
Random Prism: An Alternative to Random
Forests

Frederic Stahl and Max Bramer

Abstract Ensemble learning techniques generate multiple classifiers, so called base
classifiers, whose combined classification results are usedin order to increase the
overall classification accuracy. In most ensemble classifiers the base classifiers are
based on the Top Down Induction of Decision Trees (TDIDT) approach. However,
an alternative approach for the induction of rule based classifiers is the Prism fam-
ily of algorithms. Prism algorithms produce modular classification rules that do not
necessarily fit into a decision tree structure. Prism classification rulesets achieve a
comparable and sometimes higher classification accuracy compared with decision
tree classifiers, if the data is noisy and large. Yet Prism still suffers from overfit-
ting on noisy and large datasets. In practice ensemble techniques tend to reduce the
overfitting, however there exists no ensemble learner for modular classification rule
inducers such as the Prism family of algorithms. This article describes the first de-
velopment of an ensemble learner based on the Prism family ofalgorithms in order
to enhance Prism’s classification accuracy by reducing overfitting.

1 Introduction

One of the most well-known ensemble learning methods is the Random Forests (RF)
classifier from Breiman [7]. RF is inspired by the Random Decision Forests (RDF)
approach from Ho [15]. Ho argues that traditional trees often cannot be grown over a
certain level of complexity without risking a loss of generalisation caused by overfit-
ting on the training data. Ho proposes inducing multiple trees in randomly selected

Frederic Stahl
School of Computing, Buckingham Building, Lion Terrace, PO1 3HE e-mail: Fred-
eric.Stahl@port.ac.uk

Name of Second Author
School of Computing, Buckingham Building, Lion Terrace, PO1 3HE e-mail:
Max.Bramer@port.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/9599316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Frederic Stahl and Max Bramer

subsets of the feature space. He claims that the combined classification will improve,
as the individual trees will generalise better on the classification for their subset of
the feature space. Ho evaluates his claims empirically. RF makes use of the basic
RDF approach by combining it with Breiman’s bagging (Bootstrapaggregating)
method [6]. Bagging is intended to improve a classifier’s stability and classification
accuracy. A classifier is unstable if a small change in the training set causes major
variations in the classification.

Research on ensemble learning technologies for classification in order to over-
come overfitting is still ongoing. For example [13] generateensembles of hetero-
geneous classifiers using stacking. [11] proposed a framework for generating hun-
dreds of thousands of classifiers in parallel in a distributed environment using small
subsamples of the dataset. Chan and Stolfo’s [9, 10] Meta-Learning framework par-
titions the data into subsamples that fit into the memory of a single machine and
developed a classifier in each subset separately. These classifiers are then combined
using various algorithms in order to create a final classifier. This can easily be run
in parallel using the independent multi-sample mining approach [19]. A recently
developed prototype of ensemble learners, based on Hoeffding Trees [17] and in-
cremental Naive Bayes, for the classification of datastreams in an ad hoc network
of mobile phones is discussed here [27, 26]. The overall datamining framework is
called ‘Pocket Data Mining’ [30]. Pocket Data Mining employs weighted major-
ity voting in order to combine the different classifiers induced on different mobile
phones. This work uses the terms ‘ensemble learner’ and ‘ensemble classifier’ inter-
changeably, referring to ensemble learners for classification unless stated otherwise.

There are two general approaches to the induction of classification rules, the ‘di-
vide and conquer’ approach, also known as TDIDT [20, 21] and the ‘separate and
conquer’ approach [31]. ‘Divide and conquer’ induces classification rules in the in-
termediate representation of a decision tree. ‘Separate and conquer’ induces a set
of IF..THEN rules rather than a decision tree. ‘Separate and conquer’ can be traced
back to Michalski’s AQ system in the 1960s [16]. However the most notable devel-
opment using the ‘separate and conquer’ approach is the Prism family of algorithms
[8, 3, 4]. It produces modular rules that do not necessarily fit into a decision tree. It
produces a comparable classification accuracy to and in somecases outperforms de-
cision trees, especially in noisy domains. Recent developments on the Prism family
of algorithms includes frameworks for parallelising Prismalgorithms for rule induc-
tion on massive datasets [23, 25, 24] and rule pruning methods in order to reduce
overfitting [28, 4]. In general Prism algorithms have been shown to be less vulnera-
ble to overfitting compared with decision tree classifiers, especially if there is noise
in the data and missing values [3]. Yet most ensemble learning approaches are either
based on decision trees or a heterogeneous setup of base classifiers. Some ensemble
approaches consider heterogeneous classifiers, such as Meta-Learning [9, 10], yet
in practice their application mostly makes use of algorithms that follow the ‘divide
and conquer’ approach.

The fact that Prism classifiers tend to overfit less compared with decision trees
motivates the development of ensemble learners based on Prism algorithms. This
paper presents the first attempt to build a Prism based ensemble learner inspired



Random Prism: An Alternative to Random Forests

from RF calledRandom Prism in order to improve Prism’s classification accuracy
further. A prototype implementation is evaluated empirically. This paper is struc-
tured as follows: Section 2 introduces the Prism family of algorithms in comparison
with decision tree classifiers and describes the newly developedRandom Prism en-
semble learner; Section 3 evaluates Random Prism on severaldatasets and compares
it with a standalone Prism classifier. Section 4 highlights some ongoing and future
work, notably some variations of the Random Prism approach and a parallel version
of Random Prism. Section 5 concludes the paper with a brief summary and some
concluding remarks.

2 Random Prism

This section describes our Random Prism ensemble learner. It first introduces the
Prism Family of algorithms in Section 2.1 and compares them with the ‘divide and
conquer’ approach used by RF. Section 2.2 then highlights the Random Prism ap-
proach based on the RF ensemble learner.

2.1 The Prism Family of Algorithms

As mentioned in Section 1, the representation of classification rules differs between
the ‘divide and conquer’ and ‘separate and conquer’ approaches. Rule sets generated
by the ‘divide and conquer’ approach are in the form of decision trees whereas rules
generated by the ‘separate and conquer’ approach are modular. Modular rules do
not necessarily fit into a decision tree and normally do not. The rule representation
of decision trees is the main drawback of the ‘divide and conquer’ approach, for
example rules such as:

IF A = 1 AND B = 1 THEN class = x

IF C = 1 AND D = 1 THEN class = x

cannot be represented in a tree structure as they have no attribute in com-
mon. Forcing these rules into a tree will require the introduction of additional
rule terms that are logically redundant, and thus result in unnecessarily large and
confusing trees [8]. This is also known as the replicated subtree problem [31].
Cendrowska illustrates the replicated subtree using the two example rules above
in [8]. Cendrowska assumes that the attributes in the two rules above comprise three
possible values and both rules predict classx, all remaining classes being labelledy.
The simplest tree that can express the two rules is shown in Figure 1. The total set
of rules that predict classx encoded in the tree is:

IF A = 1 AND B = 1 THEN Class = x
IF A = 1 AND B = 2 AND C = 1 AND D = 1 THEN Class = x



Frederic Stahl and Max Bramer

IF A = 1 AND B = 3 AND C = 1 AND D = 1 THEN Class = x
IF A = 2 AND C = 1 AND D = 1 THEN Class = x
IF A = 3 AND C = 1 AND D = 1 THEN Class = x

Fig. 1 Cendrowska’s replicated subtree example.

Cendrowska argues that situations such as this which cause trees to be needlessly
complex make the tree representation unsuitable for expertsystems and may require
unnecessary expensive tests by the user [8].

‘Separate and conquer’ algorithms avoid the replicated subtree problem by in-
ducing directly sets of ’modular’ rules, avoiding unnecessarily redundant rule terms
that are induced just for the representation in a tree structure. The basic ‘separate
and conquer’ approach can be described as follows, where thestatement

Rule_set rules = new Rule_set();

creates a new rule set:

Rule_Set rules = new Rule_set();
While Stopping Criterion not satisfied{

Rule = Learn_Rule;
Remove all data instances covered from Rule;
rules.add(rule);

}

The Learn Rule procedure generates the best rule for the current subset of the
training data where best is defined by a particular heuristicthat may vary from algo-
rithm to algorithm. The stopping criterion is also dependent on the algorithm used.
After inducing a rule, the rule is added to the rule set, all instances that are covered
by the rule are deleted and a new rule is induced on the remaining training instances.

In Prism each rule is generated for a particular Target Class(TC). The heuristic
Prism uses in order to specialise a rule is the probability with which the rule covers



Random Prism: An Alternative to Random Forests

the TC in the current subset of the training data. The stopping criterion is fulfilled
as soon as there are no training instances left that are associated with the TC.

Cendrowska’s original Prism algorithm selects one class asthe TC at the begin-
ning and induces all rules for that class. It then selects thenext class as TC and
resets the whole training data to its original size and induces all rules for the next
TC. This is repeated until all classes have been selected as TC. Variations exist
such as PrismTC [5] and PrismTCS (Target Class Smallest first) [4]. Both select
the TC anew after each rule induced. PrismTC always uses the majority class and
PrismTCS uses the minority class. Both variations introduce an order in which the
rules are induced, where there is none in the basic Prism approach. However un-
published experiments by the current authors show that the predictive accuracy of
PrismTC cannot compete with that of Prism and PrismTCS. PrismTCS does not re-
set the dataset to its original size and thus is faster than Prism. It produces a high
classification accuracy and also sets an order in which the rules should be applied to
the test set.

The basic PrismTCS algorithm is outlined below whereAx is a possible attribute
value pair andD is the training dataset. The statement

Rule_set rules = new Rule_set();

creates a new rule set which is a list of rules and the line

Rule rule = new Rule(i);

creates a new rule with classi as classification. The statement

rule.addTerm(Ax);

will append a rule term to the rule and

rules.add(rule);

adds the finished rule to the rule set.

D’ = D;
Rule_set rules = new Rule_set();

Step 1: Find class i that has the fewest instances in the training
set;
Rule rule = new Rule(i);

Step 2: Calculate for each Ax p(class = i| Ax);
Step 3: Select the Ax with the maximum p(class = i| Ax);

rule.addTerm(Ax);
Delete all instances in D’ that do not cover rule;

Step 4: Repeat 2 to 3 for D’ until D’ only contains instances
of classification i.

Step 5: rules.add(rule);
Create a new D’ that comprises all instances of D except
those that are covered by all rules induced so far;

Step 6: IF (D’ is not empty){
repeat steps 1 to 6;

}

We will concentrate here on the more popular PrismTCS approach but all tech-
niques and methods outlined here can be applied to any memberof the Prism family.



Frederic Stahl and Max Bramer

2.2 Random Prism Classifier

The Random Prism classifier is based on the principles of the RF ensemble learner,
hence this section first introduces the Random Forests classifier briefly and then
discusses the new Random Prism ensemble classifier.

As mentioned in Section 1 RF are inspired by the RDF approach from Ho [15].
RDF induces multiple trees in randomly selected subsets of the feature space in
order to make the trees generalise better. RF uses RDF’s approach plus bagging
[6] in order to improve the classifiers’ accuracy and stability. Bagging means that a
sample with replacement is taken for the induction of each tree.

The basic principle of RF is that it grows a large number of decision trees (a
forest) on samples produced by bagging, using a random subset of the feature space
for the evaluation of splits at each node in each tree. If there is a new data instance to
be classified, then each tree is used to produce a prediction for the new data instance.
RF then labels the new data instance with the class that achieved the majority of the
‘votes’.

The Random Prism ensemble learner’s ingredients are the RDF’s random feature
subset selection, RF’s bagging and PrismTCS as base classifier.

Using Prism as base classifier is motivated by the fact that Prism is less vulnera-
ble to clashes, missing values and noise in the dataset and ingeneral tends to overfit
less compared with decision trees [3] which are used in RF andRDF. In particu-
lar PrismTCS is used, as PrismTCS is also computationally more efficient than the
original Prism while in some cases producing a better accuracy [29]. A good compu-
tational efficiency is needed as ensemble classifiers inducemultiple classifiers and
thus place a high computational demand on CPU time. In the context of Random
Prism, the terms PrismTCS and Prism may be used interchangeably in this paper,
both referring to PrismTCS unless stated otherwise.

Given a training datasetD, using bagging a sampleDi if i is the ith classifier
is created, using random sampling with replacement [6]. This means that the data
samples may overlap, as inDi a data instance may occur more than once or may
not be included at all. From eachDi a classifierCi is induced. In order to classify
a new data instance, eachCi predicts the class, and the bagged classifier counts
the votes and labels the data instance with the class that achieved the majority of the
votes. An ensemble classifier created using bagging often achieves a higher accuracy
compared with a single classifier induced on the whole training datasetD and if it
achieves a worse accuracy it is often still close to the single classifier’s accuracy
[14]. The reason for the increased accuracy of bagged classifiers lies in the fact
that the composite classifier model reduces the variance of the individual classifiers
[14]. The most commonly used bootstrap model for bagging is to take a sample of
sizen if n is the number of instances. This will result in samples that contain on
average 63.2% of the original data instances. The fact that bagged classifiers can
achieve a higher accuracy than a single classifier induced onthe whole datasetD,
as mentioned above, motivates the use of bagging in the Random Prism ensemble
classifier proposed here.



Random Prism: An Alternative to Random Forests

The RDF approach by Ho [15] induces multiple trees on randomly selected sub-
sets of the feature space. Again a composite model is generated and it has been
shown in [15] that they generalise better than a single tree induced on the complete
feature space, as the are less prone to overfitting. Inspiredfrom RDF, Breiman’s RF
randomly selects a subset of the feature space for each node of each tree. Feature
subset selection similar to the one used in RF is incorporated in Random Prism as
well, inspired from the fact that random feature subset selection generalises the en-
semble classifier better and thus makes it likely to produce ahigher classification
accuracy.

The pseudo code below describes the adapted version of PrismTCS for the use in
Random Prism based on PrismTCS’s pseudo code in Section 2.1.M is the number
of features inD:

D’ = random sample with replacement of size n from D;
Rule_set rules = new Rule_set();

Step 1: Find class i that has the fewest instances in the training
set;
Rule rule = new Rule(i);

Step 2: generate a subset F of the feature space of size m where
(M>m>0);

Step 3: Calculate for each Ax in F p(class = i| Ax);
Step 4: Select the Ax with the maximum p(class = i| Ax);

rule.addTerm(Ax);
Delete all instances in D’ that do not cover rule;

Step 5: Repeat 2 to 4 for D’ until D’ only contains instances
of classification i.

Step 6: rules.add(rule);
Create a new D’ that comprises all instances of D except
those that are covered by all rules induced so far;

Step 7: IF (D’ is not empty){
repeat steps 1 to 7;

}

The pseudo code above is essentially PrismTCS incorporating RDF’s and RF’s
random feature subset selection. For the induction of each rule term for each rule,
a fresh random subset of the feature space is drawn. Also the number of features
considered for each rule term is a random number between 1 andM. The PrismTCS
version above is calledR-PrismTCS, R for denotingRandom sample and feature
selection.

The basic Random Prism approach is outlined in the pseudo code below, where
k is the number ofR-PrismTCS classifiers to be induced andi is theith classifier:

double weights[] = new double[k];
Classifiers classifiers = new Classifier[k];
for(int t = 0; t < k; t++){

Build R-RrismTCS classifier r;
TestData T = instances of D that have not been to induce r;
Apply r to T;
int correct = number of by r correctly classified instances in T;
weights[t] = correct/(number of instances in T);

}

Please note that in the Random Prism pseudo code above not only a set of clas-
sifiers is created but also a set of weights. Random Prism doesnot employ a simple
voting system like RF or RDF, but a weighted majority voting system as in the



Frederic Stahl and Max Bramer

Pocket Data Mining System [27, 26], where each vote is weighted according to the
corresponding classifier’s accuracy on the test data. As mentioned earlier in this
section, the sampling method used for each classifier selects approximately 63.2%
percent of the total number of data instances, which leaves approximately 36.8%
of the total number of data instances which are used to calculate the individualR-
PrismTCS classifier’s accuracy and thus weight. Also the user of the Random Prism
classifier can define a thresholdN, which is the precentage of classifiers to be used
for prediction. Random Prism will always select those classifiers with the highest
weights.

For example consider classifiers and weights listed in Table1.

Table 1 Example data for weighted majority voting

Classifier Weight
A 0.55
B 0.65
C 0.55
D 0.95
E 0.85

Assume that the classifiers in Table 1 are already the best classifiers selected
according to the user’s defined threshold. Further assume that for a new unseen data
instance classifiersA, B andC predict classY and classifiersD andE predict classX.
Random Prism’s weighted majority vote for classY is 1.75 (i.e. 0.55+0.65+0.55)
and for classX is 1.80 (i.e. 0.95+ 0.85). Thus Random Prism will label the data
instance with classX.

The R-PrismTCS pseudo code above does not take pruning into consideration,
however a pre-pruning methodJ-pruning presented in [4] is implemented inR-
PrismTCS in order further generalise the base classifiers. J-pruningis based on the
J-measure. According to Smyth and Goodman [22] the average information con-
tent of a rule of the formIF Y = y THEN X = x can be quantified by the following
equation:

J(X ;Y = y) = p(y) · j(X ;Y = y) (1)

The J-measure is a product of two terms. The first termp(y) is the probability
that the antecedent of the rule will occur. It is a measure of hypothesis simplicity.
The second termj(X;Y=y) is the j-measure or cross entropy. It is a measure of the
goodness-of-fit of a rule and is defined by:

j(X ;Y = y) = p(x | y) · log2(
p(x|y)
p(x) )+ (1− p(x | y)) · log2(

(1−p(x|y))
(1−p(x)) ) (2)



Random Prism: An Alternative to Random Forests

If a rule has a high J-value then it tends to have a high predictive accuracy as well.
The J-value is used to identify when a further specialisation of the rule is likely to
result in a lower predictive accuracy due to overfitting. Thebasic idea is to induce a
rule term and if the rule term would increase the J-value of the current rule then the
rule term is appended. If not then the rule term is discarded and the rule is finished.

3 Evaluation of Random Prism Classification

Random Prism has been evaluated on 15 different datasets retrieved from the UCI
data repository [2]. For each dataset a test and a training set has been created us-
ing random sampling without replacement. The training set comprises 70% of the
total data instances. Please note that the training set is sampled again by each R-
PrismTCS base classifier, in order to incorporate bagging. Hence, as stated in Sec-
tion 2.2 approximately 63.2% of the training data is used forthe actual training and
36.8% is used to calculate the individual classifiers’ weights. The percentage of the
best classifiers to be used was 10% and the total number of R-PrismTCS classifiers
induced was 100 for each dataset.

Table 2 shows the accuracy achieved using Random Prism classifier and the ac-
curacy achieved using a single PrismTCS classifier.

Table 2 Accuracy of Random Prism compared with PrismTCS.

Dataset Accuracy PrismTCS Accuracy Random Prism
monk1 0.79 1.0
monk3 0.98 0.99
vote 0.94 0.95

genetics 0.70 0.88
contact lenses 0.95 0.91
breast cancer 0.95 0.95

soybean 0.88 0.65
australian credit 0.89 0.92

diabetes 0.75 0.89
crx 0.83 0.86

segmentation 0.79 0.71
ecoli 0.78 0.78

balance scale 0.72 0.86
car evaluation 0.76 0.71

contraceptive method choice 0.44 0.54

As can be seen in Table 2 Random Prism outperforms PrismTCS in9 out of 15
cases; in two cases Random Prism achieved the same accuracy as PrismTCS; and in
only 4 cases Random Prism’s accuracy was below that of PrismTCS. However, look-
ing into these four cases with a lower accuracy, which is for datasets ‘car evaluation’,
‘segmentation’, ‘soybean’ and ‘contact lenses’, it can be seen that the accuracies for
‘car evaluation’ and ‘contact lenses’ is still very close the PrismTCS’s accuracy. In



Frederic Stahl and Max Bramer

general Random Prism outperforms its single classifier version PrismTCS in most
cases and in the remaining cases its accuracy is often very close to PrismTCS’s
accuracy.

4 Ongoing and Future Work

Ongoing and future work comprises a distributed / parallel version of Random Prism
and several variations of the Random Prism approach itself.

4.1 Parallel Random Prism Classifier

Random Prism like any other ensemble learner has a higher demand on CPU time
than its single classifier version. Table 3 lists the runtimes of PrismTCS and Random
Prism for the evaluation experiments outlined in Section 3.As ensemble learners are
designed to reduce overfitting, they should be able to be executed on larger datasets
as well, as the likelihood that noisy data instances are present is higher the larger
the training data is.

Table 3 Runtime of Random Prism on 100 base classifiers compared witha single PrismTCS
classifier in milli seconds.

Dataset Runtime PrismTCS Runtime Random Prism
monk1 16 703
monk3 15 640
vote 16 672

genetics 219 26563
contact lenses 16 235
breast cancer 32 1531

soybean 78 5078
australian credit 31 1515

diabetes 16 1953
crx 31 2734

segmentation 234 15735
ecoli 16 734

balance scale 15 1109
car evaluation 16 3750

contraceptive method choice 32 3563

It can be seen that as expected the runtimes are much larger for Random Prism
than for PrismTCS. This is because Random Prism induces 100 base classifiers
whereas PrismTCS is only a single classifier. One would expect the runtimes of
Random Prism to be 100 times longer than for PrismTCS as Random Prism induces
100 base classifiers, however the runtimes are much shorter than expected. The rea-



Random Prism: An Alternative to Random Forests

son for this is that the base classifiers use a subset of the feature space and thus have
fewer features to scan for the induction of each rule term.

Future work will address the problem of scalability of the Random Prism classi-
fier. Google’s Parallel Learner for Assembling Numerous Ensemble Trees (PLANET)
system [18] addresses this problem in the context of decision tree based ensemble
classifiers using the MapReduce [12] model of distributed computation. MapReduce
builds a cluster of computers for a two-phase distributed computation on large vol-
umes of data. First in the map-phase the dataset is split intodisjoint subsets, which
are assigned together with a user specified map function to workers (mappers) in
the MapReduce cluster. Each mapper then applies the map function on its data. The
output of the map function (a key-value pair) is then groupedand combined by a
second kind of worker, the reducers, using a user defined reduce function.

For Random Prism the MapReduce model will be used to distribute the induc-
tion of the R-PrismTCS base classifiers using mappers. The individual R-PrismTCS
classifiers are then combined using the reducers to the final Random Prism Classi-
fier. Thus the CUP intense part, the induction of many base classifiers can easily be
distributed to a computing cluster of workstations. A open source implementation
of the MapReduce model called Hadoop is available [1].

4.2 Variations of the Random Prism Ensemble Classifier

There are many possible variations of the Random Prism approach that may achieve
better classification accuracy, for example different versions of Prism could be used
as base classifiers. Also it would be possible to use a diversemix of all existing
Prism classifiers, such as Prism, PrismTC or PrismTCS. Some Prism classifiers may
perform well on certain samples, some may perform worse, thus a larger variety
of Prism classifiers per sample may well increase Random Prism’s classification
accuracy.. Also it is possible to use several Prism and decision tree base classifiers
for each sample.

4.3 Intelligent Voting System

Random Prism’s classification accuracy may be further improved by employing a
more intelligent voting system. For example a classifier mayhave in general a mod-
erate predictive accuracy. However, concerning its predictions for classA, the clas-
sifier may have a very high predictive accuracy. Such cases could be addressed by
calculating individual weights for each class for this particular classifier. Implement-
ing more than one weight for a classifier must also be addressed in the selection of
the best classifiers according to a user defined percentage. Asimilar approach called
‘Combining’ has been used by the Meta-Learning system [9, 10].



Frederic Stahl and Max Bramer

5 Conclusions

This work presents the Random Prism ensemble classifier based on the Prism family
of algorithms as base classifier. Most ensemble learners arebased on decision trees
as base classifiers and aim to reduce the overfitting of the model in order to achieve
a higher classification accuracy. However alternative baseclassifiers exist, such as
the Prism family of algorithms. It has been discussed that Prism algorithms already
perform better on noisy datasets compared with decision trees, as they tend to overfit
less. The motivation behind Random Prism is that an ensembleclassifier based on
the Prism family of algorithms may further reduce the overfitting and thus achieve
a higher classification accuracy compared with single Prismclassifiers.

First the Prism family of algorithms has been introduced andcompared with de-
cision trees and next the well known Random Forests approachhas been reviewed.
Random Prism is inspired from the Prism family of algorithms, the Random De-
cision Forests and Random Forests approaches. Random Prismuses the PrismTCS
classifier as base classifier with some modifications called R-PrismTCS. The modi-
fications were in order to use the Random Decision Forests’ feature subset selection
approach. Random Prism also incorporates J-pruning for R-PrismTCS and Ran-
dom Forests’ bagging approach. Contrary to Random Forests and Random Decision
Forests, Random Prism uses a weighted majority voting system instead of a plain
majority voting system, in order to take the individual classifier’s classification ac-
curacy into account. Also Random Prism does not take all classifiers into account,
the user can define the percentage of classifiers to be used forclassification. Random
Prism will select only the classifiers with the highest classification accuracy for the
classification task.

Random Prism has been evaluated on 15 datasets from the UCI repository and
has been shown to produce a better classification accuracy on9 cases compared with
PrismTCS. In two cases the classification accuracy was the same as for PrismTCS.
In two further cases the classification accuracy was slightly below PrismTCS’s ac-
curacy and only in two cases was it much worse than PrismTCS’saccuracy.

Ongoing work on Random Prism comprises the development of a distributed /
parallel version in order to make Random Prism scale better on large datasets. For
this the MapReduce framework is considered in order to distribute the induction
of the individual classifiers to different machines in a cluster of workstations. This
could be realised using a open source implementation of MapReduce called Hadoop.
Furthermore a variety of Random Prism versions are planned,comprising different
Prism classifiers as base classifiers or even hybrid ensemblelearners comprising
different versions of Prism in one ensemble learner or possibly a mix of decision
tree and Prism classifiers.

Acknowledgements We would like to acknowledge Mohamed Medhat Gaber for his advice dur-
ing the implementation of the Random Prism algorithm.



Random Prism: An Alternative to Random Forests

References

1. Hadoop, http://hadoop.apache.org/mapreduce/ 2011.
2. C L Blake and C J Merz. UCI repository of machine learning databases. Technical report,

University of California, Irvine, Department of Information and Computer Sciences, 1998.
3. M A Bramer. Automatic induction of classification rules from examples using N-Prism.

In Research and Development in Intelligent Systems XVI, pages 99–121, Cambridge, 2000.
Springer-Verlag.

4. M A Bramer. An information-theoretic approach to the pre-pruning of classification rules. In
B Neumann M Musen and R Studer, editors,Intelligent Information Processing, pages 201–
212. Kluwer, 2002.

5. M A Bramer. Inducer: a public domain workbench for data mining. International Journal of
Systems Science, 36(14):909–919, 2005.

6. Leo Breiman. Bagging predictors.Machine Learning, 24(2):123–140, 1996.
7. Leo Breiman. Random forests.Machine Learning, 45(1):5–32, 2001.
8. J. Cendrowska. PRISM: an algorithm for inducing modular rules. International Journal of

Man-Machine Studies, 27(4):349–370, 1987.
9. Philip Chan and Salvatore J Stolfo. Experiments on multistrategy learning by meta learning. In

Proc. Second Intl. Conference on Information and Knowledge Management, pages 314–323,
1993.

10. Philip Chan and Salvatore J Stolfo. Meta-Learning for multi strategy and parallel learning.
In Proceedings. Second International Workshop on Multistrategy Learning, pages 150–165,
1993.

11. Nitesh V. Chawla, Lawrence O. Hall, Kevin W. Bowyer, and W. Philip Kegelmeyer. Learning
ensembles from bites: A scalable and accurate approach.J. Mach. Learn. Res., 5:421–451,
December 2004.

12. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplifieddata processing on large clusters.
Commun. ACM, 51:107–113, January 2008.

13. Saso Dzeroski and Bernard Zenko. Is combining classifiers with stacking better than selecting
the best one?Machine Learning, 54:255–273, 2004.

14. Jiawei Han and Micheline Kamber.Data Mining: Concepts and Techniques. Morgan Kauf-
mann, 2001.

15. Tin Kam Ho. Random decision forests.Document Analysis and Recognition, International
Conference on, 1:278, 1995.

16. R S Michalski. On the Quasi-Minimal solution of the general covering problem. InProceed-
ings of the Fifth International Symposium on Information Processing, pages 125–128, Bled,
Yugoslavia, 1969.

17. Domingos P. and Hulten G. Mining high-speed data streams. In In International Conference
on Knowledge Discovery and Data Mining, pages 71–81, 2000.

18. Biswanath Panda, Joshua S. Herbach, Sugato Basu, and Roberto J. Bayardo. Planet: massively
parallel learning of tree ensembles with mapreduce.Proc. VLDB Endow., 2:1426–1437, Au-
gust 2009.

19. Foster Provost. Distributed data mining: Scaling up andbeyond. InAdvances in Distributed
and Parallel Knowledge Discovery, pages 3–27. MIT Press, 2000.

20. R J Quinlan.C4.5: programs for machine learning. Morgan Kaufmann, 1993.
21. Ross J Quinlan. Induction of decision trees.Machine Learning, 1(1):81–106, 1986.
22. P. Smyth and R M Goodman. An information theoretic approach to rule induction from

databases.Transactions on Knowledge and Data Engineering, 4(4):301–316, 1992.
23. F T Stahl, M A Bramer, and M Adda. PMCRI: A parallel modularclassification rule induction

framework. InMLDM, pages 148–162. Springer, 2009.
24. Frederic Stahl, Max Bramer, and Mo Adda. J-PMCRI: a methodology for inducing pre-pruned

modular classification rules.IFIP Advances in Information and Communication Technology,
331:47–56, 2010.



Frederic Stahl and Max Bramer

25. Frederic Stahl, Max Bramer, and Mo Adda. Parallel rule induction with information theoretic
pre-pruning. InResearch and Development in Intelligent Systems XXVI, volume 4, pages
151–164. Springerlink, 2010.

26. Frederic Stahl, Mohamed Medhat Gaber, Max Bramer, and Phillip S. Yu. Distributed hoeffd-
ing trees for pocket data mining. InThe 2011 International Conference on High Performance
Computing and Simulation, Istanbul, Turkey, in Press (2011).

27. Frederic Stahl, Mohamed Medhat Gaber, Han Liu, Max Bramer, and Phillip S. Yu. Distributed
classification for pocket data mining. In19th International Symposium on Methodologies for
Intelligent Systems, Warsaw, Poland, in Press (2011). Springer.

28. Frederic T. Stahl and Max Bramer. Induction of modular classification rules: Using jmax-
pruning. InSGAI Conf.’10, pages 79–92, 2010.

29. Frederic T. Stahl, Max Bramer, and Mo Adda. Parallel induction of modular classification
rules. InSGAI Conf., pages lookup–lookup. Springer, 2008.

30. Frederic T. Stahl, Mohamed Medhat Gaber, Max Bramer, andPhilip S. Yu. Pocket data min-
ing: Towards collaborative data mining in mobile computingenvironments. InICTAI (2)’10,
pages 323–330, 2010.

31. I H Witten and F Eibe.Data Mining: Practical Machine Learning Tools and Techniques with
Java Implementations. Morgan Kaufmann, 1999.


