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Abstract. We consider a broad class of walk-based, parameterized node centrality measures for
network analysis. These measures are expressed in terms of functions of the adjacency matrix and
generalize various well-known centrality indices, including Katz and subgraph centralities. We show
that the parameter can be “tuned” to interpolate between degree and eigenvector centralities, which
appear as limiting cases. Our analysis helps explain certain correlations often observed between the
rankings obtained using different centrality measures and provides some guidance for the tuning of
parameters. We also highlight the roles played by the spectral gap of the adjacency matrix and by
the number of triangles in the network. Our analysis covers both undirected and directed networks,
including weighted ones. A brief discussion of PageRank is also given.

Key words. centrality, communicability, adjacency matrix, spectral gap, matrix functions,
network analysis, PageRank

AMS subject classifications. 05C50, 15A16

DOI. 10.1137/130950550

1. Introduction. The mathematical and computational study of complex net-
works has experienced tremendous growth in recent years. A wide variety of highly
interconnected systems, both in nature and in the man-made world of technology, can
be modeled in terms of networks. Network models are now commonplace not only in
the “hard” sciences but also in economics, finance, anthropology, urban studies, and
even in the humanities. As more and more data has become available, the need for
tools to analyze these networks has increased and a new field of network science has
come of age [1, 17, 24, 47].

Since graphs, which are abstract models of real-world networks, can be described
in terms of matrices, it comes as no surprise that linear algebra plays an important
role in network analysis. Many problems in this area require the solution of linear
systems, the computation of eigenvalues and eigenvectors, and the evaluation of matrix
functions. Also, the study of dynamical processes on graphs gives rise to systems of
differential and difference equations posed on graphs [2]; the behavior of the solution as
a function of time is strongly influenced by the structure (topology) of the underlying
graph, which in turn is reflected in the spectral properties of matrices associated with
the graph [6].
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One of the most basic questions about network structure is the identification of
the “important” nodes in a network. Examples include essential proteins in protein-
protein interaction networks, keystone species in ecological networks, authoritative
webpages on the World Wide Web, influential authors in scientific collaboration net-
works, leading actors in the Internet Movie Database, and so forth; see, e.g., [24, 46]
for details and many additional examples. When the network being examined is
very small (say, on the order of 10 nodes), this determination of importance can of-
ten be done visually, but as networks increase in size and complexity, visual analysis
becomes impossible. Instead, computational measures of node importance, called cen-
trality measures, are used to rank the nodes in a network. There are many different
centrality measures in use; see, for example, [13, 24, 40, 47] for extensive treatments
of centrality and discussion of different ranking methods. Many authors, however,
have noted that different centrality measures often provide rankings that are highly
correlated, at least when attention is restricted to the most highly ranked nodes; see,
e.g., [21, 32, 41, 45], as well as the results in [5].

In this paper we analyze the relationship between degree centrality, eigenvector
centrality, and various centrality measures based on the diagonal entries (for undi-
rected graphs) and row sums of certain (analytic) functions of the adjacency matrix
of the graph. These measures contain as special cases the well-known Katz centrality,
subgraph centrality, total communicability, and other centrality measures which de-
pend on a tuneable parameter. We also include a brief discussion of PageRank [48].
We point out that Kleinberg’s HITS algorithm [37], as a type of eigenvector centrality,
is covered by our analysis, as is the extension of subgraph centrality to digraphs given
in [4].

As mentioned, there are a number of other ranking methods in use, yet in this
paper we limit ourselves to considering centrality measures based on functions of the
adjacency matrix, in addition to degree and eigenvector centralities. The choice of
which of the many centrality measures to study and why is something that must be
considered carefully; see the discussion in [15]. In this paper we focus our attention on
centrality measures that have been widely tested and that can be expressed in terms
of linear algebra (more specifically, in terms of the adjacency matrix of the network).
We additionally restrict our scope to centrality measures that we can demonstrate
(mathematically) to be related to one other. Hence, we did not include in our analysis
two popular centrality measures, betweenness centrality [30] and closeness centrality
[31], which do not appear to admit a simple expression in terms of the adjacency
matrix. Our results help explain the correlations often observed between the rankings
produced by different centrality measures and may be useful in tuning parameters
when performing centrality calculations.

The paper is organized as follows. Sections 2 and 3 contain background infor-
mation on graphs and centrality measures. In section 4 we describe the general class
of functional centrality measures considered in this paper and present some technical
lemmas on power series needed for our analysis. In section 5 we state and prove our
main results, which show that degree and eigenvector centralities are limiting cases of
the parameterized ones. Section 6 contains a brief discussion of the limiting behavior
of PageRank and related techniques. In section 7 we provide an interpretation of our
results in terms of graph walks and discuss the role played by the spectral gap and
by triangles in the network. Related work is briefly reviewed in section 8. A short
summary of numerical experiments aimed at illustrating the theory is given in section
9 (the details of the experiments can be found in the supplementary materials accom-
panying this paper, linked from the main article webpage). Conclusions are given in
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section 10.

2. Background and definitions. In this section we recall some basic concepts
from graph theory that will be used in the rest of the paper. A more complete overview
can be found, e.g., in [20]. For ease of exposition only unweighted and loopless graphs
are considered in this section, but nearly all of our results admit a straightforward
generalization to graphs with (positive) edge weights, and several of the results also
apply in the presence of loops; see the end of section 5, as well as section 6.

A directed graph, or digraph, G = (V,E) is defined by a set of n nodes (also
referred to as vertices) V and a set of edges E = {(4,7) 4,5 € V}. Note that, in
general, (i,7) € E does not imply (j,7) € E. When this happens, G is undirected
and the edges are formed by unordered pairs of vertices. The out-degree of a vertex
i, denoted by d?*!, is given by the number of edges with i as the starting node, i.e.,
the number of edges in F of the form (i, k). Similarly, the in-degree of node i is the
number di" of edges of the form (k,4). If G is undirected, then d?** = di™ = d;, the
degree of node 1.

A walk of length k in G is a list of nodes i1,1s,...,ik,ix+1 such that for all
1 <1 <k, there is a (directed) edge between 4; and i;41. A closed walk is a walk
where 47 = ig11. A path is a walk with no repeated nodes, and a cycle is a closed
walk with no repeated nodes except for the first and the last one. A graph is simple
if it has no loops (edges from a node i to itself), no multiple edges, and unweighted
edges. An undirected graph is connected if there exists a path between every pair of
nodes. A directed graph is strongly connected if there exists a directed path between
every pair of nodes.

Every graph G can be represented as a matrix through the use of an adjacency
matriz A = (a;;) with

S { 1 if (4,7) is an edge in G,
Y1 0 else.

If G is a simple, undirected graph, A is binary and symmetric with zeros along the
main diagonal. In this case, the eigenvalues of A will be real. We label the eigenvalues
of A in nonincreasing order: Ay > Ay > -+ > \,. If G is connected, then \; > Ao
by the Perron—Frobenius theorem [44, page 673]. Since A is a symmetric, real-valued
matrix, we can decompose A into A = QAQT, where A = diag(\i, A2, ..., \,) with
AL > A > oo > Ay, @ = [q5,42,...,q,] is orthogonal, and q; is the eigenvector
associated with A\;. The dominant eigenvector, qi, can be chosen to have positive
entries when G is connected: we write this as q; > 0.

If G is a strongly connected digraph, its adjacency matrix A is irreducible, and
conversely. Let p(A) = r be the spectral radius of A. Then, again by the Perron—
Frobenius theorem, A\; = r is a simple eigenvalue of A and both the left and right
eigenvectors of A associated with A1 can be chosen to be positive. If G is also diag-
onalizable, then there exists an invertible matrix X such that A = XAX ™!, where
A = diag(Ai, Az, ..., An) with Ay > |\] for 2 <@ < n, X = [x1,X2,...,Xy], and
(X YT =[y1,y2,---,¥n] The left eigenvector associated with ); is y;, and the right
eigenvector associated with )\; is x;. In the case where G is not diagonalizable, A can
be decomposed using the Jordan canonical form

A 0
-1 1 v -1
A=XJX —X<O J>X ,
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where J is the Jordan matrix of A, except that we place the 1 x 1 block corresponding
to A; first for notational convenience. The first column x; of X is the dominant right
eigenvector of A, and the first column y; of X7 is the dominant left eigenvector of
A (equivalently, the dominant right eigenvector of AT).

Throughout the paper, I denotes the n x n identity matrix.

3. Node centrality. As we discussed in the introduction, many measures of
node centrality have been developed and used over the years. In this section we
review and motivate several centrality measures to be analyzed in the rest of the

paper.

3.1. Some common centrality measures. Some of the most common mea-
sures include degree centrality, eigenvector centrality [9], PageRank [48], betweenness
centrality [12, 30], Katz centrality [36], and subgraph centrality [26, 27]. More re-
cently, total communicability has been introduced as a centrality measure [5]. A node
is deemed “important” according to a given centrality index if the corresponding value
of the index is high relative to that of other nodes.

Most of these measures are applicable to both undirected and directed graphs.
In the directed case, however, each node can play two roles: sink and source, or
recetver and broadcaster, since a node in general can be both a starting point and an
arrival point for directed edges. This has led to the notion of hubs and authorities in a
network, with hubs being nodes with a high broadcast centrality index and authorities
being nodes with a high receive centrality index. For the types of indices considered in
this paper, broadcast centrality measures correspond to quantities computed from the
adjacency matrix A, whereas authority centrality measures correspond to the same
quantities computed from the transpose AT of the adjacency matrix. When the graph
is undirected, A = AT and the broadcast and receive centrality scores of each node
coincide.

Examples of (broadcast) centrality measures are

e out-degree centrality: d"* := [A1];;
e (right) eigenvector centrality: Ce,(i) := €] qi = ¢i1(i), where q; is the domi-
nant (right) eigenvector of A;
exponential subgraph centrality: SC;(3) := [4]i;
resolvent subgraph centrality: RC;(a) := [(I — aA) ™ u;
total communicability: TC;(3) := [ef41]; = el'e?41; and
e Katz centrality: K;(a) = [l —aA)"'1]; =el (I — aA)'1.

Here e; is the ith standard basis vector, 1 is the vector of all ones, 0 < a < )\—11
(see below), and 8 > 0. We note that the vector of all ones is sometimes replaced by
a preference vector v with positive entries; for instance, v = d := A1 (the vector of
node out-degrees).

Replacing A with AT in the definitions above we obtain the corresponding author-
ity measures. Thus, out-degree centrality becomes in-degree centrality, right eigen-
vector centrality becomes left eigenvector centrality, and row sums are replaced by
column sums when computing the total communicability centrality. Note, however,
that the exponential and resolvent subgraph centralities are unchanged when replac-
ing A with AT, since f(AT) = f(A)T for any matrix function [34, Theorem 1.13].
Hence, measures based on the diagonal entries cannot differentiate between the two
roles a node can play in a directed network, and for this reason they are mostly used
in the undirected case only (but see [4] for an adaptation of subgraph centrality to
digraphs).
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Often, the value 8 = 1 is used in the calculation of exponential subgraph cen-
trality and total communicability. The parameter 8 can be interpreted as an inverse
temperature and has been used to model the effects of external disturbances on the
network. As g — 04, the “temperature” of the environment surrounding the net-
work increases, corresponding to more intense external disturbances. Conversely, as
B — o0, the temperature goes to 0 and the network “freezes.” We refer the reader to
[25] for an extensive discussion and applications of these physical analogies.

3.2. Justification in terms of graph walks. The justification behind using
the (scaled) matrix exponential to compute centrality measures can be seen by con-
sidering the power series expansion of ef4:

k 00 k
R e ) <18
' ' k=0

It is well known that given an adjacency matrix A of an unweighted network,
[A¥];; counts the total number of walks of length k between nodes i and j. Thus
SC;i(B) = [e’4]u, the exponential subgraph centrality of node 4, counts the total
number of closed walks in the network which are centered at node ¢, weighing walks
of length k by a factor of ﬁk—]: Unlike degree, which is a purely local index, subgraph
centrality takes into account the short, medium, and long-range influence of all nodes
on a given node (assuming G is strongly connected). Assigning decreasing weights
to longer walks ensures the convergence of the series (3.1) while guaranteeing that
short-range interactions are given more weight than long-range ones [27].

Total communicability is closely related to subgraph centrality. This measure
also counts the number of walks starting at node i, scaling walks of length k£ by i—?
However, rather than just counting closed walks, total communicability counts all
walks between node ¢ and every node in the network. The name stems from the fact
that TC;(8) = Y_7_, Ci;j(B), where Cy;(8) := [e”4];;, the communicability between
nodes i and j, is a measure of how “easy” it is to exchange a message between
nodes i and j over the network; see [25] for details. Although subgraph centrality
and total communicability are clearly related, they do not always provide the same
ranking of the nodes. Furthermore, unlike subgraph centrality, total communicability
can distinguish between the two roles a node can play in a directed network. More
information about the relation between the two measures can be found in [5].

The matrix resolvent (I — aA)~! was first used to rank nodes in a network in
the early 1950s, when Katz used the column sums to calculate node importance [36].
Since then, the diagonal values have also been used as a centrality measure; see [26].
The resolvent subgraph centrality score of node i is given by [(I — aA)71];, and the
Katz centrality score is given by either [(I —aA)~11]; or [(I — aAT)~11];, depending
on whether hub or authority scores are desired. As mentioned, 1 may be replaced by
an arbitrary (positive) preference vector, v.

As when using the matrix exponential, these resolvent-based centrality measures
count the number of walks in the network, penalizing longer walks. This can be seen
by considering the Neumann series expansion of (I — aA)~1, valid for 0 < a < )\%:

(3.2) (I—ad) ' =T+aAd+ oA+ +aFAF 4. =) " ahar,
k=0

The resolvent subgraph centrality of node i, [(I — aA)~!];;, counts the total number
of closed walks in the network which are centered at node i, weighing walks of length
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k by . Similarly, the Katz centrality of node i counts all walks beginning at node 1,
penalizing the contribution of walks of length & by . The bounds on a (0 < o < %1)
ensure that the matrix I —«aA is invertible and that the power series in (3.2) converges
to its inverse. The bounds on « also force (I —aA)~! to be nonnegative, as I — A is
a nonsingular M-matrix. Hence, both the diagonal entries and the row/column sums
of (I —aA)~! are positive and can thus be used for ranking purposes.

4. A general class of functional centrality measures. In this section we
establish precise conditions that a matrix function f(A), where A is the adjacency
matrix of a network, should satisfy in order to be used in the definition of walk-
based centrality measures. We consider in particular analytic functions expressed by
power series, with a focus on issues like convergence, positivity, and dependence on a
tuneable parameter ¢ > 0. We also formulate some auxiliary results on power series
that will be crucial for the analysis to follow. For an introduction to the properties
of analytic functions see, e.g., [42].

4.1. Admissible matrix functions. As discussed in subsection 3.2, walk-based
centrality measures (such as Katz or subgraph centrality) lead to power series ex-
pansions in the (scaled) adjacency matrix of the network. While exponential- and
resolvent-based centrality measures are especially natural (and well studied), there
are a priori infinitely many other matrix functions which could be used [49, 26]. Not
every function of the adjacency matrix, however, is suitable for the purpose of defining
centrality measures, and some restrictions must be imposed.

A first obvious condition is that the function should be defined by a power series
with real coefficients. This guarantees that f(z) takes real values when the argument
is real and that f(A) has real entries for any real A. In [49] (see also [26]), the authors
proposed considering only analytic functions admitting a Maclaurin series expansion
of the form

(4.1) f(z):chzk, ¢, >0 for £>0.
k=0

This ensures that f(A) will be nonnegative for any adjacency matrix A. In [26]
it is further required that ¢, > 0 for all kK = 1,2,...,n — 1, so as to guarantee that
[f(A)];; > 0 for all i # j whenever the network is (strongly) connected.! Although
not explicitly stated in [26], it is clear that if one wants all the walks (of any length)
in G to make a positive contribution to a centrality measure based on f, then one
should impose the more restrictive condition ¢; > 0 for all k& > 0. Note that ¢y
plays no significant role, since it is just a constant value added to all the diagonal
entries of f(A) and therefore does not affect the rankings. However, imposing ¢y > 0
guarantees that all entries of f(A) are positive and leads to simpler formulas. Another
tacit assumption in [26] is that only power series with a positive radius of convergence
should be considered.

In the following, we will denote by P the class of analytic functions that can
be expressed as sums of power series with strictly positive coefficients on some open
neighborhood of 0. We note in passing that P forms a positive cone in function space,
i.e., P is closed under linear combinations with positive coefficients.

Clearly, given an arbitrary adjacency matrix A, the matrix function f(A), with
f € P, need not be defined; indeed, f must be defined on the spectrum of A [34]. If f

I'We recall that a nonnegative n x n matrix A is irreducible if and only if (I + A)"~! > 0. See,
e.g., [35, Theorem 6.2.24].
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is entire (i.e., analytic in the whole complex plane, like the exponential function), then
f(A) will always be defined, but this is not the case of functions with singularities, such
as the resolvent. However, this difficulty can be easily circumvented by introducing
a (scaling) parameter ¢t and by considering for a given A the parameterized matrix
function g(t, A) := f(tA) only for values of ¢ such that the power series

F(tA) = col + c1tA+ ct? A% 4 - = Z cpth A*
k=0

is convergent, that is, such that |[tA1(A)] < Ry, where Ry denotes the radius of
convergence of the power series representing f. In practice, for the purposes of this
paper, we will limit ourselves to positive values of ¢ in order to guarantee that f(tA) is
entrywise positive, as required by the definition of a centrality index. We summarize
our discussion so far in the following lemma.

LEMMA 1. Let P be the class of all analytic functions that can be expressed
by a Maclaurin series with strictly positive coefficients in an open disk centered at
0. Gien an irreducible adjacency matrix A and a function f € P with radius of
convergence Ry > 0, let t* = Ry /A (A). Then f(tA) is defined and strictly positive
for allt € (0,t*). If f is entire, then one can take t* = oco.

Restriction of f to the class P and use of a positive parameter ¢, which will depend
on A and f in case f is not entire, allows one to define the notion of f-centrality
(as well as f-communicability, f-betweenness, and so forth; see [26]). Exponential
subgraph centrality (with ¢ = ) is an example of an entire function (hence all positive
values of (3 are feasible), while resolvent subgraph centrality (with ¢ = «) exemplifies
the situation where the parameter must be restricted to a finite interval, in this case
(0, ﬁ) (since the geometric series 14+z+22+- - - has radius of convergence Ry = 1).

We consider now two subclasses of the class P previously introduced. We let Py

denote the set of all power series in P with radius of convergence Ry = oo, and we let
P°° denote the set of all power series with finite radius of convergence Ry such that

4.2 RE =1 tFRE =

(we note that the first equality above follows from Abel’s theorem [42, page 229]).

The exponential and the resolvent are representative of functions in P,, and P,

respectively. It is worth emphasizing that, together, P, and P> do not exhaust the
k

class P. For example, the function f(z) = Y7, % is in P, but it is not in Psg (since

its radius of convergence is Ry = 1) or in P*°, since

> tkRk <1 2
1i PN T
Rl ;2 Zm 6 -
k=0 k=0

In section 5 we will analyze centrality measures based on functions f in P and
its subclasses, Py, and P>°.

4.2. Asymptotic behavior of the ratio of two power series. In our study
of the limiting behavior of parameter-dependent functional centrality measures we
will need to investigate the asymptotic behavior of the ratio of two power series with
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positive coefficients. The following technical lemmas will be crucial for our analysis.
LEMMA 2. Let the power series Z;io apth, 220:0 bit® have positive real coeffi-
cients and be convergent for all t > 0. If limg_, o Z—: =0, then

co k
lim 20 %t _ g
t—o0 Zk:O bktk
Proof. Let € > 0 be arbitrary, and let N > 0 be such that Z—: < eforall k> N.
Also, let g(t) = Y32, art® and h(t) = 3, brt*. We have
(4.3) @ _ T]%(t) +91(t) _ T]%(t) g1(t)
h(t) TR@E)+hi(t) TEE)+hi(t)  Th(t)+ h(t)’
with 7% (t) = Zgzo apth, TE(t) = ZkN:O bit* and gy (t), hi(t) being the tails of the
corresponding series. The first term on the right-hand side of (4.3) manifestly tends
to zero as t¢ — oo. The second term is clearly bounded above by g¢1(t)/h1(t). The
result then follows from

B () . () ap .
at)= > athb= Y <E> bit* < ehy(t)
k=N+1 k=N+1

and the fact that ¢ is arbitrary. O
LEMMA 3. Let A1, Mg, ..., Ay € C be given, with A\; > |Aa| > -+ > |\s|, and let
f € Poo UP™ be defined at these points. Then

7 £ (t);)
tﬁlglf f(t/\l)

where t* = Ry /A1 and Ry is the radius of convergence of the series defining f around
0 (finite or infinite according to whether f € P> or f € Py, respectively).

Proof. Consider first the case t* < co. In this case the assumption that f € P>
guarantees (cf. (4.2)) that the denominator of (4.4) tends to infinity, whereas the
numerator remains finite for all i # 1 and all j. Indeed, each derivative f)(z) of
f(2) can be expressed by a power series having the same radius of convergence as the
power series expressing f(z). Since each t*); (with ¢ # 1) falls inside the circle of
convergence, we have | f()(t*);)| < co for each j > 0 and hence (4.4).

Next, we consider the case where t* = co. Let ¢ # 1, and assume A; # 0 (the
result is trivial for A\; = 0). Since f is entire, so are all its derivatives and, moreover,

(4.4) =0 for 57=0,1,..., i=2,...,n,

oo

D (ke 5)7 e tt A
k=0

where we have used the (standard) notation (k4 j). = (k + j)(k+j —1)--- (k+1)
(with the convention k2 = 1). Now let ay = (k + j)L cx+;AF be the coefficient of t* in
the power series expansion of #/ f(9)(t);), and let by, = ckAF be the coefficient of t* in

the power series expansion of f(tA1); then

< (k4 ) ergt*IN]F < 00,
k=0

(4.5) [fP )] =

I
(4.6) Ly (u) for all & > j.
by A1
Since exponential decay trumps polynomial growth, we conclude that the expression
in (4.6) tends to zero as k — co. Using Lemma 2 we get the desired conclusion. O

As we will see in the next section, the limit (4.4) with j = 0 will be instrumental
in our analysis of undirected networks, while the general case is needed for the analysis
of directed networks.
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5. Limiting behavior of parameterized centrality measures. One diffi-
culty in measuring the “importance” of a node in a network is that it is not always
clear which of the many centrality measures should be used. Additionally, it is not
clear a priori when two centrality measures will give similar node rankings on a given
network. When using parameter-dependent indices, such as Katz, exponential, or
resolvent-based subgraph centrality, the necessity of choosing the value of the param-
eter adds another layer of difficulty. For instance, it is well known that using different
choices of a and § in Katz and subgraph centralities will generally produce different
centrality scores and can lead to different node rankings. However, experimentally, it
has been observed that different centrality measures often provide rankings that are
highly correlated [5, 21, 32, 41, 45]. Moreover, in most cases, the rankings are quite
stable, in the sense that they do not appear to change much for different choices of
a and B, even if the actual scores may vary by orders of magnitude [38]. With Katz
and subgraph centralities this happens in particular when the parameters o and [
approach their limits:

1
o — 0+, a—>/\——, 8—=0+, B—o0.
1

Noting that the first derivatives of the node centrality measures grow unboundedly

as a — )\%— and as f — oo, the centrality scores are extremely sensitive to (vary

extremely rapidly with) small changes in o when « is close to /\%— and in $ when
B is even moderately large. Yet, the rankings produced stabilize quickly and do not
change much (if at all) when « and 3 approach these limits. The same is observed as
a, 8 — 0+ .

The remainder of this section is devoted to proving that the same behavior can
be expected, more generally, when using parameterized centrality measures based on
analytic functions f € P. The observed behavior for Katz and subgraph centrality
measures is thus explained and generalized.

It is worth noting that while all the parameterized centrality measures considered
here depend continuously on t € [0,¢*), the rankings do not: hence, the limiting
behavior of the ranking as the parameter tends to zero cannot be obtained by simply
setting the parameter to zero.

5.1. Undirected networks. We begin with the undirected case. The following
theorem is our main result. It completely describes the limiting behavior, for “small”
and “large” values of the parameter, of parameterized functional centrality measures
based on either the diagonal entries or the row sums. Recall that a nonnegative matrix
A is primitive if \y > |\;| for ¢ = 2,...,n; see, e.g., [44, page 674].

THEOREM 5.1. Let G = (V, E) be a connected, undirected, unweighted network
with adjacency matriz A, assumed to be primitive, and let f € P be defined on the
spectrum of A. Let SCi(t) = [f(tA)]i; be the f-subgraph centrality of node i, and
let SC(t) be the corresponding vector of f-subgraph centralities. Also, let TC;(t) =
[f(tA)1]; be the total f-communicability of node i, and let TC(t) be the corresponding
vector. Then, the following hold:

(i) as t — 0+, the rankings produced by both SC(t) and TC(t) converge to those
produced by d = (d;), the vector of degree centralities;

(ii) 4f, in addition, f € Psx UP™, then for t — t*— the rankings produced by both
SC(t) and TC(t) converge to those produced by eigenvector centrality, i.e., by
the entries of qi, the dominant eigenvector of A;
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(iii) the conclusion in (ii) still holds if the vector of all ones 1 is replaced by any
preference vector v > 0 in the definition of TC(t).
Proof. To prove (i), consider first the Maclaurin expansion of SC;(t):

SCl(t) =co+ Clt[A]ii + Cgtz[Az]ii + C3t3[A3]ii +---=co+0+ Cgtzdi + C3t3[A3]ii +---
Let ¢(1) == —L;[SC(t) — col]. The rankings produced by ¢(t) will be the same as
those produced by SC(t), as the scores for each node have all been shifted and scaled
in the same way. Now, the ith entry of ¢(t) is given by

(5.1) ¢i(t) = [SCi(t) — co] = d; + Z—zt[/ﬁ]ii + Z—;‘ﬁ[/x‘*]ii +on

02t2

which tends to d; as t — 04. Thus, as ¢t — 0+, the rankings produced by the
f-subgraph centrality scores reduce to those produced by the degrees.
Similarly, we have

(5.2) TCi(t) = [f(tA)1]; = [col+ert Al+eat? A%1+- - ]; = cot+crtdi+cot?[Ad];+

Subtracting ¢o from [f(¢tA)1]; and dividing the result by c¢;t leaves the quantity d; +
O(t); hence for t — 0+ we again obtain degree centrality.

To prove (ii), consider first the expansion of SC;(¢) in terms of the eigenvalues
and eigenvectors of A:

n

=Y FEW)a(D)® = FEA) @ (@) + Y FEA) gk (D),
s

k=2

where g (i) is the ith entry of the (normalized) eigenvector qi of A associated with
Ai. Let (t) := (t)\ )SC( ). As in the proof of (i), the rankings produced by ()

are the same as those produced by SC(t), since the scores for each node have all been
rescaled by the same amount. Next, the ith entry of ¥ (t) is

_ 2 - f(t/\k) -\ 2
(5.3) Yi(t) = q1(i) +kz:; f(t/\l)%(z) .

Since A is primitive, we have \; > A for 2 < k < n. Hence, applying Lemma 3
with j = 0 we conclude that v;(t) — ¢1(i)? as t — t*—. By the Perron—Frobenius
theorem we can choose q; > 0; hence the rankings produced by ¢;(i)? are the same as
those produced by g1 (7). Thus, as t — t*—, the rankings produced by the f-subgraph
centrality scores reduce to those obtained with eigenvector centrality.

Similarly, we have

n

(5.4) =3 FEN) (@i Dar(i) = fEM)(af Dgr (i) + Y F(EM) (af 1)gn ().
k=1

k=2

Note that qf 1 > 0, since q; > 0. Dividing both sides by f(tA1)q} 1 and taking the
limit as t — t*— we obtain the desired result.

Finally, (iii) follows by just replacing 1 with v in the foregoing argument. O

By specializing the choice of f to the matrix exponential and resolvent, we im-
mediately obtain the following corollary of Theorem 5.1.

COROLLARY 1. Let G = (V,E) be a connected, undirected, unweighted net-
work with adjacency matriz A, assumed to be primitive. Let EC;(B) = [e#4]; and
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TABLE 1
Limiting behavior of different ranking schemes in the undirected case.

Limiting ranking scheme
Method Degree Eigenvector
RC(a), K(o) | oo — 0+ a— All—
EC(B), TC(B) | B— 0+ B — oo

RC;(a) = [(I —aA)™1]i; be the exponential and resolvent subgraph centralities of node
i. Also, let TCy(B) = [e®41]; and K;(a) = [(I —aA)~1]; be the total communicability
and Katz centrality of node i, respectively. Then, the limits in Table 1 hold. Moreover,
the limits for TC;(8) and K;(a) remain the same if the vector 1 is replaced by an
arbitrary preference vector v > 0.

REMARK 1. The restriction to primitive matrices is required in order to have
A1 > Mg for k # 1, so that Lemma 3 can be used in the proof of Theorem 5.1. At first
sight, this assumption may seem somewhat restrictive; for instance, bipartite graphs
would be excluded, since they have A,, = —\;. In practice, however, there is no loss of
generality. Indeed, if A is imprimitive, we can replace A with the (always primitive)
matrix A; = (1 —¢)A + el with 0 < € < 1, compute the quantities of interest using
f(tA,), and then let € — 0. Note that p(A.) = p(A); hence the radius of convergence
is unchanged. Also note that for some centrality measures, such as those based on
the matrix exponential, it is not even necessary to take the limit for ¢ — 0. Indeed,
we have 4= = efeeP1-2)4 The prefactor e’ is just a scaling that does not affect
the rankings, and ¢#(1=9)4 and ef4 have identical limiting behavior for 3 — 0 or
B — 0.

5.2. Directed networks. Here we extend our analysis to directed networks.
The discussion is similar to that for the undirected case, except that now we need
to distinguish between receive and broadcast centralities. Also, the Jordan canonical
form must replace the spectral decomposition in the proofs.

THEOREM 5.2. Let G = (V,E) be a strongly connected, directed, unweighted
network with adjacency matriz A, and let f € P be defined on the spectrum of A. Let
TCY(t) = [f(tA)1]; be the broadcast total f-communicability of node i and TC"(t)
be the corresponding vector of broadcast total f-communicabilities. Furthermore, let
TCr(t) = [f(tAT)1]; = [f(tA)T1]; be the receive total f-communicability of node i
and TC"(t) be the corresponding vector of receive total f-communicabilities. Then,
the following hold:

(i) as t — 0+, the rankings produced by TCb(t) converge to those produced by the
out-degrees of the nodes in the network;

(ii) as t — 0+, the rankings produced by TC"(t) converge to those produced by the
in-degrees of the nodes in the network;

(i) of f € Poo UP>, then ast — t*—, the rankings produced by TCb(t) converge to
those produced by x1, where x1 is the dominant right eigenvector of A;

(iv) if f € Poo UP>, then as t — t*—, the rankings produced by TC" (t) converge to
those produced by y1, where y1 is the dominant left eigenvector of A;

(v) results (iii) and (iv) still hold if 1 is replaced by an arbitrary preference vector
v > 0 in the definitions of TC®(t) and TC"(t).

Proof. The proofs of (i) and (ii) are analogous to that for T'C;(¢) in part (i) of
Theorem 5.1, keeping in mind that the entries of A1 are the out-degrees and those of
AT1 are the in-degrees of the nodes of G.



PARAMETER-DEPENDENT CENTRALITY MEASURES 697

TABLE 2
Limiting behavior of different ranking schemes in the directed case.

Limiting ranking scheme
Method | Out-degree In-degree Right eigenvector Left eigenvector
K®(a) a— 0+ a— /\_1_
K" (o) a— 0+ a—>A—11—
EC*(B) B8 — 0+ B — oo
ECT(B) 8 — 0+ B — oo

To prove (iii), observe that if f is defined on the spectrum of A, then

s nrp—1 () 4
(5.5) Z Z 70 A’“ (A= \I) Gy,

where s is the number of distinct eigenvalues of A, ny is the index of the eigenvalue
Ar (that is, the order of the largest Jordan block associated with Ay in the Jordan
canonical form of A), and Gy, is the oblique projector with range R(Gy) = N((4 —
AI)™) and null space N (Gi) = R((A — \pI)™); see, e.g., [34, section 1.2.2] or
[44, section 7.9]. Using (5.5) and the fact that A; is simple by the Perron—Frobenius
theorem, we find that

s np—1
100 = F) 6T Dm0 + 30 > S DN (4 1y Gl

k=2 j5=0

Noting that yZ1 > 0, let 9°(¢) := WTC (t). The rankings produced by
() will be the same as those produced by TCP(t). Now, the ith entry of ¥°(¢) is

s nrp—1 tjf(J) t)\k 4
(5.6) Yot ) + kz; jzo AOW )[(A — MY Gi1)s.

Without loss of generality, we can assume that A\ > |Ag| for & # 1 (see Remark 1).
By Lemma 3 the second term on the right-hand side of (5.6) vanishes as ¢t — t*—, and
therefore ¢?(t) — x1(i); that is, the rankings given by °(t) reduce to those given by
the right dominant eigenvector x; of A in the limit ¢t — ¢*—

The proof of (iv) is completely analogous to that of (iii).

Finally, the proof of (v) is obtained by replacing 1 with v and observing that the
argument used to prove (iii) (and thus (iv)) remains valid. 0

By specializing the choice of f to the matrix exponential and resolvent, we im-
mediately obtain the following corollary of Theorem 5.2.

COROLLARY 2. Let G = (V, E) be a strongly connected, directed, unweighted net-
work with adjacency matriz A. Let ECY(B) = [e?4v]; and K!(a) = [(I — aAd)~'v];
be the total communicability and Katz broadcast centrality of mode i, respectively.
Similarly, let ECT(8) = [#A"v]; and KI'(a) = [(I — aAT)"1v]; be the total com-
municability and Katz receive centrality of node i. Then, the limits in Table 2 hold.
Moreover, all these limits remain the same if the vector 1 is replaced by an arbitrary
preference vector v > 0.

This concludes our analysis in the case of simple, strongly connected (di)graphs.
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5.3. Extensions to more general graphs. So far we have restricted our dis-
cussion to unweighted, loopless graphs. This was done in part for ease of exposition.
Indeed, it is easy to see that all of the results in Theorem 5.1 and Corollary 1 remain
valid in the case of weighted undirected networks if all the weights a;; (with (i, j) € E)
are positive and if we interpret the degree of node i to be the weighted degree, i.e., the
ith row sum A1l. The only case that cannot be generalized is that relative to SC(t)
as t — 0+ in Theorem 5.1 and, as a consequence, those relative to EC;(8) and K;(«)
as f,a — 0+ in Corollary 1. The reason for this is that in general it is no longer
true that [A%]; = d;, i.e., the diagonal entries of A? are not generally equal to the
weighted degrees.

Furthermore, all of the results in Theorem 5.2 and Corollary 2 remain valid in the
case of strongly connected, weighted directed networks if we interpret the out-degree
and in-degree of node i as weighted out- and in-degree, given by the ith row and
column sum of A, respectively.

Finally, all the results relative to the limit ¢ — ¢*— in Theorems 5.1 and 5.2
remain valid in the presence of loops (i.e., if a;; # 0 for some ¢). Hence, in particular,
all the results in Corollaries 1 and 2 concerning the behavior of the various exponential
and resolvent-based centrality measures for § — oo and o — )\—11 — remain valid in this
case.

6. The case of PageRank. In this section we discuss the limiting behavior
of the PageRank algorithm [48], which has a well-known interpretation in terms of
random walks on a digraph (see, e.g., [39]). Because of the special structure possessed
by the matrices arising in this method, a treatment somewhat different from that
developed in the previous section is required.

Let G = (V,E) be an arbitrary digraph with |V| = n nodes, and let A be
the corresponding adjacency matrix. From A we construct an irreducible, column-
stochastic matrix P as follows. Let D be the diagonal matrix with entries

et if i=j and d9*t >0,

dij=1< 1 if i=j and d9% =0,
0 else.
Now, let
(6.1) H=ATD 1

This matrix may have zero columns, corresponding to those indices i for which d?** =
0; the corresponding nodes of G are known as dangling nodes. Let I denote the set
of such indices, and define the vector a = (a;) by

1 ifiel,
%=1 0 else.

Next, we define the matrix S by
Lo 7
(6.2) S:H+Ela .

Thus, S is obtained from H by replacing each zero column of H (if present) by the
column vector %1. Note that S is column-stochastic but could still be (and very often
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is) reducible. To obtain an irreducible matrix, we take o € (0,1) and construct the
“Google matrix”

(6.3) P=aS+(1—-a)vl",

where v is an arbitrary probability distribution vector (i.e., a column vector with
nonnegative entries summing up to 1). The simplest choice for v is the uniform
distribution, v = %1, but other choices are possible. Thus, P is a convex combination
of the modified scaled adjacency matrix S and a rank-one matrix and is column-
stochastic. If every entry in v is strictly positive (v > 0), P is also positive and
therefore acyclic and irreducible. The Markov chain associated with P is ergodic: it
has a unique steady-state probability distribution vector p = p(«) > 0, given by the
dominant eigenvector of P, normalized so that p”1 = 1: thus, p satisfies p = P p, or
(I — P)p = 0. The vector p is known as the PageRank vector, and it can be used
to rank the nodes in the original digraph G. The success of this method in ranking
web pages is universally recognized. It has also been used successfully in many other
settings.

The role of the parameter « is to balance the structure of the underlying digraph
with the probability of choosing a node at random (according to the probability
distribution v) in the course of a random walk on the graph. Another important
consideration is the rate of convergence to steady state of the Markov chain: the
smaller the value of a, the faster the convergence. In practice, the choice o = 0.85 is
often recommended.

It was recognized early on that the PageRank vector can also be obtained by
solving a nonhomogeneous linear system of equations. In fact, there is more than one
such linear system; see, e.g., [39, Chapter 7] and the references therein. One possible
reformulation of the problem is given by the linear system

(6.4) (I —aH)x=v, p=x/(x"1).

For each « € (0, 1), the coefficient matrix in (6.4) is a nonsingular M-matrix; hence it
is invertible with a nonnegative inverse (I —aH)~!. Note the similarity of this linear
system with that corresponding to Katz centrality. Using this equivalence, we can
easily describe the limiting behavior of PageRank for @ — 04.

THEOREM 6.1. Let H be the matriz defined in (6.1), and let p(«) be the PageRank
vector corresponding to a given a € (0,1). Assume v = 11 in the definition (6.3)
of the Google matriz P. Then, for o — 0+, the rankings given by p(a) converge to
those given by the vector H1, the row sums of H, or, equivalently, by the vector S1,
the row sums of S.

Proof. Note that for each a € (0,1) the inverse matrix (I — aH)~! can be
expanded in a Neumann series; hence the unique solution of (6.4) can be expressed as

(6.5) X=v+aHv+a?lH*>v+---.

When v = %1, the rankings given by the entries of x coincide with those given by
the entries of (x — v)/a. But (6.5) implies that

X =V

lim

1
=Hv=-H1,
a—0+  « n

showing that the rankings from p(«) coincide with those from the row sums of H in
the limit a — 0+. Finally, S1 = H1 + (a”1/n)1; hence the row sums of S result in
the same limit rankings. O
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We emphasize that the above result holds only for the case of a uniform person-
alization vector v.

REMARK 2. Since H is a scaled adjacency matrix, each entry of H1 is essentially
a weighted in-degree; see also the discussion in section 5.3. Hence, we conclude that
the structure of the graph G retains considerable influence on the rankings obtained
by PageRank even for very small o, as long as it is nonzero.?

REMARK 3. The behavior of the PageRank vector for « — 1 (from the left) has
received a great deal of attention in the literature; see, e.g., [7, 8, 39, 52]. Assume
that A = 1 is the only eigenvalue of S on the unit circle. Then it can be shown (see
[43, 52]) that for « — 1—, the rankings obtained with PageRank with initial vector v
converge to those given by the vector

(6.6) x* = (I — (I —-8)(I—5S)"v,

where (I — S)* denotes the group generalized inverse of I — S (see [14]). In the case
of a uniform personalization vector v = %1, (6.6) is equivalent to using the row sums
of the matrix (I — S)(I — S)¥. As discussed in detail in [8], however, using this vector
may lead to rankings that are not very meaningful, since when G is not strongly
connected (which is usually the case in practice), it tends to give zero scores to nodes
that are arguably the most important. For this reason, values of a too close to 1 are
not recommended.

We conclude this section with a few remarks about another technique, known
as DiffusionRank [53] or Heat Kernel PageRank [16]. This method is based on the
matrix exponential e!”’ where P is column-stochastic, acyclic, and irreducible. For
example, P could be the “Google matrix” constructed from a digraph G in the manner
described above. It is immediate to see that for all + > 0 the column sums of e*”’
are all equal to e?; hence the scaled matrix e ?e* is column-stochastic. Moreover,
its dominant eigenvector is the same as the dominant eigenvector of P, namely, the
PageRank vector. It follows from the results found in section 5.2, and can easily be
shown directly (see, e.g., [53]), that the node rankings obtained using the row sums of
e’ tend, for t — oo, to those given by PageRank. Hence, the PageRank vector can
be regarded as the equilibrium distribution of a continuous-time diffusion process on
the underlying digraph.

7. Discussion. The centrality measures considered in this paper are all based
on walks on the network. The degree centrality of a node i counts the number of walks
of length one starting at i (the degree of 7). In contrast, the eigenvector centrality of
node ¢ gives the limit as k& — oo of the percentage of walks of length k& which start at
node ¢ among all walks of length & (see [19, Theorem 2.2.4] and [24, page 127]). Thus,
the degree centrality of node ¢ measures the local influence of ¢ and the eigenvector
centrality measures the global influence of i.

When a centrality measure associated with an analytic function f € P is used,
walks of all lengths are included in the calculation of centrality scores, and a weight
¢, is assigned to the walks of length k, where ¢, — 0 as k& — oo. Hence, both
local and global influence are now taken into account but with longer walks being
penalized more heavily than shorter ones. The parameter ¢t permits further tuning of
the weights; as ¢ is decreased, the weights corresponding to larger k decay faster and
shorter walks become more important. In the limit as ¢ — 04, walks of length one
(i.e., edges) dominate the centrality scores and the rankings converge to the degree

2See this paper’s supplementary materials for a numerical illustration of this statement.



PARAMETER-DEPENDENT CENTRALITY MEASURES 701

centrality rankings. As ¢ is increased, given a fixed walk length k, the corresponding
weight increases more rapidly than those of shorter walks. In the limit as ¢t — ¢*—,
walks of “infinite” length dominate and the centrality rankings converge to those of
eigenvector centrality.

Hence, when using parameterized centrality measures, the parameter ¢t can be
regarded as a “knob” that can be used for interpolating, or tuning, between rank-
ings based on local influence (short walks) and those based on global influence (long
walks). In applications where local influence is most important, degree centrality will
often be difficult to distinguish from any of the parameterized centrality measures
with ¢ small. Similarly, when global influence is the only important factor, parame-
terized centrality measures with ¢ ~ t* will often be virtually indistinguishable from
eigenvector centrality.

Parameterized centrality measures are likely to be most useful when both local
and global influence need to be considered in the ranking of nodes in a network. In
order to achieve this, “moderate” values of ¢ (not too small and not too close to t*)
should be used.

To make this notion more quantitative, however, we need some way to estimate
how fast the limiting rankings given by degree and eigenvector centralities are ap-
proached for ¢ — 0+ and t — t*—, respectively. We start by considering the undi-
rected case (weights and loops are allowed). The approach to the eigenvector centrality
limit as ¢ — t*— depends on the spectral gap A1 — A2 of the adjacency matrix of the
network. This is clearly seen from the fact that the difference between the various

parameterized centrality measures (suitably scaled) depends on the ratios ;gi’f; for

2 < k < n;see (5.3) and (5.4). Since a function f € P is strictly increasing with ¢

(when t > 0), a relatively large spectral gap implies that each term containing ;Eii‘\’:g

(with k& # 1) will tend rapidly to zero as t — t*—, since f(tA1) will grow much faster
than f(tAg). For example, in the case of exponential subgraph centrality the k = 2
term in the sum contains the factor e#*2 /efM = e8(A2=21) wwhich decays to zero ex-
tremely fast for § — oo if Ay — Ao is “large,” with every other term with £ > 2 going
to zero at least as fast.

More generally, when the spectral gap is large, the rankings obtained using param-
eterized centrality will converge to those given by eigenvector centrality more quickly
as t increases than in the case when the spectral gap is small. Thus, in networks with
a large enough spectral gap, eigenvector centrality may as well be used instead of a
measure based on the exponential or resolvent of the adjacency matrix. However, it
is not always easy to tell a priori when \; — Ay is “large enough”; some guidelines can
be found in [23]. We also note that the tuning parameter ¢ can be interpreted as a
way to artificially widen or shrink the (absolute) gap, thus giving more or less weight
to the dominant eigenvector.

The situation is rather more involved in the case of directed networks. Equa-
tion (5.6) shows that the difference between the (scaled) parameterized centrality
scores and the corresponding eigenvector centrality scores contains terms of the form
% (with 0 < j < ng — 1, where ny is the index of \y), as well as additional
quantities involving powers of A — AT and the oblique projectors Gi. Although these
terms vanish as ¢t — t*—, the spectral gap in this case can provide only an asymptotic
measure of how rapidly the eigenvector centrality scores are approached, unless A is
nearly normal.

Next, we turn to the limits as t — 04. For brevity, we limit our discussion to the
undirected case. From (5.1) we see that for small ¢, the difference between the (scaled
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and shifted) f-subgraph centrality ¢;(¢) of node ¢ and the degree d; is dominated
by the term £:¢[A%];;. Now, it is well known that the number of triangles (cycles of

length 3) that node ¢ participates in is equal to A; = %[AB]u'- It follows that if a
node i participates in a large number of triangles, then the corresponding centrality
score ¢;(t) can be expected to approach the degree centrality score d; more slowly,
for ¢ — 0+, than a node j that participates in no (or few) such triangles.

To understand this intuitively, consider two nodes, i and j, both of which have
degree k. Suppose node ¢ participates in no triangles and node j participates in (g)
triangles. That is, N (%), the set of nodes adjacent to node 4, is an independent set of k
nodes (independent means that no edges are present between the nodes in N (7)), while
N(j) is a clique (complete subgraph) of size k. In terms of local communities, node i is
isolated (does not participate in a local community), while node j sits at the center of
a dense local community (a clique of size k+1) and participates in links to other nodes
only within this small, dense subgraph. Due to this, whenever j communicates with
any of its neighbors, this information can quickly be passed among all its neighbors.
This allows the clique of size k 4+ 1 to act as a sort of “supernode” where j’s local
influence depends greatly on the local influence of this supernode. That is, even on a
local level, it is difficult to separate the influence of j from that of its neighbors. In
contrast, node ¢ does not participate in a dense local community and, thus, its local
influence depends more on its immediate neighbors than on the neighbors of those
neighbors. Therefore, local (i.e., small ¢) centrality measures on node ¢ will be more
similar to degree centrality than those on node j.

From a more global perspective, we can expect the degree centrality limit to be
attained more rapidly, for t — 04, for networks with low clustering coefficient® than
for networks with high clustering coefficient (such as social networks).

For the total communicability centrality, on the other hand, (5.2) suggests that
the rate at which degree centrality is approached be dictated, for small ¢, by the
vector Ad = A%1. Hence, if node i has a large number of next-to-nearest neighbors
(i.e., there are many nodes at distance 2 from i), then the degree centrality will be
approached more slowly, for ¢ — 0+, than for a node that has no (or few) such
next-to-nearest neighbors.

8. Related work. As mentioned in the introduction, correlations between the
rankings obtained with different centrality measures, such as degree and eigenvector
centralities, have frequently been observed in the literature. A few authors have gone
beyond this empirical observation and have proved rigorous mathematical statements
explaining some of these correlations in special cases. Here we briefly review these
previous contributions and how they relate to our own.

Bonacich and Lloyd showed in [10] that eigenvector centrality is a limiting case
of Katz centrality when o — %—, but their proof assumes that A is diagonalizable.

A centrality measure closely related to Katz centrality, known as (normalized)
a-centrality, was thoroughly studied in [33]. This measure actually depends on two
parameters « and 8 and reduces to Katz centrality when o« = . The authors of
[33] show that a-centrality reduces to degree centrality as a — 0+; they also show,
but only for symmetric adjacency matrices, that a-centrality reduces to eigenvector

centrality for v — +— (a result less general than that about Katz centrality in [10]).

3Recall that the clustering coefficient of an undirected network G = (V, E) is defined as the
average of the node clustering coefficients CC(i) :=
See, e.g., [13, page 303].

%?il) over all nodes ¢ € V' of degree d; > 2.
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A proof that Katz centrality (with an arbitrary preference vector v) reduces to
eigenvector centrality as a — %— for a general A (that is, without requiring that A
be diagonalizable) can be found in [52]. This proof avoids use of the Jordan canonical
form but makes use of the Drazin inverse, following [43]. Unfortunately this technique
is not easily generalized to centrality measures based on other matrix functions.

Related results can also be found in [51]. In this paper, the authors consider
parameter-dependent matrices (“kernels”) of the form

_ - k_ - -1 _ ~B _ - (’YB)k
No(B) = BY (3B)' = BU—+B)" and E,(B)=e® =Y L
k=0 k=0 '

where B is taken to be either AAT or AT A, with A the adjacency matrix of a (directed)
citation network. The authors show that

1
’Ylgr}_ <E - ’y) N,(B) = v, Wli}rrgoe_'yp(B)E.y(B) =vvl,
where v* = 1/p(B) and v is the dominant eigenvector of B. Noting that v is the hub
vector when B = AAT and the authority vector when B = AT A, the authors observe
that the HITS algorithm [37] is a limiting case of the kernel-based algorithms.

Finally, we mention the work by Romance [50], which introduces a general fam-
ily of centrality measures which includes as special cases degree centrality, eigenvec-
tor centrality, PageRank, a-centrality (including Katz centrality), and many others.
Among other results, this general framework allows the author to explain the strong
correlation between degree and eigenvector centralities observed in certain networks,
such as Erdés—Renyi graphs. We emphasize that the unifying framework presented
in [50] is quite different from ours.

In conclusion, our analysis allows us to unify, extend, and complete some partial
results that can be found scattered in the literature concerning the relationship among
different centrality measures. In particular, our treatment covers a broader class
of centrality measures and networks than those considered by earlier authors. In
addition, we provide some rules of thumb for the choice of parameters when using
measures such as Katz and subgraph centralities (see section 9).

9. Summary of numerical experiments. In this section we briefly summarize
the results of numerical experiments aimed at illustrating our theoretical results. A
complete description of the tests performed, inclusive of plots and tables, can be found
in this paper’s supplementary materials.

We examined various parameterized centrality measures based on the matrix ex-
ponential and resolvent, including subgraph and total communicability measures. Nu-
merical tests were performed on a set of networks from different application areas
(social networks, protein-protein interaction networks, computer networks, collabo-
ration networks, a road network, etc.). Both directed and undirected networks were
considered. The tests were primarily aimed at monitoring the limiting behavior of
the various centrality measures for 5 — 0+,  — oo for exponential-type measures
and for a — 0+, @ — )\—11— for resolvent-type measures.

Our experiments confirm that the rankings obtained with exponential-type cen-
trality measures approach quickly those obtained from degree centrality as S gets
smaller, with the measure based on the diagonal entries [e54];; approaching degree
centrality faster, in general, than the measure based on [e#41];. The tests also con-
firm that for networks with a large spectral gap, the rankings obtained by both of
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these measures approach those from eigenvector centrality much more quickly, as 5 in-
creases, than for the networks with a small spectral gap. These remarks are especially
true when only the top ranked nodes are considered.

Similar considerations apply to resolvent-type centrality measures and to directed
networks.

Based on our tests, we propose the following rules of thumb when using exponen-
tial and resolvent-type centrality measures. For the matrix exponential the parameter
B should be chosen in the range [0.5,2], with smaller values used for networks with
a relatively large spectral gap. Using values of 8 smaller than 0.5 results in rank-
ings very close to those obtained using degree centrality, and using 8 > 2 leads to
rankings very close to those obtained using eigenvector centrality. Since both degree
and eigenvector centralities are cheaper than exponential-based centrality measures,
it would make little sense to use the matrix exponential with values of 8 outside the
interval [0.5,2]. As a default value, 8 = 1 (as originally proposed in [27]) is a very
reasonable choice.

Similarly, resolvent-based centrality measures are most informative when the pa-
rameter « is of the form 7/A; with 7 chosen in the interval [0.5,0.9]. Outside of
this interval, the rankings obtained are very close to the degree (for 7 < 0.5) and
eigenvector (for 7 > 0.9) rankings, especially when attention is restricted to the top
ranked nodes. Again, the smaller values should be used when the network has a large
spectral gap.

Similar conclusions hold for the choice of the damping parameter « used in the
PageRank algorithm, in broad agreement with the results of [7, 8].

10. Conclusions. We have studied a broad family of parameterized network
centrality measures that includes subgraph, total communicability, and Katz central-
ities, as well as degree and eigenvector centralities (which appear as limiting cases
of the others as the parameter approaches certain values). Our analysis applies (for
the most part) to rather general types of networks, including directed and weighted
networks; some of our results also hold in the presence of loops. A discussion of the
limiting behavior of PageRank was also given, particularly for small values of the
parameter «.

Our results help explain the frequently observed correlations between the degree
and eigenvector centrality rankings on many real-world complex networks, particularly
those exhibiting a large spectral gap, and why the rankings tend to be most stable
precisely near the extreme values of the parameters. This is at first sight surprising,
given that as the parameters approach their upper bounds, the centrality scores and
their derivatives diverge, indicating extreme sensitivity.

We have discussed the role of network properties, such as the spectral gap and the
clustering coefficient, on the rate at which the rankings obtained by a parameterized
centrality measure approach those obtained by the degree and eigenvector centralities
in the limit. We have further shown that the parameter plays the role of a “knob”
that can be used to give more or less weight to walks of different lengths on the graph.

In the case of resolvent- and exponential-type centrality measures, we have pro-
vided rules of thumb for the choice of the parameters  and 5. In particular, we
provide guidelines for the choice of the parameters that produce rankings that are
the most different from the degree and eigenvector centrality rankings and, therefore,
most useful in terms of providing additional information in the analysis of a given
network. Of course, the larger the spectral gap, the smaller the range of parameter
values leading to rankings exhibiting a noticeable difference from those obtained from
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degree and/or eigenvector centralities. Since degree and eigenvector centralities are
considerably less expensive to compute compared to subgraph centrality, for networks
with a large spectral gap it may be difficult to justify the use of the more expensive
centrality measures discussed in this paper.

Finally, in this paper we have mostly avoided discussing computational aspects
of the ranking methods under consideration, focusing instead on the theoretical un-
derstanding of the relationship among the various centrality measures. For recent
progress on walk-based centrality computations see, e.g., [3, 5, 11, 28, 29].
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