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Abstract

This paper presents an inspection policy to detect failures of a single com-
ponent system that remain hidden otherwise. Inspection reveals whether
the unit is in good or failed state. The possibility of non perfect testing is
assumed, thus, successive inspections may fail detecting a failure or result
in a false alarm. The occurrence of false alarms is reported in optical fire
detectors and inspection of printing circuit boards which are on the basis of
electronic systems. A two-phase inspection schedule takes into account the
changes in component’s aging. The system may undergo different inspection
frequencies to detect both early failures or those due to the natural deterio-
ration in the system as time goes by. The examples reveal the advantages of
a two-phase inspection when comparing with the unique interval inspection.
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1. Introduction

Systems that are not continuously monitored may undergo failures that
are dormant and only detected by periodic tests or inspections. Safety sys-
tems and those that alternate working and idle periods are typical examples.
For safety systems the consequences of an undetected failure can be assessed
in terms of the expected cost of an accident that is likely to occur whereas
in production lines the penalty is due to defective production. The cost
incurred during the downtime period should be weighted against the main-
tenance costs in order to make the maintenance procedure to be profitable.
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There is a wide research on inspection policies that deal with maintenance
optimization, focusing on availability, cost or both. Vaurio [1] analyzes the
cost rate as well as the availability for a system that experiences periodic
inspections at times kT, k = 1, 2, . . ., solving optimum test and maintenance
intervals. Biswas et al [2] studies the availability of a periodically inspected
system which is maintained through a fixed number of imperfect repairs be-
fore being replaced. Nakagawa [3] consider periodic check intervals where
the unit after check has the same age with probability p or is as-good-as-new
with probability 1-p. Nakagawa and Yasui [4] proposes an inspection model
under which the cost of replacement is higher when the number of failures
exceeds a given threshold.

An imperfect testing may result in a false alarm, i.e., a test indicating
a failure when no such a failure has occurred. They are responsible for
shutdowns that may lead to unusually high costs.

Regarding protection systems, optical fire detectors can respond to many
sources of ultraviolet (UV) and infrared (IR) radiations, including non fire
sources. Goedeke [5] reports the occurrence of false alarms of this type of
systems in an study carried out in aircraft hangars. Goedeke and Gross [6]
identified possible sources of UV, IR and visible radiations that may cause
false alarms in optical fire detectors, affecting its fire detection performance.

Moreover for highly complex systems, false alarms become a serious in-
covenient. This is an inherent problem with electronic systems, specially
those aiming at prognostics. Electronic prognostics is commonly used in
high-reliability and high-availability systems to detect failures. This tech-
nique can be found in cars where the state of main parts (airbags, stability
control, oil) is checked by means of circuitry. Sometimes car users report
on alarm signals which turn out to be due to a testing system failure rather
than to a main system failure as a usual checking reveals. In turn, those
false alarms often carry relevant costs. Chen et al [7] present an automatic
optical system to inspect defects in flexible printing circuits (FPC). FPC is a
sort of printing circuit board widely used in notebooks, cell phones and digi-
tal cameras. The automatic optical inspection satisfy the demand of quality
and speed in electronic devices being progressively smaller and present a false
alarm rate less than 10%.

Bad́ıa et al [8] present an inspection policy with periodic tests that have
no effect on systems’ reliability and consider the possibility of non-perfect
inspections. A less than perfect testing is also considered in Bad́ıa et al [9] for
a system that alternates operating and idle periods its failures being revealed
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and unrevealed, respectively. Thus, the inspection may not detect a failure
that remain undiscovered after successive inspections or erroneously states
that a failure has occurred, that is a false alarm. Periodic inspections do not
provide a suitable correspondence to the change in unit’s aging whereas a
two-phase inspection policy does. Cavalcante et al [10] point out the efficacy
of a two-phase inspection policy more frequent in early life and less frequent
in later stages when component arises from a heterogeneous population, being
a mixture of distributions the time to failure. Inspections corresponding to
the first phase aim at preventing early failures. The second phase comprises
a more relaxed inspection provided that the unit has passed the initial tests
giving evidence of being strong enough. Scarf et al [11] consider a policy
which combines inspections and age based replacements. Inspections aim
at preventing early failures as in burn-in processes. The goal of preventive
maintenance is to reduce failures due to wear-out in later life. Bad́ıa et
al [8] consider a single inspection interval every T units of time. The model
described in the present work extends the previously cited work as it presents
a procedure with two different inspection intervals, T1 and T2. This policy
adapts itself to the changes in the system reliability. When we want to
detect ‘infant’ failures then T1 < T2. However the inspection frequency is
the opposite, T1 > T2, provided that failures due to wear-out are of a major
concern. Mandatory inspection of cars in Spain serves as an instance of
T1 > T2. When a car reaches 4 years old it has to be inspected every two
years until it is 10 years old. From that moment on the inspection takes
place every year. This paper presents a pure two-phase inspection policy
under which a perfect testing is no longer assumed.

The paper is organized as follows. Section 2 describes both the inspection
policy and the model assumptions along with the calculations to obtain the
cost function. It lays the foundations for further works. Section 3 analyzes
the implications of different reliability classes for the optimum policy. The
examples therein illustrate the proposed inspection procedure. The conclu-
sions of this paper are presented in Section 4.

2. The inspection policy

Consider a single-unit system whose failures are detected by some type of
testing. From new, M inspections are carried out at times jT1, j = 1, 2 . . .M .
The unit is renewed whenever an inspection points out the occurrence of a
failure and with no effect on its reliability otherwise. In the latter case the
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unit is considered to be ‘as-good-as-old’. If the unit reaches MT1 and no
failure has been detected, inspections from MT1 on are carried out at times
jT2, j = 1, 2, . . ..

A less than perfect testing is considered. Thus an inspection may give
a false alarm or on the contrary it can fail to detect a failed unit. False
alarms and undetected failures correspond, respectively, to type I and type
II statistical errors.

We take into account the costs derived from inspections, renewal of the
unit, type I errors as well as those due to the downtime incurred while a
failed unit remains undetected.

The following notation will be used:

X time to failure of the unit

R(x) reliability function R(x) = P (X > x)

µ mean time to failure

T1 time between scheduled inspections in phase 1

T2 time between scheduled inspections in phase 2

T0j random duration of the jth inspection

t0 mean duration of the jth inspection

Tr random time for renewal of a failed unit

tr mean time of the renewal

K1 number of inspections in phase 1 previous to failure or to the beginning
of phase 2 whatever comes first

K2 number of inspections in phase 2 (from MT1 on) previous to failure

K3 number of inspections in phase 1 after failure until its detection or to
the beginning of phase 2 whatever comes first

K4 number of inspections in phase 2 after failure until its detection

α probability of a false alarm
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β probability of not detecting a failure in an inspection item nI number of
false alarms in a cycle

c0 unitary cost of inspection

cI cost of a false alarm

cr cost of the renewal of the unit

cd cost-rate due to the downtime

The following calculations aim at obtaining the probability distribution
of K1. The range of K1 is {0, 1, 2, . . . , M}

For i = 0, . . . , M − 1

P (K1 = i) = P (iT1 ≤ X < (i + 1)T1) = R(iT1)−R((i + 1)T1)

For i = M

P (K1 = M) = P (X ≥ MT1) = R(MT1)

Next, the expected value of K1 is obtained

E[K1] =
M−1∑
i=1

i(R(iT1)−R((i + 1)T1)) + MR(MT1) =

M∑
i=1

R(iT1) (1)

The number of inspections in phase 2 previous to failure, K2, takes on
the values {0, 1, 2, . . .} with the corresponding probabilities given below

P (K2 = 0) = P (X < MT1 + T2) = 1−R(MT1 + T2)

For i = 1, 2, . . .

P (K2 = i) = P (MT1+iT2 ≤ X < MT1+(i+1)T2) = R(MT1+iT2)−R(MT1+(i+1)T2)

The mean value of K2 is given as follows

E[K2] =
∞∑
i=1

i(R(MT1 + iT2)−R(MT1 + (i + 1)T2)) =

∞∑
i=1

R(MT1 + iT2) (2)
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The range of K3 (number of inspections in phase 1 after failure un-
til it is detected or inspections in phase 2 begin whichever occurs first) is
{0, 1, 2 . . . ,M}. Its probability function is obtained next with β denoting
the probability of not detecting a failure in an inspection.

P (K3 = 0) = P (X > MT1) = R(MT1)

For i = 1, 2, . . . , M

P (K3 = i) =

(R(0)−R((M − i)T1))β
i−1(1− β) + (R((M − i)T1)−R((M − i + 1)T1))β

i−1

Therefore

P (K3 = i) = βi−1(1− β) + R((M − i)T1)β
i −R((M − i + 1)T1)β

i−1

Now, the expectation of K3 is obtained

E[K3] = (1− β)
M∑
i=1

iβi−1 +
M∑
i=1

iβiR((M − i)T1)−
M∑
i=1

iβi−1R((M − i + 1)T1)

In addition

M∑
i=1

iβi−1 =
1−MβM + MβM+1 − βM

(1− β)2

E[K3] can also be expressed as follows

E[K3] =
1−MβM + MβM+1 − βM

(1− β)
+ MβM −

M∑
i=1

βM−iR(iT1) =

1− βM

1− β
−

M∑
i=1

βM−iR(iT1) (3)

We denote by A the following event: a failure occurs in (0,MT1) but it
is not detected in this interval.

P (A) =
M∑
i=1

(R((i− 1)T1)−R(iT1))β
M−(i−1) = S(T1,M, β)
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In addition B represents a failure occurring in (0,MT1) and being detected
in that interval.

P (B) =
M∑
i=1

(R((i− 1)T1)−R(iT1))(1− βM−(i−1))

The foregoing probabilities are used in further calculations involving the
number of inspections in phase 2 after failure until it is detected, K4. The
random variable K4 takes on the values {0, 1, 2, . . .} with the probabilities
given by

P (K4 = 0) = P (B) =
M∑
i=1

(R((i− 1)T1)−R(iT1))(1− βM−(i−1))

For j = 1, 2, . . .

P (K4 = j) = [S(T1,M, β) + R(MT1)] β
j−1(1− β)

And its corresponding expected value

E[K4] = (S(T1,M, β) + R(MT1))
∞∑

j=1

jβj−1(1− β) =

(S(T1,M, β) + R(MT1))
1

1− β
(4)

The length of a cycle, τ is given by

τ = (K1 + K3)T1 + (K2 + K4)T2 +

K1+K2+K3+K4∑
j=1

T0j + Tr

The expressions in (1), (2), (3), (4) lead to

E[τ ] = (T1 + t0)

(
M∑
i=1

(1− βM−i)R(iT1) +
1− βM

1− β

)
+ tr

(T2 + t0)

( ∞∑
i=1

R(MT1 + iT2) + (S(T1,M, β) + R(MT1))
1

1− β

)
(5)
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The period of downtime, D, is

D = τ −X

hence

E[D] = E[τ ]− µ (6)

The limiting expected proportion of time that the system is up, known as
limiting average availability constitutes a measure of interest. It is defined
as follows

AV =
E[U ]

E[U ] + E[D]

with E[U ] representing the expected uptime during a cycle. Moreover

E[U ] + E[D] = E[τ ]

In this case the foregoing expression turns out to be

AV =
µ

E[τ ]

The following calculations aim at obtaining the cost of a cycle:
The number of inspections in a cycle is K1 + K2 + K3 + K4 with c0 being

the unitary cost. Therefore, the mean cost of inspections in a cycle, Cin,
turns out to be

Cin = c0

(
M∑
i=1

(1− βM−i)R(iT1) +
1− βM

1− β

)
+

c0

( ∞∑
i=1

R(MT1 + iT2) + (S(T1,M, β) + R(MT1))
1

1− β

)
(7)

Next we consider the number of false alarms in a cycle, nI . Its conditional
distribution given K1 + K2 is binomial with parameters n = K1 + K2 and α.
Then

E[nI ] = E[E[nI |K1 + K2]] = α

(
M∑
i=1

R(iT1) +
∞∑
i=1

R(MT1 + iT2)

)
(8)
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Figure 1: Cost Function: c0 = 1, cI = 50, cr = 25, cd = 100, M? = 1

The cost of a cycle is

C(τ) = c0(K1 + K2 + K3 + K4) + cInI + cr + cdD

From (5),(6), (7) and (8), straightforward calculations lead to E[C(τ)] which
is expressed as follows

E[C(τ)] =

Cin + cIα

(
M∑
i=1

R(iT1) +
∞∑
i=1

R(MT1 + iT2)

)
+ cr + cdE[D] (9)

The objective function considered will be the cost per unit of time in the
long run, that is

Q(T1, T2,M) =
E[C(τ)]

E[τ ]
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a b µ M? T ?
1 T ?

2 Q? T ?
0 Q?

0

40 1.5 36.11 1 13.9 7.3 5522.65 8.4 5608.28
40 2.5 35.49 1 22.1 5.9 5269.44 8.4 5649.75
30 1.5 27.08 1 11.6 6.2 6371.38 7.3 6462.91
30 2.5 26.62 1 17.8 4.9 6102.43 7.3 6507.94
20 1.5 18.05 1 9.0 5.0 7717.58 5.9 7813.52
20 2.5 17.75 1 13.1 3.9 7436.74 5.9 7861.16
10 1.5 9.03 1 5.8 3.3 10328.74 4.1 10418.35
10 2.5 8.87 1 7.7 2.5 10065.40 4.2 10464.15
40 1 40 0 8.58 8.58 5367.65 8.58 5367.65
30 1 30 0 7.39 7.39 6197.68 7.39 6197.68
20 1 20 0 5.98 5.98 7517.77 5.98 7517.77
10 1 10 0 4.15 4.15 10094.58 4.15 10094.58
6 0.9 6.31 1 2.9 3.4 11925.03 3.18 11929.86
5 0.9 5.26 1 2.7 3.0 12629.14 2.88 12633.42
2 0.8 2.27 1 1.5 2 15560.59 1.77 15571.86
2 0.9 2.10 1 1.6 1.9 15762.99 1.73 15764.94
1 0.8 1.13 1 1.1 1.4 17321.99 1.19 17327.28

Table 1: Optimum decision values, M?, T ?
1 , T ?

2 and optimum cost, Q?, for a two phase
inspection policy. Optimum T ?

0 and Q?
0 under a single inspection interval

which is expressed as follows

Q(T1, T2,M) = cd+
Cin + cIα

(∑M
i=1 R(iT1) +

∑∞
i=1 R(MT1 + iT2)

)
+ cr − cdµ

E[τ ]

and E[τ ] given in (5).
Note that M = 0 or M = ∞ lead to a unique inspection interval. This

case corresponds to the single phase model given in Bad́ıa et al [8].
The plot in Figure 1 corresponds to the cost function when the time to

failure follows a Weibull distribution with scale parameter a = 40 and shape
parameter b = 1.5. The rest of the parameters are M? = 1, t0 = 2, tr = 2.5

3. Numerical examples

The following examples aim at providing some insight about the optimal
inspection policy (M?, T ?

1 , T ?
2 ). Several conditions leading to T ?

1 < T ?
2 or
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a=30, b=2.5 

a=40, b=2.5 

a=30, b=1.5 

a=40, b=1.5 

Figure 2: Failure Rate for IFR Weibull Distributions

T ?
1 > T ?

2 are studied. The time to failure is a Weibull distribution function
whose reliability function is

R(t) = e−(t/a)b

In addition the times of inspection and repair are, respectively, t0 = 1, tr = 5
along with the following the costs: c0 = 1, cI = 50, cr = 25, cd = 20000

Table 1 displays the optimum policy (M?, T ?
1 , T ?

2 ) and the optimum cost,
Q?, for different IFR and DFR times to failure. In addition the optimum
T ?

0 for the model with a unique inspection interval (Bad́ıa et al [8]) and the
corresponding optimum cost Q?

0 is also included.
The optimum policy (M?, T ?

1 , T ?
2 ) is obtained by the analytical procedure

proposed by Nakagawa [12] and Zequeira and Bérenguer [13] and it verifies:

Q(T ?
1 , T ?

2 ,M?) = min
T1,T2,M

Q(T1, T2,M) = min
M

Q(T ?
1M , T ?

2M ,M)
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where (T ?
1M , T ?

2M) represents the optimum (T1, T2) for a given M . The search
for the optimum policy has been restricted to low values of M as they corre-
spond to the the economically relevant region.

An inspection of Table 1 reveals the following interesting patterns:
For increasing failure rate (IFR) distributions (b > 1), the optimum in-

spection intervals verify T ?
1 > T ?

0 > T ?
2 . This makes sense provided that the

proneness of failure increases as time goes by due to the natural deteriora-
tion of the system. Thus, it pays to increase the inspection frequency. The
comparison of the optimum policy in the cases b = 1.5 and b = 2.5 leads to
report that the two-phase policy constitutes an inspection procedure better
adapted to the current reliability of the system than that based on a unique
inspection interval. The corresponding failure rates, h(t), for b = 2.5 and
b = 1.5 and different values of the scale parameter a are depicted in Figure 2.
It can be observed that h(t) is smaller in b = 2.5 than b = 1.5 for low values
of t whereas the situation is just the opposite when t is large. In the latter
case h(t) grows faster when b = 2.5 than b = 1.5. This shape of the failure
rate determines a more relaxed inspection in the first stage for b = 2.5 than
for b = 1.5 and the reversed policy in the second stage.

The cases corresponding to exponential distributions (b = 1) lead to
T ?

1 = T ?
2 , that is a single inspection interval. This result is consistent with

a two-phase inspection policy, trying to adapt the inspection to the actual
state of the system. Exponential distributions mean no deterioration neither
improvement so a unique interval fits for those systems experiencing this
invariant mode.

Regarding decreasing failure rate (DFR) distributions, the result is just
the opposite to the IFR case with T ?

1 < T ?
0 < T ?

2 . Under this assumption the
system experiences an improvement that determines a more relaxed inspec-
tion in the second stage. This result agrees with that obtained by Cavalcante
et al [10] in the inspection and preventive maintenance of heterogeneous pop-
ulations. These authors consider the time to failure to be a mixture of IFR
distributions as an explanation for the system improvement. Such a mix-
ture tends to decrease in the long run (Gurland and Sethuraman [14]). The
comparison of the shape of h(t) for b = 0.9 and b = 0.8 and common scale
parameter provides a reasonable explanation of the differences between the
inspection frequency in both cases. This study is similar to that given in
the IFR case and reveals that the two-phase policy is also adapted to the
reliability of the system when dealing with DFR distributions.

The optimum cost is not strictly monotonic respect to the mean time to
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a b µ AV 1 AV 2
40 1.5 36.11 0.7196 0.7239
40 2.5 35.49 0.7175 0.7366
30 1.5 27.08 0.6769 0.6815
30 2.5 26.62 0.6747 0.6949
20 1.5 18.05 0.6094 0.6142
20 2.5 17.75 0.6070 0.6282
10 1.5 9.03 0.4792 0.4836
10 2.5 8.87 0.4769 0.4968
6 0.9 6.31 0.4036 0.4038
5 0.9 5.26 0.3684 0.3686
2 0.8 2.27 0.2215 0.2221
2 0.9 2.10 0.2119 0.2120
1 0.8 1.13 0.1338 0.1341

Table 2: Limiting average availability under unique inspection interval (AV1) and the
two-phase inspection model (AV2)

failure, µ, but in general it tends to be larger for those systems with lower
mean time to failure, making more profitable the inspection of a system the
longer his expected life. Cost savings can be observed when comparing the
two-phase inspection policy with the model with a unique inspection interval
(Bad́ıa et al [8]). The reduction in the optimum cost in the examples reaches
6%.

Table 2 presents the results concerning the limiting mean availability
for the model with a unique inspection interval (AV1) and the two-phase
inspection policy (AV2). The latter provides larger values up to 4%.

4. Conclusions

This paper presents a new inspection policy in two stages where also the
possibility of less than perfect tests is assumed. The present work extends
that of Bad́ıa et al [8]. The policy based on two inspection intervals turns
out to be better adapted to the current reliability of the system than the
unique inspection model provided that the inspection frequency varies in the
former case. Thus, a more frequent testing can be carried out in the first
phase if the tester is concerned with early failures or, on the contrary, during
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the second phase provided that use and wear out make failures more likely
to occur. The examples dealing with IFR and DFR distribution give some
insight about the way that a two-phase inspection policy capture the changes
in the failure rate.

Apart from tests that fail detecting failures, false alarms are reported as a
major problem in some types of security systems such as optical fire detectors
as well as in several electronic systems. The unavailability and costs derived
from erroneous tests can not be neglected. Therefore an inspection policy
that takes into account the possibility of imperfect testing is suitable for
those systems.

When comparing with the unique interval model, the examples reveal
that the two-phase inspection policy produces both cost savings and a more
lasting availability of the system making the two-phase model a preferable
choice. This improvement occurs because this new inspection procedure suits
better to the behavior of the failure rate. The comparison of a two-phase in-
spection policy that includes preventive maintenance with the corresponding
to a unique inspection interval plus preventive maintenance (Bad́ıa et al [9])
constitutes a problem to be dealt with next.

References

[1] Vaurio, J.K. Availability and Cost Functions for Periodically Inspected
Preventively Maintained Units. Reliability Engineering and System
Safety (1999); 63, pp. 133-140.

[2] Biswas, A., Sarkar, J. & Sarkar, S. Availability of a Periodically Inspec-
ted System Maintained under an Imperfect-Repair Policy. IEEE Trans-
actions on Reliability (2003); 52, 3, pp. 311-318.

[3] Nakagawa, T. Periodic inspection policy with preventive maintenance.
Naval Research Logistics Quarterly (1984); 31, pp. 33-40.

[4] Nakagawa, T., Yasui, K. Optimal Policies for a System with Imperfect
Maintenance. IEEE Transactions on Reliability (1987); R-36, pp. 631-
633.

[5] Goedeke, A.D. Characterization and testing of optical fire detectors and
immunity to false alarm, Final Report. July 1989-December 1989. Don-
mar Limited, Newport Beach, CA. Air Force Engineering and Services
Center, Tyndall. AFB, FL., ESL.-TR-90-01

14



[6] Goedeke, A.D. and Gross, H.G. Characteristics of Optical Fire Detector
False Alarm Sources and Qualification Test Procedures to Prove Immu-
nity. Final Report. April 1991-October 1992. Donmar Limited, Newport
Beach, CA. Air Force Engineering and Services Center, Tyndall. AFB,
FL., CEL.-TR-92-62

[7] Chen, C.H., Wang, C.C., Lin, C.Y., Shih, Y.S., Tu, C.F. Realization of
defect automatic inspection system for flexible printed circuit (FPC).
Proceedings of the 35th International MATADOR Conference, (2007);
pp. 225-228.

[8] Bad́ıa, F.G., Berrade, M.D. & Campos, C.A. Optimization of inspection
intervals based on cost. Journal of Applied Probability (2001); 38, pp.
872-881.

[9] Bad́ıa, F.G., Berrade, M.D. & Campos, C.A. Optimal inspection and
preventive maintenance of units with revealed and unrevealed failures.
Reliability Engineering and System Safety (2002); 78, pp. 157-163.

[10] Cavalcante, C., Scarf, P., De Almeida, A., Cosmo de Silva, A.T. A two-
phase inspection policy for a single component preparedness system with
a mixed time to failure distribution. Reliability, Risk and Safety: Theory
and Applications. C. Guedes Soares and Martorell (editors) (2010); Vol.
1, pp. 525-530, Taylor and Francis Group, London.

[11] Scarf, P.A., Cavalcante, C.A.V., Dwight, R., Gordon, P. An age-based
inspection and replacement policy for heterogeneous components, IEEE
Transactions on Reliability (2009); 58, 4, pp. 641-648

[12] Nakagawa, T. Periodic and sequential preventive maintenance policies.
Journal of Applied Probability (1986); 23, pp. 536-542
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