e from TMP to TCNQ in the complex. Characteristic shifts of the electronic level positions occur in UPS and STS that are in reasonable agreement with the prediction of from DFT calculations (Gaussian03 with hybrid functional B3LYP). STS reveals a HOMO-LUMO gap of the CT complex of about 1.25 eV being much smaller than the gaps (>3.0 eV) of the pure moieties. The electron-injection and hole-injection barriers are 0.3 eV and 0.5 eV, respectively. Systematic differences in the positions of the HOMOs determined by UPS and STS are discussed in terms of the different information content of the two methods.Comment: 20 pages, 6 figure

    Extended ฯ€-conjugated pyrene derivatives: structural, photophysical and electrochemical properties

    Get PDF
    This article presents a set of extended ฯ€-conjugated pyrene derivatives, namely 1,3-di(arylethynyl)-7-tert-butylpyrenes, which were synthesized by a Pd-catalyzed Sonogashira coupling reaction of 1,3-dibromo-7-tert-butylpyrenes with the corresponding arylethynyl group in good yields. Despite the presence of the tert-butyl group located at the 7-position of pyrene, X-ray crystallographic analyses show that the planarity of the Y-shaped molecules still exhibits strong face-to-face ฯ€-ฯ€ stacking in the solid state; all of the compounds exhibit blue or green emission with high quantum yields (QYs) in dichloromethane. DFT calculations and electrochemistry revealed that this category of compound possesses hole-transporting characteristics. In addition, with strong electron-donating (-N(CHโ‚ƒ)โ‚‚) or electron-withdrawing (-CHO) groups in 2โ€‰d or 2โ€‰f, these molecules displayed efficient intramolecular charge-transfer (ICT) emissions with solvatochromic shifts from blue to yellow (green) on increasing the solvent polarity. Furthermore, the compounds 2โ€‰d and 2โ€‰f possess strong CT characteristics

    Functionalization of Pyrene To Prepare Luminescent Materialsโ€”Typical Examples of Synthetic Methodology

    Get PDF
    Pyrene-based ฯ€-conjugated materials are considered to be an ideal organic electro-luminescence material for application in semiconductor devices, such as organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaics (OPVs), and so forth. However, the great drawback of employing pyrene as an organic luminescence material is the formation of excimer emission, which quenches the efficiency at high concentration or in the solid-state. Thus, in order to obtain highly efficient optical devices, scientists have devoted much effort to tuning the structure of pyrene derivatives in order to realize exploitable properties by employing two strategies, 1) introducing a variety of moieties at the pyrene core, and 2) exploring effective and convenient synthetic strategies to functionalize the pyrene core. Over the past decades, our group has mainly focused on synthetic methodologies for functionalization of the pyrene core; we have found that formylation/acetylation or bromination of pyrene can selectly lead to functionalization at K-region by Lewis acid catalysis. Herein, this Minireview highlights the direct synthetic approaches (such as formylation, bromination, oxidation, and de-tert-butylation reactions, etc.) to functionalize the pyrene in order to advance research on luminescent materials for organic electronic applications. Further, this article demonstrates that the future direction of pyrene chemistry is asymmetric functionalization of pyrene for organic semiconductor applications and highlights some of the classical asymmetric pyrenes, as well as the latest breakthroughs. In addition, the photophysical properties of pyrene-based molecules are briefly reviewed. To give a current overview of the development of pyrene chemistry, the review selectively covers some of the latest reports and concepts from the period covering late 2011 to the present day

    Pyrene derivatives as donors and acceptors

    No full text
    Pyrene derivatives as donors and acceptorsrnrnAlmost 200 years have passed since pyrene was first discovered, and to this day it garners unbroken interest by chemists around the world. One of the most fascinating areas of pyrene chemistry is its selective functionalization, since it is still currently a challenge to specifically functionalize different positions on the molecule.[1]rnIn this work, two new patterns of pyrene substitution have been developed. Under suitable conditions, a fourfold bromination of 4,5,9,10 tetramethoxypyrene is possible to yield eightfold functionalized pyrenes. Based on these molecules a novel series of 1,3,4,5,6,8,9,10-substituted pyrene derivatives was achieved. Synthetic approaches to a non-quinoidal, strong pyrene-4,5,9,10-tetraone based acceptor have been discussed. It emerged that the chosen synthetic approach is suitable for intermediate acceptors, yet it failed very electron deficient pyrene derivatives. Donors based on 4,5,9,10-tetramethoxypyrene (2,7- and 1,3,6,8-substitued) have been prepared and studied as CT complexes. In the SFB/TR 49 these complexes were analyzed in the solid state. For the first time charge transfer in a non-TTF CT-complex was studied by HAXPES and NEXAFS.rnBased on the works of Zร–PHEL et al.[2] it was possible to obtain an asymmetric 4,9,10 substituted pyrene derivative. This was used as a building block to prepare a non-planar acceptor molecule as well as electron-rich rylene-type molecules. rnFinally, two separate series of molecules intended as emitters for OLEDs were presented. Thermally activated delayed fluorescence (TADF) in OLEDs attracted significant academic interest as it is considered a promising approach to improve the efficiency of fluorescent OLEDs.[3] Our molecules were designed to have a deep blue emission spectrum and a minimal singlet triplet energy gap (โˆ†ES1->T1) while retaining a high fluorescence quantum yield ฯ•PL. The initial OD series has a small โˆ†ES1->T1, yet had an insufficient ฯ•PL for the use in OLEDs. The Py series emitters, in contrast, combine both desired properties and were successfully implemented in efficient OLED devices.rn[1]. T. M. Figueira-Duarte and K. Mรผllen, Chem. Rev., 2011, 111, 7260-7314.rn[2]. L. Zรถphel, V. Enkelmann and K. Mรผllen, Org. Lett., 2013, 15, 804-807.rn[3]. H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 2012, 492, 234-238.Pyrene derivatives as donors and acceptorsrnrnVor fast 200 Jahren wurde Pyren das erste Mal beschrieben. Bis heute arbeiten weltweit Chemiker an der Erforschung dieses aromatischen Kohlenwasserstoffs. Seine selektive Funktionalisierung stellt auch weiterhin eine faszinierende Herausforderung da, wobei noch immer nicht alle Positionen selektiv adressiert werden kรถnnen. [1]rnIn dieser Arbeit wurden zwei neue Substitutionsmuster fรผr Pyren entwickelt. Die Bedingungen fรผr eine vierfache Bromierung von 4,5,9,10-Tetramethoxypyren wurden entwickelt um eine Serie von 1,3,4,5,6,8,9,10-funktionalisierten Pyrenderivaten zu erhalten. Syntheseansรคtze fรผr sehr starke nicht-chinoide Akzeptoren wurden diskutiert. Hierbei erwies sich der gewรคhlte Syntheseansatz nur geeignet fรผr schwache und mittel-starke Akzeptoren. Sehr starke Akzeptoren konnten nicht erhalten werden. Zudem wurden ausgehend von 4,5,9,10-Tetramethoxypyren eine Reihe elektronenreicher Verbindungen dargestellt und diese in charge-transfer(CT)-Komplexen untersucht. Diese Komplexe wurden im Rahmen des SFB/TR49 fรผr Festkรถrperanalysen zur Verfรผgung gestellt. Es konnten zum ersten Mal der Elektronenรผbergang in einem TTF-freien CT-Komplex mittels HAXPES und NEXAFS untersucht werden.rnBasierend auf den Arbeiten von Zร–PHEL et al.[2] konnte ein unsymmetrisches Pyren Derivat erhalten werden. Dies wurde als Baustein fรผr einen nicht-planaren Akzeptor sowie einer Reihe Rylen-artiger Molekรผle verwendet. rnrnAbschlieรŸend wurden zwei Kandidaten (OD Serie und Py Serie) als OLED Emitter untersucht. Thermally activated delayed fluorescence (TADF) gilt als vielversprechender Ansatz fรผr die Effizienzsteigerung in Fluoreszenz-OLEDs.[3] Von den Kandidaten wurde erwartet eine blaue Fluoreszenz mit einer kleinen singulet-triplett Energielรผcke (โˆ†ES1->T1) und einer hohen Fluoreszenzquantenausbeute ฯ•PL miteinander zu verbinden. Die OD Serie wies eine kleine Energielรผcke auf, jedoch war ฯ•PL nicht ausreichend fรผr den Einsatz in Leuchtdioden. Hingen gelang es mit der Py Serie alle Anforderungen an ein Emitter Material zu vereinen und dieses in effizienten Leuchtdioden einzusetzen.rn[1]. T. M. Figueira-Duarte and K. Mรผllen, Chem. Rev., 2011, 111, 7260-7314.rn[2]. L. Zรถphel, V. Enkelmann and K. Mรผllen, Org. Lett., 2013, 15, 804-807.rn[3]. H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 2012, 492, 234-238

    Tuning the optical absorption of potential blue emitters

    No full text

    Pyrene based materials for exceptionally deep blue OLEDs

    No full text

    Understanding the Fluorescence of TADF Light-Emitting Dyes

    No full text
    corecore