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Abstract

In this paper we consider the inspection and maintenance of a system

under two types of age-dependent failures, revealed minor failures (R)

and unrevealed catastrophic failures (U). Periodic inspections every

T units of time are carried out to detect U failures, leading to the

system replacement when one is discovered. R failures are followed by

a minor repair. In addition the system is preventively replaced at MT

or after the N th R failure whichever comes first. The costs of minimal

repair and replacement after N minor failures depend on age and his-

tory of failures. Non-perfect inspections are assumed, providing false

positives when no U failure has happened or false negatives when a U

failure is present. The long-run cost per unit of time along with the op-

timum policy (T ∗,M∗, N∗) are obtained. We explore conditions under
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which both strategies of preventive maintenance are profitable, com-

paring with suboptimal policies when only one of them is performed.

Maintenance of infrastructures illustrates the model conditions.

Keywords: Age replacement; Maintenance; Minor repair; opti-

mum policy

1 Introduction

The design of maintenance policies that extend the useful life of systems is

a crucial concern for industry. In so doing companies reduce costs avoiding

early replacements of costly equipment. Thus, a number of repairs which are

done when needed usually precede the renewal of a system. In practice the

maintainer has two choices: either to keep on repairing or else to replace the

system. This decision is made based on cost as well as reliability require-

ments. When repairs hardly reduce system deterioration or do not provide

a significant remaining life that compensates maintenance costs, then the

system is replaced. This idea often underlies the purchase of a new car. If

the age of a car makes it very likely to experience a critical and costly failure

in the near future, repairing the one in use can be wasteful. If so, replac-

ing the car seems to be the cost-optimal decision. Kurt and Kharoufeh [14]

mention several engineering applications that can only be repaired a num-

ber of times because of the risks incurred due to the increasing degradation.

They also point out a limited warranty as the reason for a given number of

repairs before replacement. Lugtigheid et al [15] considered a limited num-

ber of repairs in the context of contractual agreement between the OEM

(original equipment manufacturer), or contractor, and the equipment owner

or user. Qiu et al [21] investigate optimal maintenance strategies consider-
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ing performance-based contracts that try to guarantee higher availability of

systems.

In general the successive repairs that precede the system replacement are

addressed at minor failures. By a minor one we refer to the type of fail-

ure whose repair restores the intended function of the system. After the

repair the system is not as perfect as when it was new but the maintainer

assumes that the repair cost pays off with an extended lifetime. Sheu et

al [26] include age-dependent repair costs in the maintenance of a system

with minor or catastrophic failures that is replaced at the N minor failure

or the first catastrophic failure or at age T, whichever occurs first. Shafiee

et al [24] present the current application of this idea in the maintenance

of offshore wind turbine blades. The works of Do et al [11] and Do Van

and Bérenguer[12] deal with condition-based maintenance considering both

perfect and imperfect maintenance actions for a deteriorating system. In

both cases a threshold for the number of imperfect maintenances is assumed.

Safaei et al [22] describe the maintenance of a system under three types of

failures: type I can be fixed k − 1 times by a minimal repair, type III are

catastrophic and the system should be replaced. Type II are minimally re-

paired with probability p(t) and lead to system replacement with probability

1 − p(t). Nakagawa and Zhao [17] propose generalized replacement policies

under which the unit is replaced at time T , at a working cycle N or at a

failure K. Zhao et al [35] compare replacement policies that are carried out

at some periodic times and a predetermined number of repairs. These au-

thors claim that both are commonly used in total productive maintenance in

Japanese industry.

In contrast to revealed failures, detected at the very moment they oc-

cur, unrevealed failures require some type of inspection to be discovered.
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Thus the maintenance of the latter should include an inspection policy. Vau-

rio [31] suggests an inspection policy along with a preventive replacement

when a failure is detected or after N inspections, whichever comes first. The

work of [13] considers a system with periodic imperfect inspections to detect

hidden failures and periodic preventive maintenance to correct them with

the objective of determining the optimal frequency and quantity of imper-

fect inspections. Nielsen and Sørensen [18] analyze the optimal planning for

inspection and maintenance of offshore wind turbines. Inspections aim at

obtaining information about the state of the components avoiding both un-

necessary maintenance or lack of repair when needed. Peng et al [19] describe

the maintenance of a system subject to two types of failures: catastrophic and

a two-stage delayed failure. Inspections are carried out to detect defective

states of the two-stage delayed failure and age replacement to avoid catas-

trophic failures. The case study refers to peristaltic pumps used to pump

fluids in patients. Wang and Wu [33] deal with the problem of inspections

in a production line subject to small stoppages and hard failures.

The works of Bad́ıa and Berrade [3], [4] and [5] address the optimization

problem under maintenance policies involving two decision variables (T,N)

where T is the inspection interval and N the maximum number of failures

before the system undergoes a perfect repair. The work in [3] assumes that

the N failures are of the type minor and unrevealed. A perfect restoration

follows after the N minor unrevealed failures or the first catastrophic failure,

whichever comes first. The system in [5] experiences periodic inspections to

detect hidden failures and undergoes an imperfect restoration after the N−1

first failures while the N th failure is removed by a perfect repair. Sheu et al

[27] present a maintenance model for a system under two types of unrevealed

failures, minor or catastrophic. The system is replaced at the occurrence of
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the N minor failure, the catastrophic one or a working age T .The authors

consider that models of this type present potential applications in oil and

gas industries, medicine, and nuclear power plants. A model for inspection

and maintenance on a finite time interval of a complex system with soft and

hard failures is considered in Taghipour et al [29].

A number of authors focus on the extension of current structures lifetime.

Zio [36] stands out the interest of the proper use of information about their

condition obtained from inspections or measurements. Carretero [9] et al

apply reliability centered maintenance to railway networks. Podofillini et al

[20] present an ultrasonic inspection strategy to detect railway cracks. Sheils

et al [25] develop a two-stage inspection procedure for detection and sizing

assessment of defects in infrastructures. Concerning bridges design, Tang [30]

analyzes the use of a new concept of orthotropic deck. This author identifies

failures of two types: failure of the steel deck and in the pavement. Fatigue

and corrosion are within the former group and require inspection or tests to

be detected. Cracking and separation in the pavement can be observed when

they occur. A recent review on condition based maintenance can be found

on Alaswad and Yang [1]. Maintenance of nuclear power plants that should

cover all their components [8] provides another example with minor and

major failures. Radiation leaks can be catastrophic and require monitoring

systems to be detected. Monitoring systems (radiation level, temperature

indicators, state of refrigeration pumps. . . ) can also fail. The failure of these

systems that stop providing information is immediately detected and their

replacement can be considered as a minor repair since the reliability of the

rest of the system is not affected.

The use of sensors to estimate the state of system and make decisions to

avoid catastrophic failures is also crucial for the maintenance of wind turbines
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(Byon [7]). Thus, models for inspection and maintenance of systems with

both soft revealed and catastrophic unrevealed failures are required.

The current paper presents a policy valid for a system under both revealed

and unrevealed failures. We propose a model for inspection and maintenance

of a system with two types of age-dependent failures, minor revealed and

catastrophic unrevealed. Different approaches to soft and hard failures and

hidden failures can be found in Taghipour et al [29] and Seyedhosseini et

al [23]. The system can experience two types of preventive replacements,

periodic at MT and random after N minor failures. In order to mimic main-

tenance contracts, we assume costs depending on both, age and history of

failures. We are concerned with the inspection interval, number of inspec-

tions and number of minimal repairs, (T ⋆,M⋆, N⋆) minimizing the cost rate.

Regarding previous literature the first contribution of this model is that it

presents two types of maintenance taking into account the two types of fail-

ures revealed and unrevealed. Thus, age replacement at MT is based on

unrevealed failures and replacement after N minor failures is defined on re-

vealed ones. This dual maintenance can provide a better protection when

the probability of minor and catastrophic failures changes. The second con-

tribution is that this model extends that in [4] by introducing age-dependent

probabilities of failure and preventive age replacement. To our knowledge,

this has not been yet considered in literature.

In addition the comparison with suboptimal policies where only one type

of preventive replacement is carried out, (T ⋆,M⋆,∞) and (∞,−, N⋆) is also

of interest as it highlights the way that the parameters involved can determine

the superiority of one type of preventive replacement over the other. This

model constitutes an extension of those in He et al [13] and Bad́ıa and Berrade

[4]. The former only considers unrevealed failures (p(t) = 0) whereas the
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latter involves two decision variables (T ⋆, N⋆). Thus, age replacement at

MT and preventive maintenance after N minor failures can be analyzed and

compared.

The structure of this paper is as follows. In the next section we describe

the maintenance model and its assumptions, developing the calculations for

the long run expected cost per unit time. We determine the expected cost and

length of a renewal cycle. Section 3 is devoted to numerical examples that

give insight about the dependence of the optimum policy on the parameters of

the model as well as the comparison with suboptimal policies. This analysis

constitutes a practical guide for maintainers.

2 Maintenance model

In what follows we present the inspection and maintenance of a single-unit

system undergoing two types of failures, revealed minor failures (R) and

unrevealed catastrophic failures (U). We assume that the occurrence of R

and U failures is age-dependent. Thus when a failure happens at time t it is

of the type R with probability p(t) (0 ≤ p(t) ≤ 1) and of the type U with

probability q(t) = 1 − p(t). U-failures are detected by periodic inspections

carried out at times kT , k = 1, 2, . . . ,M − 1. Although only the time for

the first catastrophic is required for calculations we assume that additional

failures of this type can occur before the system is replaced. Concerning R-

failures they are followed by a minimal repair that restores the system to the

condition just previous to failure (“as-bad-as-old”). We assume a maximum

number of allowable minimal repairs, N−1. The system is replaced by a new

one when a U-failure is detected on inspection, or preventively atMT , or once

the N th R-failure occurs whichever comes first. We consider that there is no
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inspection at MT just replacement but this does not represent a significant

restriction and inspection additional to replacement might be assumed. This

point has been discussed in Berrade et al [6]. Preventive replacement at

MT makes the maintainer gain protection against catastrophic failures which

usually present high costs. Regarding preventive actions, the perfect repair

after N minor failures can be also seen as an opportunity-based maintenance.

Thus, T , M and N can be considered decision variables to be optimized.

We also assume that inspections may not be perfect (Bad́ıa et al [2], [6]).

The result can be a false positive (type I error) when the system has not

failed but inspection indicates that a U-failure has occurred and a false neg-

ative (type II error) when inspection fails to detect an actual U-failure. The

corresponding probabilities are denoted by α and β respectively. Following

the assumptions of model 1 in [6] and Bad́ıa et al [2], we assume that a false

positive is detected by the OEM in a further inspection so there is no effect

in the system reliability and just an additional cost is incurred.

Times of inspections, repairs and preventive maintenance are considered

to be negligible. The following notation is used throughout.

• r(x) failure rate of the time to the first failure.

• H(x) cumulative failure rate: H(x) =
∫ x

0
r(u)du.

• p(t): probability of a failure that occurs at t being of the type R.

• HR(x) =
∫ x

0
p(u)r(u)du.

• HU(x) =
∫ x

0
q(u)r(u)du.

• Y : time to the first unrevealed catastrophic failure (U failure).
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• α: probability of a false positive, that is an inspection outcome indi-

cates that a U-failure has occurred when the system has not failed.

• β: probability of a false negative, thus an inspection outcome fails to

detect an actual U-failure.

• T : inspection interval.

• M : parameter associated to the preventive replacement at MT . The

maximum number of inspections in a cycle is M − 1.

• K1: number of inspections previous to the first U-failure if there is no

preventive maintenance: K1 =
⌊
Y
T

⌋
, with ⌊.⌋ representing the integer

part function.

• L: number of inspections after a U-failure until it is detected when no

preventive maintenance is carried out.

• I0: number of inspections before a U-failure or the N th R failure or

preventive replacement at MT whichever occurs first.

• I: number of inspections in a cycle.

• F : number of false positive inspections in a cycle.

• Gi time to the ith revealed minor failure (R failure) i = 1, 2, . . . , N .

• N [0, t]: number of R-failures in [0, t].

The following events are also considered:

• R1: the renewal cycle ends after the preventive replacement at MT .
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• R2: the cycle is completed at the preventive renewal after the N th R

failure.

• R3: the cycle is completed once a U-failure is detected on inspection.

• R4: the system with an undetected U-failure is preventively replaced

at MT .

• R5: the system, free of a U-failure, is preventively replaced at MT .

The costs assumed are given next :

• c1: unitary cost of inspection.

• c1PM : cost of preventive maintenance at MT when the system presents

an undetected U-failure.

• c2PM : cost of preventive maintenance at MT when the system is free of

a U-failure.

• cr1: cost of replacement when a U-failure is detected on inspection.

• cr2(N, t): cost of preventive replacement after the N R-failure at time

t.

• cmr,j(t): cost of the minimal repair after the jth R-failure at time t,

j = 1, 2, . . . , N − 1.

• cf : cost of a false alarm.

• cd: cost per unit of time while a U-failure remains undiscovered.
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2.1 Preliminary Results

Proposition 1 Under the model assumptions it follows that

(i) The density and reliability functions of Y are given as follows

fY (x) = q(x)r(x)e−HU (x), x ≥ 0

F Y (x) = e−HU (x), x ≥ 0

(ii) The density and reliability functions of Gi, i = 1, 2, . . . , N are

fGi
(x) = p(x)r(x)

(HR(x))
i−1

(i− 1)!
e−HR(x), x ≥ 0

FGi
(x) =

i−1∑
j=0

(HR(x))
j

j!
e−HR(x), x ≥ 0

(iii) N [0, t] is a non-homogeneous Poisson process with mean function given

by HR(t).

(iv) Y is independent from both GN and N [0, t].

The proof can be found in Cha and Finkelstein [10].

Regarding result in (iv), the process of failures is split into two indepen-

dent ones. At each time t the failure is revealed or unrevealed independently

of the previous history of failures with p(t) being the probability of a re-

vealed one. This is similar to the thinning of a Poisson process. Then when

the system is new at t = 0, two independent times are triggered: that of

the N revealed minor failure and the corresponding to a catastrophic unre-

vealed failure. Nevertheless the unrevealed failure is more likely to occur as

time goes by since p(t) tends zero for t → ∞. Hence although both failures

are mutually exclusive at each time t, the probabilities change reflecting the

11



proneness of the system to undergo each type of failure. Thus, Y < GN or

Y ≥ GN .

Let X1 and X2 be non negative absolute continuous and independent

random variables and a > 0. It follows that

E[min(X1, X2, a)] =

∫ a

0

F̄X1(x)F̄X2(x)dx (1)

In addition if X1 and X2 are non negative discrete and independent ran-

dom variables and n = 1, 2, . . ., then

E[min(X1, X2, n)] =
n∑

x=1

P (X1 ≥ x)P (X2 ≥ x) (2)

The previous result is derived below:

E[min(X,n)] =
n−1∑
x=0

xP (X = x) + nP (X ≥ n)

=
n−1∑
x=1

x∑
j=1

P (X = x) + nP (X ≥ n)

=
n−1∑
j=1

n−1∑
x=j

P (X = x) + nP (X ≥ n)

=
n−1∑
j=1

(P (X ≥ j)− P (X ≥ n)) + nP (X ≥ n)

=
n∑

j=1

P (X ≥ j)

2.2 The maintenance model

If no preventive replacement is carried out, then K1 represents the number

of inspections previous to the first U failure. It follows that

K1 =

⌊
Y

T

⌋
12



In addition, K1 = 0, 1, 2, . . . with the probabilities given below

P (K1 = j) = FY ((j + 1)T )− FY (jT ), j = 0, 1 . . .

If no preventive replacement is carried out, the number of inspections from

the first U failure until it is detected, L, follows a geometric distribution with

mean value 1
1−β

. Thus

P (L = j) = βj−1(1− β), j = 1, 2, . . .

P (K1 + L = j) = (3)
j−1∑
r=0

(FY ((r + 1)T )− FY (rT ))β
j−r−1(1− β), j = 1, 2, . . .

P (K1 + L ≥ j + 1) = (4)
j∑

r=0

P (L ≥ j + 1− r)P (K1 = r) + P (K1 ≥ j + 1) =

j∑
r=0

βj−r [FY ((r + 1)T )− FY (rT ))] + F̄Y ((j + 1)T ).

The expression of the mean time until the system is renewed is given

next. The proof is in the Appendix.

Proposition 2 The expected length of a renewal cycle, τ , is given by:

E[τ ] = (5)
M−1∑
j=0

(
j∑

r=0

βj−r [FY ((r + 1)T )− FY (rT )] + F̄Y ((j + 1)T )

)∫ (j+1)T

jT

F̄GN
(x)dx
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(      ) : Inspection action where a U-failure is undetected (detected).  

: Inspection action when the system is free of a U-failure.

: U-failure (unrevealed catastrophic failure)

: R-failure (revealed minor failure) 

MT

MT

T 2T 3T 4T

T 2T 3T 4T

0

0

(a)

τ

N
G

T

T

2T

2T

3T

3T

0

0

(c)

τ

T 2T 3T 4T0

(e)

τ

Figure 1: Length of a cycle under the maintenance model.

(b)

(d)

Figure 1 represents how a cycle is completed under this maintenance

model. Replacement at MT for a system that has not experienced a U

failure or undergoes a catastrophic but undetected U failure is represented,

respectively, in (a) and (b). The system is replaced after N minor failures

in (c) and (d). No U failure has occurred before the N minor failure in

(c) whereas a U failure not detected by the time that the N minor failure

happens is present in (d). The graph in (e) describes a system replaced on

inspection after a U failure is detected.

In what follows I0 denotes the number of inspections previous to a U-

failure or the Nth R failure or the preventive maintenance at MT whichever
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comes first. I and F represent, respectively, the number of inspections and

the number of false positive inspections in a cycle. The mean values of I0, I,

and F are given next. The proof can be found in the Appendix.

Proposition 3 The following results apply:

E[I0] =
M−1∑
j=1

F̄GN
(jT )F̄Y (jT )

E[F ] = αE[I0]

E[I] =
M−1∑
j=1

F̄GN
(jT )(

j−1∑
r=0

βj−1−r(FY ((r + 1)T )− FY (rT )) + F̄Y (jT ))

A cycle is completed whichever of the following events comes first:

• R1: at MT ,

• R2: after N R-failures at random time GN ,

• R3: when a U-failure is detected after K1 + L inspections

R1 that is renewal at MT , can occur under two mutually exclusive events:

the system presents an undetected U failure (denoted by R4) or the system

is free of any U-failure (denoted by R5). It follows that

R4 =
M−1∪
j=0

{K1 = j, L ≥ M − j, GN > MT}

R5 = {K1 ≥ M,GN > MT}

R1 = R4

∪
R5 =

∞∪
j=0

{K1 = j,K1 + L ≥ M,GN > MT}
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The probabilities of the foregoing events are given below:

P (R4) = F̄GN
(MT )

M−1∑
j=0

(FY ((j + 1)T )− FY (jT ))β
M−j−1.

P (R5) = F̄GN
(MT )F̄Y (MT ).

P (R1) = F̄GN
(MT )

(
M−1∑
j=0

(FY ((j + 1)T )− FY (jT ))β
M−j−1 + F̄Y (MT )

)
P (R2) = P (GN ≤ MT,GN ≤ (K1 + L)T ) =
M−1∑
j=0

∫ (j+1)T

jT

fGN
(x)P (K1 + L ≥ j + 1)dx =

M−1∑
j=0

∫ (j+1)T

jT

(
j∑

r=0

βj−r(FY ((r + 1)T )− FY (rT )) + F̄Y ((j + 1)T )

)
fGN

(x).

P (R3) = P (K1 + L ≤ M − 1, (K1 + L)T ≤ GN) =
M−1∑
j=1

P (K1 + L = j)F̄GN
(jT ).

Observe that in the formula of P (R2) the expression of P (K1 + L ≥ j + 1)

is given in (4).

Next calculations provide the mean cost of replacement when a cycle is

completed under any of the events denoted as R1, R2, R3.

In what follows 1A denotes the indicator function of event A.

Cost of replacement at MT :

CPM = c1PM1R4 + c2PM1R5

E[CPM ] = c1PMP (R4) + c2PMP (R5) = (6)

c1PM F̄GN
(MT )

M−1∑
j=0

(FY ((j + 1)T )− FY (jT ))β
M−j−1 + c2PM F̄GN

(MT )F̄Y (MT )

Cost of replacement after the Nth failure of type R:

CPRN = cr2(N,GN)1R2 = cr2(N,GN)1GN≤MT,GN≤(K1+L)T
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E[CPRN ] = (7)∫ MT

0

fGN
(x)cr2(N, x)P

(
K1 + L >

x

T

)
dx =

M−1∑
j=0

∫ (j+1)T

jT

cr2(N, x)fGN
(x)P (K1 + L ≥ j + 1)dx =

M−1∑
j=0

∫ (j+1)T

jT

(
j∑

r=0

βj−r(FY ((r + 1)T )− FY (rT )) + F̄Y ((j + 1)T )

)
cr2(N, x)fGN

(x)dx

Cost of replacement when a U-failure is detected:

CPRY = cr11R3

E[CPRY ] = cr1P (R3) = cr1

M−1∑
j=1

P (K1 + L = j)F̄GN
(jT ) (8)

The following result provides the expected cost derived from minimal

repairs in a cycle. The corresponding proof can be found in the Appendix.

Proposition 4 The expected cost incurred in a cycle due to minimal repairs,

E[CMR], is given by

E[CMR] = (9)
M−1∑
j=1

P (K1 + L = j)
N−1∑
i=1

∫ jT

0

cmr,i(x)p(x)r(x)
HR(x)

i−1

(i− 1)!
e−HR(x)dx

+P (K1 + L ≥ M)
N−1∑
i=1

∫ MT

0

cmr,i(x)p(x)r(x)
HR(x)

i−1

(i− 1)!
e−HR(x)dx

with P (K1 + L = j) in (3) and P (K1 + L ≥ M) in (4).
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Let D denote the downtime in a cycle. The downtime occurs once a

U-failure occurs until it is detected. It follows that

D = τ −min(Y,GN ,MT )

and the expected downtime

E[D] = E[τ ]−
∫ MT

0

F̄Y (x)F̄GN
(x)dx (10)

The expected cost of a cycle E[C(τ)] is obtained by summing the cost

due to inspections, false alarms, minimal repairs, preventive maintenance

at MT and after N R-failures, corrective maintenance when a U -failure is

detected and downtime cost incurred while a U-failure remains undetected.

The corresponding formula follows from expressions of E[I] and E[F ] in

Proposition 3, E[CMR] in Proposition 4 along with E[CPM ], E[CPRN ],

E[CPRY ], and E[D] in (6), (7), (8) and (10), respectively. Thus

E[C(τ)] = c1E[I]+cfE[F ]+E[CPM ]+E[CPRN ]+E[CPRY ]+E[CMR]+cdE[D]

The cost per unit of time is objective function which in the long-run is

given by

Q(T,M,N) =
E[C(τ)]

E[τ ]

2.3 Analysis of the cost function. Optimum policies

Regarding the three decision variables in the model (T,M,N), this section

focuses on the existence of an optimum value for any of the three when

the other two are given. The following results provide sufficient conditions

guaranteing that such an optimum exists. The corresponding proofs are given

in the Appendix.

We first analyze the existence T ⋆ when both M and N are given.
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Theorem 1 Let VN defined as follows

VN =
1

cd

(∫ ∞

0

cr2(N, x)fGN
(x)dx+

N−1∑
i=1

∫ ∞

0

cmr,i(x)p(x)r(x)
H i−1

R (x)

(i− 1)!
e−HR(x)

)

−
∫ ∞

0

F Y (x)FGN
(x)dx

Assume that M and N are given values. If the following conditions hold:

VN < 0, limt→∞ p(t)r(t) = ∞, FGN
(x) > 0, cmr,i(x) > 0 and cmr,i(x) increas-

ing in x, then there exists T ∗
M,N , (0 < T ∗

M,N < ∞) minimizing Q(T,M,N).

The first two terms in VN represent the ratio of the mean cost incurred

due to revealed failures to the unitary downtime cost. In addition, the third

term corresponds to the expectation of the minimum of both Y and GN ,

that is, the mean time to the first catastrophic failure or the N minor failure

whichever comes first. Condition VN < 0 means that if the mean time to

replacement is larger than a function of the costs, then it is worth inspecting

the system to detect catastrophic failures. The larger cd, the more profitable

inspections are.

Next, we define the auxiliary functions VT,M and VT,N . The former de-

pends on T and M , and the latter on T and N .
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VT,M (11)

=
c1
cd

M−1∑
j=1

(
j−1∑
r=0

βj−1−r[FY ((r + 1)T )− FY (rT )] + F Y (jT )

)
+

cf
cd
α

M−1∑
j=1

F Y (jT )

+
cr1
cd

P (K1 + L ≤ M − 1) +
c1PM

cd

M−1∑
j=0

βM−1−j[FY ((j + 1)T )− FY (jT )]

+
c2PM

cd
F Y (MT ) +

M−1∑
j=1

P (K1 + L = j)
∞∑
i=1

∫ jT

0

cmr,i(x)

cd
p(x)r(x)

H i−1
R (x)

(i− 1)!
e−HR(x)dx

+ P (K1 + L ≥ M)
∞∑
i=1

∫ MT

0

cmr,i(x)

cd
p(x)r(x)

H i−1
R (x)

(i− 1)!
e−HR(x)dx−

∫ MT

0

F Y (x)dx

and

VT,N (12)

=
c1
cd

∞∑
j=1

FGN
(jT )

(
j−1∑
r=0

βj−1−r[FY ((r + 1)T )− FY (rT )] + F Y (jT )

)

+
cf
cd
α

∞∑
j=1

F Y (jT )FGN
(jT )

+
∞∑
j=1

(
j−1∑
r=0

βj−1−r[FY ((r + 1)T )− FY (rT )] + F Y (jT )

)∫ (j+1)T

jT

cr2(N, x)fGN
(x)dx

+
cr1
cd

∞∑
j=0

P (K1 + L = j)FGN
(jT )

+
∞∑
j=0

P (K1 + L = j)
N−1∑
i=1

∫ jT

=

cmr,i(x)

cd
p(x)r(x)

H i−1
R (x)

(i− 1)!
e−HR(x)dx

−
∫ ∞

0

F Y (x)FGN
(x)dx.

In what follows we analyze conditions for the existence of optimum values

N∗ and M∗ when the other two decision variables are given.
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Theorem 2 The following results hold

a) If VT,M < 0 for given values of T and M , and

lim
N→∞

cr2(N, x) = c < ∞ (13)

then there exists N∗
T,M < ∞ such that minN Q(T,M,N) = Q(T,M,N∗

T,M).

b) If VT,N < 0 for given values of T and N , then there exists M∗
T,N < ∞

verifying that minM Q(T,M,N) = Q(T,M∗
T,N , N).

Mathematical expressions in Theorem 2 have also practical meaning. In

case that the only preventive replacement occurs at MT , that is N = ∞,

condition VT,M < 0 in case a) provides a minimum value for the mean time to

failure. If the expected system lifetime is greater than that minimum, then

including an additional preventive replacement after N minor failures is an

advantageous procedure if the corresponding cost is bounded as (13) states.

Case b) accounts for the case when replacement after N minor failures con-

stitutes the only preventive action, that is M = ∞. In this case replacement

is determined by the minimum of both, the time to N minor failures and

that of the catastrophic one. VT,N < 0 gives a threshold for that minimum

time so that a second preventive policy after M inspections is also profitable.

Observe that this is so no matter what the costs of replacement at MT are

(c1PM and c2PM). Conditions regarding VN in Theorem 1, as well as VT,M

and VT,N in Theorem 2 present the downtime cost, cd, in the denominator of

the corresponding expression. Thus, the higher cd the more likely conditions

become. Therefore the full policy consisting of inspections, preventive main-

tenance either at MT or after N minor failures is more advantageous when

compared with a procedure based only on two decision variables. Numerical

results in the following Section support this idea.
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The complex expression of the cost function Q(T,M,N) prevents from

providing conditions that guarantee that there exists a unique global opti-

mum all over the feasible space: T ∈ R+, M,N ∈ N. Most papers under

similar conditions use numerical methods to obtain a local optimum. This

local optimum (T ⋆,M⋆, N⋆) constitutes the global one in the region of inter-

est, that is M ≤ 100 and N ≤ 100. Larger values of M and N would lead to

maintenance far beyond reasonable life lengths.

• set i = 1

• Step 1: set N = i

• Step 2: For j = 1, 2, . . . 100, find T ⋆(j, i) such that

min
T

Q(T, j, i) = Q(T ⋆(j, i), j, i)

• Step 3: Find (T ⋆(i),M⋆(i)) such that

min
j=1...100

Q(T ⋆(j, i), j, i) = Q(T ⋆(i),M⋆(i), i)

• Step 4: Set i = i+ 1

• Step 5: If i ≤ 100, go to Step 1, otherwise go to Step 6

• Step 6: Find (T ⋆,M⋆, N⋆) such that

min
i=1...100

Q(T ⋆(i),M⋆(i), i) = Q(T ⋆,M⋆, N⋆)

A restricted version of this algorithm for optimization in the case of a bivari-

ate policy (T,N) is presented in Nakagawa [16] as well as in Zequeira and

Bérenguer [34].
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3 Numerical examples

Next we develop an study of the dependency of the optimum policy, denoted

as (T ⋆,M⋆, N⋆), on the parameters of the model. We will assume a failure

rate r(t) = 0.01t2 corresponding to a Weibull distribution with shape param-

eter equal to 3 and scale parameter equal to 300
1
3 . The probability that the

failure that occurs at t is of the type R is p(t) = 1
t+1

and the corresponding

probability of being of the type U is q(t) = t
t+1

. Thus, a failure is more likely

to be catastrophic rather than minor as time goes by. The probabilities of a

false positive and a false negative in the base case are assumed to be α = 0.05

and β = 0.1. Concerning costs, the replacement at MT when the system

is free of a U failure is assumed to be the reference value with c2PM = 1.

The unitary cost of inspection is c1 = 0.001 and the cost of a false alarm is

cf = 0.05. Replacement after N minor failures or after M inspections are

illustrated by maintenance contracts including a warranty that reduces the

cost if the Nth revealed failure implies an early replacement of the system

or if there is an unacceptable number of minor failures in a short period

of time. Thus we propose the following functions: cr2(N, t) = 1.5 + t
N+1

,

cmr,j(t) = 0.5 + t
j
.

Concerning how to arrive at parameters of proposed models it is impor-

tant to note that due to confidentiality reasons raw data are not usually

available. In addition the time until an unrevealed failure occurs is not di-

rectly measurable because it happens sometime in-between two inspections.

Wang [32] suggests subjective estimation of these parameters by means of

expert opinion. The work of Si et al [28] presents a review on the remaining

useful life of a system.

Table 1 shows the optimum policy (T ⋆,M⋆, N⋆) and the two suboptimal
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ones (T ⋆
0 ,M

⋆
0 ,∞) and (∞,−, N⋆

0 ) when the following parameters change: cost

of replacement when a U-failure is detected on inspection, cr1, cost of preven-

tive maintenance at MT when the system presents an undetected U-failure,

c1PM , and cost per unit of time while a U-failure remains undiscovered, cd.

When cr1 increases, less inspections M
⋆ are recommended. In addition N⋆ is

not decreasing and although T ⋆ is non monotonic, there is an earlier preven-

tive maintenance atM⋆T ⋆ to avoid the consequences of a catastrophic failure.

When c1PM increases, so does M⋆ whereas T ⋆ decreases. Neither M⋆T ⋆ nor

N⋆ are monotonic. When cd decreases, inspection is relaxed and thus the

number of inspections is reduced with a larger time interval between them.

A similar behaviour is observed in (T ⋆
0 ,M

⋆
0 ,∞) under changes of cr1, c

1
PM

and cd whereas N⋆
0 remains equal to 1. The cost saving when the optimum

policy (T ⋆,M⋆, N⋆) is compared with the two suboptimal ones (T ⋆
0 ,M

⋆
0 ,∞)

and (∞,−, N⋆
0 ) is respectively given in ∆0(%) and ∆0(%). When comparing

∆0(%) and ∆0(%), (T ⋆
0 ,M

⋆
0 ,∞) is by far a better choice than (∞,−, N⋆

0 ) in

those cases where (T ⋆,M⋆) are both finite. These cases match with medium

to large values of cd and are not appropriate to rely on opportunity-based

replacement exclusively. Programmed replacement based on age produces a

significant cost reduction. In addition (∞,−, N⋆
0 ) can be optimal for small

values of cd, avoiding over maintenance.

The replacement time after N⋆ minor failures is denoted by tN⋆ in Table

1. In those cases where both preventive maintenances, after N minor failures

or at MT are finite, the latter occurs significantly earlier. This is so because

replacement after M inspections is specifically designed to prevent a catas-

trophic failure which is unrevealed. In those cases where cd is small compared

to cr1 and c1PM , the cost incurred while the failure remains undiscovered is

minor, then inspections are less important and T ⋆ = ∞. The system will
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be replaced after N⋆ minor failures. Nevertheless it can be observed that

N⋆ is smaller in those cases where T ⋆ = ∞ than that where both policies

are finite. As in this case there is no inspection, the maintainer uses the

N minor failure as an opportunity to prevent the catastrophic failure or to

reduce the incurred cost if that failure has already occurred. Values of the

ratio cd/c
1
PM above a given threshold lead to maintenance at MT to be the

preferable choice and N⋆ = ∞. When the cost derived from an unrevealed

failure, cd, is high enough, then inspection becomes a more valuable tool

for maintenance. As cr1 increases so does this threshold, reflecting that the

economic advantage of replacing when a U-failure is detected, declines.

Table 2 presents the optimum policy under different values of the param-

eters related to inspection: inspection cost (c1), cost of a false alarm (cf ),

probability of false positive inspection (α), probability of false negative in-

spection (β). The rest of the parameters correspond to the base case along

with cr1 = 2.5, c1PM = 1.5, and cd = 1.5. When the costs of inspection or

false alarm increase, the inspection frequency decreases. If the probability

of a false positive inspection, α, increases, so does T ⋆ whereas its behavior

is just the opposite when β increases. The reason for this pattern is that

the greater α, the more misleading the inspection and unnecessary costs are

incurred. Thus, less inspection reduces this risk.

On the contrary the greater β, the less useful the inspection procedure

to detect failures that remain unrevealed otherwise. If so, more frequent

inspection increases the probability to detect a current failure. Two addi-

tional characteristics can be observed in Table 2: the time for preventive

replacement, MT , is robust to changes in the inspection parameters. When

there is a huge cost derived from a catastrophic failure, it is worth carrying

out a preventive replacement when the system reaches certain age. This is
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so even when the inspection procedure is not perfect or the associated costs

are significant. The second feature is that the number of minor failures be-

fore replacement, N⋆ is not affected by changes as a consequence that minor

failures are revealed and therefore they are not concerned with inspection.
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Table 1: The optimal (T ∗,M∗, N∗), Q(T ∗,M∗, N∗), (T ∗

0
,M∗

0
), Q0(T

∗

0
,M∗

0
),

N∗

0
, Q0(N∗

0
) for different cr1, c

1

PM and cd (α=0.05, β=0.1, c1=0.001, cf=0.05
and c2PM=1 fixed)

cr1 c1PM cd T ∗ M∗ N∗ M∗T ∗ tN∗ Q(T ∗,M∗, N∗) T ∗

0
M∗

0
Q0(T

∗

0
,M∗

0
) △0(%) N∗

0
Q0(N∗

0
) △0(%)

2.5 1.5 2.0 0.658 6 ∞ 3.948 ∞ 0.369 0.658 6 0.369 0 1 1.104 66.58
1.5 1.326 3 2 3.978 19.66 0.360 1.319 3 0.361 0.28 1 0.828 56.52
1.0 2.063 2 2 4.126 19.66 0.347 2.050 2 0.348 0.29 1 0.552 37.14
0.7 2.149 2 2 4.298 19.66 0.337 2.131 2 0.338 0.30 1 0.387 12.92
0.5 ∞ - 1 ∞ 13.33 0.276 2.197 2 0.331 16.62 1 0.276 0
0.1 ∞ - 1 ∞ 13.33 0.056 2.379 2 0.314 82.17 1 0.056 0

2.0 2.0 0.440 9 ∞ 3.960 ∞ 0.376 0.440 9 0.376 0 1 1.104 65.94
1.5 0.570 7 ∞ 3.990 ∞ 0.371 0.570 7 0.371 0 1 0.828 55.19
1.0 1.338 3 2 4.014 19.66 0.363 1.330 3 0.363 0.27 1 0.552 34.24
0.7 2.048 2 2 4.096 19.66 0.355 2.034 2 0.356 0.28 1 0.387 8.27
0.5 ∞ - 1 ∞ 13.33 0.276 2.088 2 0.350 21.14 1 0.276 0
0.1 ∞ - 1 ∞ 13.33 0.056 2.228 2 0.336 83.33 1 0.056 0

3.0 2.0 0.266 15 ∞ 3.990 ∞ 0.386 0.266 15 0.386 0 1 1.104 65.04
1.5 0.308 13 ∞ 4.004 ∞ 0.382 0.308 13 0.382 0 1 0.828 53.86
1.0 0.366 11 ∞ 4.026 ∞ 0.379 0.366 11 0.379 0 1 0.552 31.34
0.7 0.405 10 ∞ 4.050 ∞ 0.376 0.405 10 0.376 0 1 0.387 2.84
0.5 ∞ - 1 ∞ 13.33 0.276 0.506 8 0.375 26.40 1 0.276 0
0.1 ∞ - 1 ∞ 13.33 0.056 0.683 6 0.370 84.86 1 0.056 0

3.5 1.5 2.0 1.859 2 2 3.178 19.66 0.376 1.852 2 0.377 0.27 1 1.104 65.94
1.5 1.937 2 2 3.874 19.66 0.364 1.928 2 0.365 0.27 1 0.828 56.04
1.0 2.040 2 2 4.080 19.66 0.350 2.027 2 0.352 0.57 1 0.552 36.59
0.7 2.120 2 2 4.240 19.66 0.341 2.104 2 0.342 0.29 1 0.387 11.89
0.5 ∞ - 1 ∞ 13.33 0.276 2.165 2 0.335 17.61 1 0.276 0
0.1 ∞ - 1 ∞ 13.33 0.056 2.331 2 0.319 82.45 1 0.056 0

2.0 2.0 1.803 2 2 3.606 19.66 0.390 1.214 3 0.390 0 1 1.104 64.67
1.5 1.872 2 2 3.744 19.66 0.379 1.864 2 0.380 0.26 1 0.828 54.23
1.0 1.959 2 2 3.918 19.66 0.367 1.948 2 0.368 0.27 1 0.552 33.51
0.7 2.025 2 2 4.050 19.66 0.359 2.011 2 0.360 0.28 1 0.387 7.24
0.5 ∞ - 1 ∞ 13.33 0.267 2.061 2 0.354 22.03 1 0.276 0
0.1 ∞ - 1 ∞ 13.33 0.056 2.191 2 0.340 85.53 1 0.056 0

3.0 2.0 0.514 7 ∞ 3.598 ∞ 0.409 0.514 7 0.409 0 1 1.104 62.95
1.5 0.724 5 ∞ 3.620 ∞ 0.404 0.724 5 0.404 0 1 0.828 51.21
1.0 1.823 2 2 3.646 19.66 0.396 1.221 3 0.397 0.25 1 0.552 28.26
0.7 ∞ - 1 ∞ 13.33 0.387 1.860 2 0.391 1.02 1 0.387 0
0.5 ∞ - 1 ∞ 13.33 0.276 1.894 2 0.386 28.50 1 0.276 0
0.1 ∞ - 1 ∞ 13.33 0.056 1.976 2 0.376 85.11 1 0.056 0

4.5 1.5 2.0 1.845 2 2 3.690 19.66 0.379 1.838 2 0.380 0.26 1 1.104 65.67
1.5 1.920 2 2 3.840 19.66 0.367 1.912 2 0.368 0.27 1 0.828 55.68
1.0 2.006 2 6 4.012 34.83 0.356 2.006 2 0.356 0 1 0.552 35.69
0.7 2.078 2 7 4.156 37.67 0.346 2.078 2 0.346 0 1 0.387 10.59
0.5 ∞ - 1 ∞ 13.33 0.276 2.136 2 0.3 18.82 1 0.276 0
0.1 ∞ - 1 ∞ 13.33 0.056 2.288 2 0.324 82.72 1 0.056 0

2.0 2.0 1.791 2 2 3.582 19.66 0.393 1.785 2 0.393 0 1 1.104 64.40
1.5 1.857 2 2 3.714 19.66 0.382 1.849 2 0.383 0.26 1 0.828 53.86
1.0 1.930 2 6 3.860 34.83 0.371 1.930 2 0.371 0 1 0.552 32.79
0.7 1.990 2 7 3.980 37.67 0.363 1.990 2 0.363 0 1 0.387 6.20
0.5 ∞ - 1 ∞ 13.33 0.276 2.036 2 0.357 22.69 1 0.276 0
0.1 ∞ - 1 ∞ 13.33 0.056 2.157 2 0.344 83.72 1 0.056 0

3.0 2.0 1.697 2 2 3.394 19.66 0.418 1.692 2 0.418 0 1 1.104 62.14
1.5 1.747 2 2 3.494 19.66 0.409 1.742 2 0.409 0 1 0.828 50.60
1.0 1.802 2 6 3.604 34.83 0.400 1.802 2 0.400 0 1 0.552 27.54
0.7 ∞ - 1 ∞ 13.33 0.387 1.844 2 0.394 1.78 1 0.387 0.0
0.5 ∞ - 1 ∞ 13.33 0.276 1.877 2 0.389 29.05 1 0.276 0
0.1 ∞ - 1 ∞ 13.33 0.056 1.954 2 0.379 85.22 1 0.056 0
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Table 2: Dependency of the optimum policy (T ∗,M∗, N∗) on the inspection
parameters c1, cf , α, and β

c1 cf α β T ∗ M∗ N∗ M∗T ∗ Q(T ∗,M∗, N∗)

0.001 0.05 0.05 0.1 1.326 3 2 3.978 0.360
0.005 1.329 3 2 3.987 0.362
0.010 1.960 2 2 3.920 0.364
0.015 1.963 2 2 3.926 0.366
0.020 1.966 2 2 3.932 0.359

0.001 0.01 0.05 0.1 1.324 3 2 3.972 0.359
0.05 1.326 3 2 3.978 0.360
0.10 1.328 3 2 3.984 0.361
0.15 1.958 2 2 3.916 0.362
0.20 1.959 2 2 3.918 0.363

0.001 0.05 0.01 0.1 1.324 3 2 3.972 0.359
0.05 1.326 3 2 3.978 0.360
0.10 1.328 3 2 3.984 0.361
0.15 1.958 2 2 3.916 0.362
0.20 1.959 2 2 3.918 0.363

0.001 0.05 0.01 0.01 1.331 3 2 3.994 0.359
0.05 1.329 3 2 3.987 0.359
0.10 1.326 3 2 3.978 0.360
0.15 1.323 3 2 3.969 0.360
0.20 1.320 3 2 3.960 0.361
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Figure 2: Cost function versus T under different costs of preventive replacement.
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Figure 2 represents the cost functionQ(T,M⋆, N⋆) versus T with cr1 = 3.5

and cd = 1 for different costs of preventive maintenance at MT when the

system presents an undetected U failure. T ⋆ decreases with c1PM whereas

(M⋆, N⋆) are robust. More frequent inspections increase the probability of

replacement on inspection rather than preventively at MT .
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Figure 3: Cost function versus M under different costs of preventive replacement.
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Figure 3 contains a similar description for Q(T,M,N) versus M with

cr1 = 2.5, cd = 1.5 for different values of c1PM and the corresponding optimum

(T ⋆, N⋆). M⋆ increases with c1PM . According to Table 1, MT is robust

although an increasing number of inspections makes more likely to replace

on inspection.

The comparison of the optimal policy (T ⋆,M⋆, N⋆) with the suboptimal

ones (T ⋆
0 ,M

⋆
0 ,∞) and (∞,−, N⋆

0 ) is analyzed in Figure 4. The optimum costs

Q(T ⋆,M⋆, N⋆), Q(T ⋆,M⋆,∞) = Q0(T
⋆
0 ,M

⋆
0 ) and Q(∞,−, N⋆

0 ) = Q0(N⋆
0 )

are represented for different values of the downtime cost incurred while a U

failure remains undetected.
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The superiority achieved by the optimal policy (T ⋆,M⋆, N⋆), is observed

when cd ranges from 0.5 to 0.7. However this cost advantage vanishes out

of this interval. Thus, when cd is low, Q(T ⋆,M⋆, N⋆) is similar to Q0(N⋆
0 ),

indicating that the maintainer can be confident that replacement after the

N -th R-failure is enough preventive maintenance. When cd increases, the

situation is reversed and detection of U failures becomes more crucial for

not incurring high costs. Thus, inspections are more important and so does

replacement after M inspections. The consequence is that Q0(T
⋆
0 ,M

⋆
0 ) ap-

proaches to the optimum, implying that replacement after M inspections can

be enough maintenance.

Figure 4: Comparison of the optimal and suboptimal policies for different values of cd.
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4 Conclusion

We consider a one component system that undergoes both minor revealed

failures and revealed catastrophic failures. We propose an inspection proce-

dure every T units of time to detect the latter and a preventive maintenance

policy to reduce the risk that they occur. The preventive maintenance is

carried out after M inspections to account for both age and use that make

the system more prone to experience a catastrophic failure. Warranties and

maintenance contracts inspire the alternative system replacement after N

minor failures. The costs are assumed to depend on both age and history

of failures to account for maintenance contracts. The objective is to obtain

the cost-minimizing policy (T ⋆,M⋆, N⋆). The analysis of conditions for the

existence of optimum policies provide minimum values for the reliability of

the system so that a policy only based on two decision variables can be im-

proved introducing the third one. Both, formulae and numerical results show

that increasing values of the downtime cost, cd, make (T ⋆,M⋆, N⋆) be a bet-

ter choice than the policies with only one type of preventive maintenance.

Numerical results also indicate that neither the time for preventive replace-

ment at MT or after N failures are affected by changes in the parameters

related to inspection. Thus, even the additional costs derived from non-

perfect inspections can be compensated, preventing the system from failing.

Furthermore the model explores conditions of the parameters that make one

of the two alternatives for preventive maintenance preferable to the other,

revealing that the value of cd is crucial to choose between them. For small

values of cd maintenance exclusively based on opportunities can be a suitable

option although it implies much higher costs for medium to large values of cd.

All this results can serve as a guide for maintainers. Following the ideas in
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[30] it would be interesting to consider that minor and catastrophic failures

are dependent and the probability of the latter increases every time that a

minor failure occurs. In addition future research could focus on non-constant

error probabilities, assuming that a decreasing function of β(t) as unrevealed

catastrophic failures accumulate. Both issues are worthy of forthcoming re-

search.
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Appendix

Proof of Proposition 2:

The system is replaced after a U-failure is detected, or once the N th

R-failure occurs or at MT whichever comes first. Therefore

τ = min(GN , (K1 + L)T,MT )

Let’s F̄GN∧(K1+L)T (x) denote the reliability function of the random variable

min(GN , (K1 + L)T ). Then, for jT < x < (j + 1)T and j = 1, . . . ,M − 1 it
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follows that

F̄GN∧(K1+L)T (x) = F̄GN
(x)P (K1+L ≥

⌊ x
T

⌋
+1) = F̄GN

(x)P (K1+L ≥ j+1),

From (11) and (12) we obtain

E[τ ] =

∫ MT

0

F̄GN∧(K1+L)T (x)dx =
M−1∑
j=0

P (K1 + L ≥ j + 1)

∫ (j+1)T

jT

F̄GN
(x)dx

and the expression in (5) is obtained after substituting P (K1 + L ≥ j + 1)

by (4).

Proof of Proposition 3:

The random variable I0 is given by

I0 = min(SN , K1, (M − 1))

where SN =
⌊
GN

T

⌋
.

E[I0] =
M−1∑
j=1

P (SN ≥ j)P (K1 ≥ j)) =
M−1∑
j=1

F̄GN
(jT )F̄Y (jT )

The number of false positives in a cycle given I0, F |I0, follows a binomial

distribution B(I0, α), thus

E[F ] = E[E[F |I0]] = αE[I0]

A cycle is completed whichever of the following events comes first:

• R1: at MT ,

• R2: after N R-failures at random time GN ,

• R3: when a U-failure is detected after K1 + L inspections
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Hence, the number of inspections in a cycle, I, is

I = min(M − 1, SN , (K1 + L))

Thus

E[I] =
M−1∑
j=1

P (SN ≥ j)P (K1 + L ≥ j)

=
M−1∑
j=1

F̄GN
(jT )(

j−1∑
r=0

βj−1−r(FY ((r + 1)T )− FY (rT )) + F̄Y (jT ))

Proof of Proposition 4:

The maximum number of minimal repairs in a cycle is N − 1. Hence the

cost derived from minimal repairs in a cycle is:

CMR =

min(N [0,τ ],N−1)∑
i=1

cmr,i(Gi)

Moreover

τ = GN ⇐⇒ N [0, τ ] = N

τ < GN ⇐⇒ N [0, τ ] = N [0,min((K1 + L)T,MT )] ≤ N − 1

That is, there will be exactly N − 1 minimal repairs if event R2 occurs and

N − 1 at most if any of the events, R1 or R3, takes place.

CMR = CMR1R2 + CMR1{τ<GN} =

N−1∑
i=1

cmr,i(Gi)1R2 +

N [0,min((K1+L)T,MT )]∑
i=1

cmr,i(Gi)1{N [0,min((K1+L)T,MT )]≤N−1}

Given N [0, t] = k, G1, . . . , Gk are the ordered statistics of a random

variable with pdf p(x)r(x)
HR(t)

, 0 ≤ x ≤ t ([10]). Moreover the density function of
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Gi given N [0, t] = k is as follows:

fGi|N [0,t]=k(x) =
k!

(i− 1)!(k − i)!

p(x)r(x)

HR(t)

(
HR(x)

HR(t)

)i−1(
1− HR(x)

HR(t)

)k−i

The cost of the minimal repair after the ith R-failure, cmr,i(x), depends

on both the number i and the time it occurs, x. Thus, we first obtain the

expected cost derived from minimal repair in a cycle conditional to min((K1+

L)T,MT ) = y.

The probability that the number of R-failures in (0, y) is equal to k:

HR(y)
k

k!
e−HR(y).

Therefore,

E(CMR|(K1 + L)T ∧MT = y) =

=
N−1∑
k=0

HR(y)
k

k!
e−HR(y)

×
k∑

i=1

∫ y

0

cmr,i(x)
k!

(i− 1)!(k − i)!

p(x)r(x)

HR(y)

(
HR(x)

HR(y)

)i−1(
1− HR(x)

HR(y)

)k−i

dx

+
∞∑

k=N

HR(y)
k

k!
e−HR(y)

×
N−1∑
i=1

∫ y

0

cmr,i(x)
k!

(i− 1)!(k − i)!

p(x)r(x)

HR(y)

(
HR(x)

HR(y)

)i−1(
1− HR(x)

HR(y)

)k−i

dx

The first term of the foregoing sum represents the case where k ≤ N−1, that

is N − 1 R-failures occur at most in (0, y). The number of minimal repairs

will be equal to k. In the second term the number of R-failures is greater

than or equal to N and there will be exactly N − 1 minimal repairs.
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Changing the order of summation we obtain

E(CMR|(K1 + L)T ∧MT = y) =

=
N−1∑
i=1

∞∑
k=i

HR(y)
k

k!
e−HR(y)

×
∫ y

0

cmr,i(x)
k!

(i− 1)!(k − i)!

p(x)r(x)

HR(y)

(
HR(x)

HR(y)

)i−1(
1− HR(x)

HR(y)

)k−i

dx

=
N−1∑
i=1

∫ y

0

cmr,i(x)p(x)r(x)
HR(x)

i−1

(i− 1)!
e−HR(x)dx

Observe that p(x)r(x)HR(x)i−1

(i−1)!
e−HR(x) represents the density function of the

time to failure to the ith R-failure.

The unconditional expectation is obtained considering that min((K1 +

L)T,MT ) = (K1 + L)T or min((K1 + L)T,MT ) = MT :

E[CMR] =
M−1∑
j=1

P (K1 + L = j)
N−1∑
i=1

∫ jT

0

cmr,i(x)p(x)r(x)
HR(x)

i−1

(i− 1)!
e−HR(x)dx

+P (K1 + L ≥ M)
N−1∑
i=1

∫ MT

0

cmr,i(x)p(x)r(x)
HR(x)

i−1

(i− 1)!
e−HR(x)dx

And the result in (9) follows.

Proof of Theorem 1:

Straightforward algebra in the formula leads to the following limits

lim
T→0

E[τ(T )] = 0,

lim
T→0

E[C(τ)] = (M − 1)(cI + cfα) + c1PM > 0,

lim
T→∞

E[τ(T )] =

∫ ∞

0

FGN
(x)dx = E[GN ], (14)
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lim
T→∞

E[C(τ)] = cd(E[GN ] + VN),

lim
T→0

Q(T,M,N) = ∞ (15)

and

lim
T→∞

Q(T,M,N) = cd +
VNcd
E[GN ]

(16)

Let A(T,M,N) = Q(T,M,N)−cd
cd

Q(T,M,N) = cd + cdA(T,M,N), (17)

lim
T→0

E[τ(T )]A(T,M,N) =
1

cd

(
(M − 1)(cI + cfα) + c1PM

)
> 0,

and

lim
T→∞

E[τ(T )]A(T,M,N) = VN = lim
T→∞

B(T ) (18)

with B(T ) given by

B(T ) =

1

cd

(∫ T

0

cr2(N, x)fGN
(x)dx+

N−1∑
i=1

∫ T

0

cmr,i(x)p(x)r(x)
H i−1

R (x)

(i− 1)!
e−HR(x)

)

−
∫ T

0

F Y (x)FGN
(x)dx

and its derivative

B′(T ) =
1

cd

(
cr2(N, T )fGN

(T ) +
N−1∑
i=1

cmr,i(T )p(T )r(T )
H i−1

R (T )

(i− 1)!
e−HR(T )

)
− F Y (T )FGN

(T )

which verifies the following inequality

B′(T ) ≥ FGN
(T )

(
mini cmr,i(0)

cd
p(T )r(T )− F Y (T )

)
> 0, T > T0

The previous inequality is derived from the assumptions limt→∞ p(t)r(t) =

∞, FGN
(T ) > 0 and cmr,i(T ) ≥ mini cmr,i(0). Moreover the following limit
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limT→∞ B′(T ) = ∞ holds and thus the existence of T0 > 0 such that B(T )

is increasing for T > T0 is concluded.

Then from (18), the assumption VN < 0 and the monotony of B(T ) for

T > T0, it follows that there exists an increasing sequence {Tn : n = 1, 2, . . .}
with T1 > T0 and limn→∞ Tn = ∞ such that

E[τ(Tn)]A(Tn,M,N) < VN − 1

n
≤ 0, n = 1, 2, . . .

and by (14)

E[τ(Tn)] ≤ E[GN ] +
1

n
, n = 1, 2, . . .

Thus, applying last two inequalities on equation (17)

Q(Tn,M,N) < cd +
(VN − 1

n
)cd

E[GN ] +
1
n

= cd + cdR(VN , E[GN ], n), n = 1, 2, . . .

(19)

with

R(VN , E[GN ], n) =
VN − 1

n

E[GN ] +
1
n

In addition

E[GN ] + VN =

1

cd

(∫ ∞

0

cr2(N, x)fGN
(x)dx+

N−1∑
i=1

∫ ∞

0

cmr,i(x)p(x)r(x)
H i−1

R (x)

(i− 1)!
e−HR(x)

)
+∫ ∞

0

FGN
(x)
(
1− F Y (x)

)
dx

E[GN ] + VN ≥ 0, implying that

R(VN , E[GN ], n) ≤ R(VN , E[GN ], n+ 1), n = 1, 2, . . .

Then, from (16) and (19) the condition below holds

Q(T1,M,N) < cd+cd lim
n→∞

R(VN , E[GN ], n+1) = cd+
cdVN

E[GN ]
= Q(∞,M,N)
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The previous inequality along with (15) lead to

Q(T1,M,N) < Q(∞,M,N) < ∞ = lim
T→0

Q(T,M,N)

Q(T,M,N) is continuous in (0,∞) and hence there exists T ∗
M,N (0 < T ∗

M,N <

∞) minimizing Q(T,M,N).

Proof of Theorem 2a:

Let us consider the following auxiliary function

O(T,M,N) = E[τ ]
Q(T,M,N)− cd

cd
.

Then Q(T,M,N) can be alternatively written

Q(T,M,N) = cd + cd
O(T,M,N)

E[τ ]
.

Next equations provide the asymptotic behavior of E[τ ] for N and M .

lim
N→∞

E[τ ] =CT,M (20)

= T
M−1∑
j=0

(
j∑

r=0

βj−r[FY ((r + 1)T )− FY (rT )]+F Y ((j + 1)T )

)
= E[min((K1 + L)T,MT )] ≥ E[min(Y,MT )] (21)

lim
M→∞

E[τ ] =CT,N (22)

= T
∞∑
j=0

(
j∑

r=0

βj−r[FY ((r + 1)T )− FY (rT )]+F Y ((j + 1)T )

)∫ (j+1)T

jT

FGN
(x)dx

= E[min((K1 + L)T,GN)] ≥ E[min(Y,GN)] (23)

K1 and L in the previous expressions denote, respectively, the number of in-

spections before the catastrophic failure and after it occurs until its detection.

Both inequalities are derived since T
([

Y
T

]
+ 1
)
≥ Y leads to (K1+L)T ≥st Y

where st denotes the usual stochastic order.
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Moreover

M−1∑
j=0

j∑
r=0

βj−r[FY ((r + 1)T )− FY (rT )] + F Y ((j + 1)T )

≤
M−1∑
j=0

j∑
r=0

βj−r + F Y (T )

=
M−1∑
j=0

1− βj+1

1− β
+ F Y (T )

≤
M−1∑
j=0

1

1− β
+ F Y (T )

Therefore, E[CPRN ] given in (7) verifies

lim sup
N→∞

E[CPRN ] ≤ lim sup
N→∞

(
M

1− β
+ F Y (T )

)∫ MT

0

cr2(N, x)fGN
(x)dx.

From limN→∞ FGN
(x) = 0 and (13), it follows that the limit on the right

hand side in the foregoing inequality is equal to zero. Thus

lim sup
N→∞

E[CPRN ] = 0 (24)

Next, we define the auxiliary function ST,M(N). It depends on N for

fixed values of T and M and is increasing with N .
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ST,M(N) =

c1
cd

M−1∑
j=1

(
j−1∑
r=0

βj−1−r[FY ((r + 1)T )− FY (rT )] + F Y (jT )

)
+

cf
cd
α

M−1∑
j=1

F Y (jT )

+
cr1
cd

P (K1 + L ≤ M − 1) +
c1PM

cd

M−1∑
j=0

βM−1−j[FY ((j + 1)T )− FY (jT )]

+
c2PM

cd
F Y (MT ) +

M−1∑
j=1

P (K1 + L = j)
N−1∑
i=1

∫ jT

0

cmr,i(x)

cd
p(x)r(x)

H i−1
R (x)

(i− 1)!
e−HR(x)dx

+ P (K1 + L ≥ M)
N−1∑
i=1

∫ MT

0

cmr,i(x)

cd
p(x)r(x)

H i−1
R (x)

(i− 1)!
e−HR(x)dx−

∫ MT

0

F Y (x)dx

In addition limN→∞ FGN
(x) = 1 and (24) lead to

lim
N→∞

O(T,M,N) = lim
N→∞

ST,M(N) = ST,M(∞) = VT,M . (25)

with VT,M given in (11)

To complete the proof for Theorem 2a, it is sufficient to prove that

Q(T,M,N) < Q(T,M,∞).

For n = 1, 2, . . ., there exists an increasing sequence in n, Nn, of nat-

ural numbers with limn→∞ Nn = ∞ such that for all n the following two

inequalities hold from (20), (25), and the monotony of ST,M

O(T,M,Nn) < ST,M(∞)− 1

n
= VT,M − 1

n
≤ 0

and

E[τ(Nn)] ≤ CT,M +
1

n

with E[τ(Nn)] the expected length of a cycle in (5) when the renewal occurs

after Nn failures. The expression of CT,M is given in (20).
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Then

Q(T,M,Nn) = cd+cd
O(T,M,Nn)

E[τ ]
< cd+cd

(VT,M − 1
n
)

(CT,M + 1
n
)
= R(n, VT,M , CT,M), n = 1, . . .

In addition

CT,M + ST,M(∞) ≥ CT,M −
∫ MT

0

F Y (x)dx ≥ 0.

The first inequality is derived from the expression of ST,M and the second

from (21) since F Y (x)dx = E[min(Y,MT )].

We also have

(ST,M(∞)− 1
n
)

(CT,M + 1
n
)

≤
(ST,M(∞)− 1

n+1
)

(CT,M + 1
n+1

)
⇔ CT,M + ST,M(∞) ≥ 0

which, in turn, leads to R(n, VT,M , CT,M) to be an increasing sequence in n.

Thus

Q(T,M,N1) < cd + cd lim
n→∞

R(n, VT,M , CT,M) = cd + cd
VT,M

CT,M

Q(T,M,∞)

and the result in Theorem 2a follows.

Proof of Theorem 2b:

The existence of the optimumM∗
T,N minimizingQ(T,M,N) can be proved

in a similar way to Theorem 2a . From (22), it follows that

lim
M→∞

Q(T,M,N) = cd + cd
VT,N

CT,N

= cd + cd lim
n→∞

R(n, VT,N , CT,N)

with VT,N in (12) and CT,N in (22).

A new auxiliary function ZT,N(M) is defined. It depends on M for fixed
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values of T and N and it is increasing with M .

ZT,N(M) =

c1
cd

∞∑
j=1

FGN
(jT )

(
j−1∑
r=0

βj−1−r[FY ((r + 1)T )− FY (rT )] + F Y (jT )

)

+
cf
cd
α

∞∑
j=1

F Y (jT )FGN
(jT )

+
∞∑
j=1

(
j−1∑
r=0

βj−1−r[FY ((r + 1)T )− FY (rT )] + F Y (jT )

)∫ (j+1)T

jT

cr2(N, x)fGN
(x)dx

+
cr1
cd

M−1∑
j=0

P (K1 + L = j)FGN
(jT )

+
∞∑
j=0

P (K1 + L = j)
N−1∑
i=1

∫ jT

0

cmr,i(x)

cd
p(x)r(x)

H i−1
R (x)

(i− 1)!
e−HR(x)dx

−
∫ ∞

0

F Y (x)FGN
(x)dx

It follows that

lim
M→∞

O(T,M,N) = lim
M→∞

ZT,N(M) = ZT,N(∞) = VT,N .

and from (23) we obtain

ZT,N(∞) + CT,N = VT,N + CT,N ≥ 0

and, thus, R(n, VT,N , CT,N) is increasing in n. The rest of the details, similar

to case 2a, are omitted.
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