CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Time-lapse total internal reflection fluorescence video of acetylcholine receptor cluster formation on myotubes
Authors
Axelrod
Axelrod
+18 more
Axelrod
Axelrod
Axelrod
Bloch
Bloch
Bloch
Bloch
Bloch
Changeux
Changeux
Froehner
Haest
Krikorian
Kuromi
Olek
Ravdin
Stya
Wang
Publication date
1 September 1994
Publisher
'Wiley'
Doi
Abstract
To study when and where acetylcholine receptor (AChR) clusters appear on developing rat myotubes in primary culture, we have made time-lapse movies of total internal reflection fluorescence (TIRF) overlaid with schlieren transmitted light images. The receptors, including the ones newly incorporated into the membrane, were labeled with rhodamine Α-bungarotoxin (R-BT) continuously present in the medium. Since TIRF illuminates only cell-substrate contact regions where almost all of the AChR clusters are located, background fluorescence from fluorophores either in the bulk solution or inside the cells can be suppressed. Also, because TIRF minimizes the exposure of the cell interior to light, the healthy survival of the cell culture during imaging procedures is much enhanced relative to standard epi- (or trans-) illumination. During the experiment, cells were kept alive on the microscope stage at 37°C in an atmosphere of 10% CO 2· Two digital images were recorded by a CCD camera every 20 min: the schlieren image of the cells and the TIRF image of the clusters. After background subtraction, the cluster image was displayed in pseudocolors, overlaid onto the cell images, and recorded as 3 frames on a videotape. The final movies are thus able to summarize a week-long experiment in less than a minute. These movies and images show that clusters form often shortly after the myoblast fusion but sometimes much later, and the formation takes place very rapidly (a few hours). The clusters have an average lifetime of around a day, much shorter than the lifetime of a typical myotube. The brightest and largest clusters tend to be the longest-lived. The cluster formation seems to be associated with the contacts of myotubes at the glass substrate, but not with cell-cell contacts or myoblast fusion into myotubes. New AChR continuously appear in preexisting clusters: after photobleaching, the fluorescence of some clusters recovers within an hour. © 1994 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50420/1/1002010104_ftp.pd
Similar works
Full text
Available Versions
Deep Blue Documents
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:deepblue.lib.umich.edu:202...
Last time updated on 25/05/2012
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 05/06/2019