203 research outputs found

    Physical limitations to the spatial resolution of solid-state detectors

    Full text link
    In this paper we explore the effect of δ\delta-ray emission, fluctuations in th e signal deposition on the detection of charged particles in silicon-based detec tors. We show that these two effects ultimately limit the resolution that can be achieved by interpolation of the signal in finely segmented position-sensitive solid-state devices.Comment: 5 page

    Sharp crossover from composite fermionization to phase separation in mesoscopic mixtures of ultracold bosons

    Get PDF
    We show that a two-component mixture of a few repulsively interacting ultracold atoms in a one-dimensional trap possesses very different quantum regimes and that the crossover between them can be induced by tuning the interactions in one of the species. In the composite fermionization regime, where the interactions between both components are large, none of the species show large occupation of any natural orbital. Our results show that by increasing the interaction in one of the species, one can reach the phase-separated regime. In this regime, the weakly interacting component stays at the center of the trap and becomes almost fully phase coherent, while the strongly interacting component is displaced to the edges of the trap. The crossover is sharp, as observed in the in the energy and the in the largest occupation of a natural orbital of the weakly interacting species. Such a transition is a purely mesoscopic effect which disappears for large atom numbers.Comment: 5 pages, 3 figure

    A customizable open-source framework for measuring and equalizing e2e delays in shared video watching

    Get PDF
    Low-latency and media sync are essential requirements to enable interactive multi-party services, such as Social TV. In this work, we present an open-source and customizable framework that allows measuring end-to-end (e2e) video delays and provides support for different type

    Distinguibility, degeneracy, and correlations in three harmonically trapped bosons in one dimension

    Full text link
    We study a system of two bosons of one species and a third atom of a second species in a one-dimensional parabolic trap at zero temperature. We assume contact repulsive inter- and intraspecies interactions. By means of an exact diagonalization method we calculate the ground and excited states for the whole range of interactions. We use discrete group theory to classify the eigenstates according to the symmetry of the interaction potential. We also propose and validate analytical Ansätze gaining physical insight over the numerically obtained wave functions. We show that, for both approaches, it is crucial to take into account that the distinguishability of the third atom implies the absence of any restriction over the wave function when interchanging this boson with any of the other two. We find that there are degeneracies in the spectra in some limiting regimes, that is, when the interspecies and/or the intraspecies interactions tend to infinity. This is in contrast with the three-identical boson system, where no degeneracy occurs in these limits. We show that, when tuning both types of interactions through a protocol that keeps them equal while they are increased towards infinity, the systems's ground state resembles that of three indistinguishable bosons. Contrarily, the systems's ground state is different from that of three-identical bosons when both types of interactions are increased towards infinity through protocols that do not restrict them to be equal. We study the coherence and correlations of the system as the interactions are tuned through different protocols, which permit us to build up different correlations in the system and lead to different spatial distributions of the three atoms

    Manufacturing and Characterization of Green Composites with Partially Biobased Epoxy Resin and Flaxseed Flour Wastes

    Full text link
    [EN] In the present work, green¿composites from a partially biobased epoxy resin (BioEP) reinforced with lignocellulosic particles, obtained from flax industry by¿products or wastes, have been manufactured by casting. In this study, the flaxseed has been crushed by two different mechanical milling processes to achieve different particle sizes, namely coarse size (CFF), and fine size (FFF) particle flaxseed flour, with a particle size ranging between 100¿220 ¿m and 40¿140 ¿m respectively. Subsequently, different loadings of each particle size (10, 20, 30, and 40 wt%) were mixed with the BioEP resin and poured into a mold and subjected to a curing cycle to obtain solid samples for mechanical, thermal, water absorption, and morphological characterization. The main aim of this research was to study the effect of the particle size and its content on the overall properties of composites with BioEP. The results show that the best mechanical properties were obtained for composites with a low reinforcement content (10 wt%) and with the finest particle size (FFF) due to a better dispersion into the matrix, and a better polymer¿particle interaction too. This also resulted in a lower water absorption capacity due to the presence of fewer voids in the developed composites. Therefore, this study shows the feasibility of using flax wastes from the seeds as a filler in highly environmentally friendly composites with a wood¿like appearance with potential use in furniture or automotive sectors.This research was funded by Spanish Ministry of Science, Innovation, and Universities (MICIU), project numbers MAT2017-84909-C2-2-R. This work was supported by the POLISABIO program grant number (2019-A02). D. Lascano thanks Universitat Politècnica de València (UPV) for the grant received through the PAID-01-18 program. D. Garcia-Garcia wants to thank Generalitat Valenciana (GVA) for their financial support through a post-doctoral grant (APOSTD/2019/201). S. Rojas-Lema is a recipient of a Santiago Grisolía contract (GRISOLIAP/2019/132) from GVA. L. Quiles-Carrillo wants to thank GV for his FPI grant (ACIF/2016/182) and MECD for his FPU grant (FPU15/03812). Microscopy services at UPV are acknowledged for their help in collecting and analyzing FESEM images.Lascano-Aimacaña, DS.; Garcia-Garcia, D.; Rojas-Lema, SP.; Quiles-Carrillo, L.; Balart, R.; Boronat, T. (2020). Manufacturing and Characterization of Green Composites with Partially Biobased Epoxy Resin and Flaxseed Flour Wastes. Applied Sciences. 10(11):1-23. https://doi.org/10.3390/app10113688S1231011Capezza, A. J., Newson, W. R., Olsson, R. T., Hedenqvist, M. S., & Johansson, E. (2019). Advances in the Use of Protein-Based Materials: Toward Sustainable Naturally Sourced Absorbent Materials. ACS Sustainable Chemistry & Engineering, 7(5), 4532-4547. doi:10.1021/acssuschemeng.8b05400Babu, R. P., O’Connor, K., & Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2(1), 8. doi:10.1186/2194-0517-2-8Kim, J.-Y., Lee, H. W., Lee, S. M., Jae, J., & Park, Y.-K. (2019). Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresource Technology, 279, 373-384. doi:10.1016/j.biortech.2019.01.055Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design, 68, 177-185. doi:10.1016/j.matdes.2014.12.027Naghmouchi, I., Mutjé, P., & Boufi, S. (2015). Olive stones flour as reinforcement in polypropylene composites: A step forward in the valorization of the solid waste from the olive oil industry. Industrial Crops and Products, 72, 183-191. doi:10.1016/j.indcrop.2014.11.051Zaaba, N. F., & Ismail, H. (2019). Thermoplastic/Natural Filler Composites: A Short Review. Journal of Physical Science, 30(Supp.1), 81-99. doi:10.21315/jps2019.30.s1.5Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037Prabu, V. A., Johnson, R. D. J., Amuthakkannan, P., & Manikandan, V. (2017). Usage of industrial wastes as particulate composite for environment management: Hardness, Tensile and Impact studies. Journal of Environmental Chemical Engineering, 5(1), 1289-1301. doi:10.1016/j.jece.2017.02.007Prabhakar, M. N., Shah, A. U. R., Rao, K. C., & Song, J.-I. (2015). Mechanical and thermal properties of epoxy composites reinforced with waste peanut shell powder as a bio-filler. Fibers and Polymers, 16(5), 1119-1124. doi:10.1007/s12221-015-1119-1Ikladious, N., Shukry, N., El-Kalyoubi, S., Asaad, J., Mansour, S., Tawfik, S., & Abou-Zeid, R. (2017). Eco-friendly composites based on peanut shell powder / unsaturated polyester resin. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5), 955-964. doi:10.1177/1464420717722377Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017VK, S., & G, B. (2016). Experimental Determination of Mechanical and Physical Properties of Almond Shell Particles Filled Biocomposite in Modified Epoxy Resin. Journal of Material Science & Engineering, 05(03). doi:10.4172/2169-0022.1000246Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031Barczewski, M., Sałasińska, K., & Szulc, J. (2019). Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polymer Testing, 75, 1-11. doi:10.1016/j.polymertesting.2019.01.017Balart, J. F., Montanes, N., Fombuena, V., Boronat, T., & Sánchez-Nacher, L. (2017). Disintegration in Compost Conditions and Water Uptake of Green Composites from Poly(Lactic Acid) and Hazelnut Shell Flour. Journal of Polymers and the Environment, 26(2), 701-715. doi:10.1007/s10924-017-0988-3Sharma, H., Singh, I., & Misra, J. P. (2019). Mechanical and thermal behaviour of food waste (Citrus limetta peel) fillers–based novel epoxy composites. Polymers and Polymer Composites, 27(9), 527-535. doi:10.1177/0967391119851012Garcia-Garcia, D., Quiles-Carrillo, L., Montanes, N., Fombuena, V., & Balart, R. (2017). Manufacturing and Characterization of Composite Fibreboards with Posidonia oceanica Wastes with an Environmentally-Friendly Binder from Epoxy Resin. Materials, 11(1), 35. doi:10.3390/ma11010035Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042Koutsomitopoulou, A. F., Bénézet, J. C., Bergeret, A., & Papanicolaou, G. C. (2014). Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites. Powder Technology, 255, 10-16. doi:10.1016/j.powtec.2013.10.047Naghmouchi, I., Espinach, F. X., Mutjé, P., & Boufi, S. (2015). Polypropylene composites based on lignocellulosic fillers: How the filler morphology affects the composite properties. Materials & Design (1980-2015), 65, 454-461. doi:10.1016/j.matdes.2014.09.047D’Amato, D., Veijonaho, S., & Toppinen, A. (2020). Towards sustainability? Forest-based circular bioeconomy business models in Finnish SMEs. Forest Policy and Economics, 110, 101848. doi:10.1016/j.forpol.2018.12.004Capezza, A. J., Lundman, M., Olsson, R. T., Newson, W. R., Hedenqvist, M. S., & Johansson, E. (2020). Carboxylated Wheat Gluten Proteins: A Green Solution for Production of Sustainable Superabsorbent Materials. Biomacromolecules, 21(5), 1709-1719. doi:10.1021/acs.biomac.9b01646Barczewski, M., Mysiukiewicz, O., & Kloziński, A. (2018). Complex modification effect of linseed cake as an agricultural waste filler used in high density polyethylene composites. Iranian Polymer Journal, 27(9), 677-688. doi:10.1007/s13726-018-0644-3Food and Agriculture Organizationhttp://www.fao.orgZhang, Z.-S., Wang, L.-J., Li, D., Jiao, S.-S., Chen, X. D., & Mao, Z.-H. (2008). Ultrasound-assisted extraction of oil from flaxseed. Separation and Purification Technology, 62(1), 192-198. doi:10.1016/j.seppur.2008.01.014Bekhit, A. E.-D. A., Shavandi, A., Jodjaja, T., Birch, J., Teh, S., Mohamed Ahmed, I. A., … Bekhit, A. A. (2018). Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatalysis and Agricultural Biotechnology, 13, 129-152. doi:10.1016/j.bcab.2017.11.017Zhang, Z.-S., Wang, L.-J., Li, D., Li, S.-J., & Özkan, N. (2011). Characteristics of Flaxseed Oil from Two Different Flax Plants. International Journal of Food Properties, 14(6), 1286-1296. doi:10.1080/10942911003650296Mannucci, A., Castagna, A., Santin, M., Serra, A., Mele, M., & Ranieri, A. (2019). Quality of flaxseed oil cake under different storage conditions. LWT, 104, 84-90. doi:10.1016/j.lwt.2019.01.035Wirkijowska, A., Zarzycki, P., Sobota, A., Nawrocka, A., Blicharz-Kania, A., & Andrejko, D. (2020). The possibility of using by-products from the flaxseed industry for functional bread production. LWT, 118, 108860. doi:10.1016/j.lwt.2019.108860Chan, C. M., Vandi, L.-J., Pratt, S., Halley, P., Richardson, D., Werker, A., & Laycock, B. (2017). Composites of Wood and Biodegradable Thermoplastics: A Review. Polymer Reviews, 58(3), 444-494. doi:10.1080/15583724.2017.1380039España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421Bertomeu, D., García-Sanoguera, D., Fenollar, O., Boronat, T., & Balart, R. (2012). Use of eco-friendly epoxy resins from renewable resources as potential substitutes of petrochemical epoxy resins for ambient cured composites with flax reinforcements. Polymer Composites, 33(5), 683-692. doi:10.1002/pc.22192Samper, M. D., Fombuena, V., Boronat, T., García-Sanoguera, D., & Balart, R. (2012). Thermal and Mechanical Characterization of Epoxy Resins (ELO and ESO) Cured with Anhydrides. Journal of the American Oil Chemists’ Society. doi:10.1007/s11746-012-2041-yFombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043Anusic, A., Resch‐Fauster, K., Mahendran, A. R., & Wuzella, G. (2019). Anhydride Cured Bio‐Based Epoxy Resin: Effect of Moisture on Thermal and Mechanical Properties. Macromolecular Materials and Engineering, 304(7), 1900031. doi:10.1002/mame.201900031Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031Fenollar, O., Sanchez-Nacher, L., Garcia-Sanoguera, D., López, J., & Balart, R. (2009). The effect of the curing time and temperature on final properties of flexible PVC with an epoxidized fatty acid ester as natural-based plasticizer. Journal of Materials Science, 44(14), 3702-3711. doi:10.1007/s10853-009-3495-7Liu, X. Q., Huang, W., Jiang, Y. H., Zhu, J., & Zhang, C. Z. (2012). Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts. Express Polymer Letters, 6(4), 293-298. doi:10.3144/expresspolymlett.2012.32Niedermann, P., Szebényi, G., & Toldy, A. (2015). Characterization of high glass transition temperature sugar-based epoxy resin composites with jute and carbon fibre reinforcement. Composites Science and Technology, 117, 62-68. doi:10.1016/j.compscitech.2015.06.001Niedermann, P., Szebényi, G., & Toldy, A. (2014). Effect of Epoxidized Soybean Oil on Curing, Rheological, Mechanical and Thermal Properties of Aromatic and Aliphatic Epoxy Resins. Journal of Polymers and the Environment, 22(4), 525-536. doi:10.1007/s10924-014-0673-8Wu, Y., Wang, Y., Yang, F., Wang, J., & Wang, X. (2020). Study on the Properties of Transparent Bamboo Prepared by Epoxy Resin Impregnation. Polymers, 12(4), 863. doi:10.3390/polym12040863Salasinska, K., Mizera, K., Barczewski, M., Borucka, M., Gloc, M., Celiński, M., & Gajek, A. (2019). The influence of degree of fragmentation of Pinus sibirica on flammability, thermal and thermomechanical behavior of the epoxy-composites. Polymer Testing, 79, 106036. doi:10.1016/j.polymertesting.2019.106036Kumar, R., Kumar, K., & Bhowmik, S. (2018). Mechanical characterization and quantification of tensile, fracture and viscoelastic characteristics of wood filler reinforced epoxy composite. Wood Science and Technology, 52(3), 677-699. doi:10.1007/s00226-018-0995-0Stabik, J., & Chomiak, M. (2016). Graded epoxy-hard coal composites: Analysis of filler particle distribution in the epoxy matrix. Journal of Composite Materials, 50(26), 3663-3677. doi:10.1177/0021998315623626Lascano, D., Quiles-Carrillo, L., Torres-Giner, S., Boronat, T., & Montanes, N. (2019). Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based Epoxy Resins with Improved Toughness. Polymers, 11(8), 1354. doi:10.3390/polym11081354Agüero, Á., Lascano, D., Garcia-Sanoguera, D., Fenollar, O., & Torres-Giner, S. (2020). Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance. Sustainability, 12(2), 652. doi:10.3390/su12020652Bledzki, A. K., Mamun, A. A., & Volk, J. (2010). Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties. Composites Science and Technology, 70(5), 840-846. doi:10.1016/j.compscitech.2010.01.022Salasinska, K., Barczewski, M., Górny, R., & Kloziński, A. (2017). Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polymer Bulletin, 75(6), 2511-2528. doi:10.1007/s00289-017-2163-3Kwon, H.-J., Sunthornvarabhas, J., Park, J.-W., Lee, J.-H., Kim, H.-J., Piyachomkwan, K., … Cho, D. (2014). Tensile properties of kenaf fiber and corn husk flour reinforced poly(lactic acid) hybrid bio-composites: Role of aspect ratio of natural fibers. Composites Part B: Engineering, 56, 232-237. doi:10.1016/j.compositesb.2013.08.003https://www.novowood.it/en/download-technical-sheet-wpc_39c7.htmlhttps://www.jeluplast.com/wp-content/uploads/2013/09/WPC-PE-H70-800-03.pdfGarcía-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 78, 256-265. doi:10.1016/j.compositesb.2015.03.080Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment, 18(3), 422-429. doi:10.1007/s10924-010-0185-0Raju, G. U., & Kumarappa, S. (2012). Experimental Study on Mechanical and Thermal Properties of Epoxy Composites Filled with Agricultural Residue. Polymers from Renewable Resources, 3(3), 117-138. doi:10.1177/204124791200300303Chen, W.-H., & Kuo, P.-C. (2010). A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy, 35(6), 2580-2586. doi:10.1016/j.energy.2010.02.054Moriana, R., Vilaplana, F., & Ek, M. (2015). Forest residues as renewable resources for bio-based polymeric materials and bioenergy: chemical composition, structure and thermal properties. Cellulose, 22(5), 3409-3423. doi:10.1007/s10570-015-0738-4Sengupta, S., Maity, P., Ray, D., & Mukhopadhyay, A. (2013). Stearic acid as coupling agent in fly ash reinforced recycled polypropylene matrix composites: Structural, mechanical, and thermal characterizations. Journal of Applied Polymer Science, 130(3), 1996-2004. doi:10.1002/app.39413Mysiukiewicz, O., & Barczewski, M. (2018). Utilization of linseed cake as a postagricultural functional filler for poly(lactic acid) green composites. Journal of Applied Polymer Science, 136(10), 47152. doi:10.1002/app.47152Balart, J. F., García-Sanoguera, D., Balart, R., Boronat, T., & Sánchez-Nacher, L. (2016). Manufacturing and properties of biobased thermoplastic composites from poly(lactid acid) and hazelnut shell wastes. Polymer Composites, 39(3), 848-857. doi:10.1002/pc.24007Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063Liminana, P., Quiles-Carrillo, L., Boronat, T., Balart, R., & Montanes, N. (2018). The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). Materials, 11(11), 2179. doi:10.3390/ma11112179Reixach, R., Puig, J., Méndez, J. A., Gironès, J., Espinach, F. X., Arbat, G., & Mutjé, P. (2015). Orange Wood Fiber Reinforced Polypropylene Composites: Thermal Properties. BioResources, 10(2). doi:10.15376/biores.10.2.2156-2166Akil, H. M., Cheng, L. W., Mohd Ishak, Z. A., Abu Bakar, A., & Abd Rahman, M. A. (2009). Water absorption study on pultruded jute fibre reinforced unsaturated polyester composites. Composites Science and Technology, 69(11-12), 1942-1948. doi:10.1016/j.compscitech.2009.04.014Ferrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix and posidonia oceanica waste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567Alander, B., Capezza, A. J., Wu, Q., Johansson, E., Olsson, R. T., & Hedenqvist, M. S. (2018). A facile way of making inexpensive rigid and soft protein biofoams with rapid liquid absorption. Industrial Crops and Products, 119, 41-48. doi:10.1016/j.indcrop.2018.03.069Ben Daly, H., Ben Brahim, H., Hfaied, N., Harchay, M., & Boukhili, R. (2007). Investigation of water absorption in pultruded composites containing fillers and low profile additives. Polymer Composites, 28(3), 355-364. doi:10.1002/pc.20243UDHAYASANKAR, R., & KATHIKEYAN, B. (2019). PREPARATION AND PROPERTIES OF CASHEW NUT SHELL LIQUID-BASED COMPOSITE REINFORCED BY COCONUT SHELL PARTICLES. Surface Review and Letters, 26(04), 1850174. doi:10.1142/s0218625x18501743Naghmouchi, I., Mutjé, P., & Boufi, S. (2014). Polyvinyl chloride composites filled with olive stone flour: Mechanical, thermal, and water absorption properties. Journal of Applied Polymer Science, 131(22), n/a-n/a. doi:10.1002/app.41083Thirmizir, M. Z. A., Ishak, Z. A. M., Taib, R. M., Sudin, R., & Leong, Y. W. (2011). Mechanical, Water Absorption and Dimensional Stability Studies of Kenaf Bast Fibre-Filled Poly(butylene succinate) Composites. Polymer-Plastics Technology and Engineering, 50(4), 339-348. doi:10.1080/03602559.2010.531871Ishak, Z. A. M., Yow, B. N., Ng, B. L., Khalil, H. P. S. A., & Rozman, H. D. (2001). Hygrothermal aging and tensile behavior of injection-molded rice husk-filled polypropylene composites. Journal of Applied Polymer Science, 81(3), 742-753. doi:10.1002/app.1491Sapuan, S. M., & Maleque, M. A. (2005). Design and fabrication of natural woven fabric reinforced epoxy composite for household telephone stand. Materials & Design, 26(1), 65-71. doi:10.1016/j.matdes.2004.03.01

    Elucidation of the Interaction Mechanism between Organic Chiral Cages with Biomolecules through Nuclear Magnetic Resonance and Theoretical Studies

    Full text link
    [EN] A multinuclear NMR has been carried out to elucidate the mechanism of action of CC3-R box-type chiral materials for the separation of enantiomers, supported by theoretical calculations. The potential of these materials to be used as chiral resolution agents through NMR is evidence in this study.Program Severo Ochoa SEV-2016-0683 is gratefully acknowledged. S.S-F. thanks MEC for his Severo Ochoa Grant SPV-2013-067884, P.O.-B. thanks MEC for his Ramon y Cajal contract RYC-2014-16620. M.B. and F.R. thank the financial support by the Spanish Government (MAT2017-82288-C2-1-P and MAT2015-71842-P). The authors thank the MULTY2-HYCAT (EU-Horizon 2020 funded project under grant agreement no. 720783). The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization.Saez-Ferre, S.; Boronat Zaragoza, M.; Cantin Sanz, A.; Rey Garcia, F.; Oña-Burgos, P. (2018). Elucidation of the Interaction Mechanism between Organic Chiral Cages with Biomolecules through Nuclear Magnetic Resonance and Theoretical Studies. The Journal of Physical Chemistry C. 122(29):16821-16829. https://doi.org/10.1021/acs.jpcc.8b05069S16821168291222

    Review of Media Sync Reference Models: Advances and Open Issues

    Get PDF
    The advances on multimedia systems have brought new challenges and requirements for media sync. Over the years, many media sync solutions have been devised. Due to this variety, several studies have surveyed the existing solutions and proposed classification schemes or reference models for media sync. This paper claims the relevance of media sync reference models to systematically structure and synthesize this research area. Accordingly, a review of the existing reference models is provided, by examining the involved features, components and layers in each one of them. Likewise, some inconsistencies, open issues and missing components in existing reference models have been identified. Accordingly, this study reflects the need for a new modular and extensible theoretical framework or reference model to efficiently comprehend the overall media sync research area
    corecore