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a b s t r a c t

This paper is a cryptanalysis of a recently proposed multi-chaotic systems based image cryptosystem. The
cryptosystem is composed of two shuffling stages parameterized by chaotically generated sequences. We
propose and implement two different attacks which completely break this encryption scheme.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Chaotic systems exhibit many suitable properties that make
them applicable to the design of encryption schemes. Among the
parallels between the properties of chaotic systems and those of
cryptosystems are [1]:

1. Sensitivity to initial conditions! A small deviation in the plain-
text results in a large change in the ciphertext.

2. Deterministic dynamic and pseudo-random aspect of a chaotic
signal! A deterministic process (in a cryptosystem) can cause
a pseudo-random behavior.

3. Ergodicity of a chaotic signal! The performance of an encryp-
tion algorithm has the same distribution for any plaintext.

As a result, many proposals dealing with both cryptography and
chaos have been published in the last twenty years [2–9]. Some of
them have been cryptanalysed [5–9] and have been found to be not
secure [10–13].

In this paper, we cryptanalyze the image cryptosystem recently
proposed in [2]. The cryptosystem uses the Henon, the Lorenz, the
Chua and the Rössler chaotic systems to generate shuffling se-
quences. However, this was not enough to make the cryptosystem

secure. Indeed, the use of these systems was only for generating
pseudo-random sequences that are used to rearrange the pixel bits
of the plain image. Hence, the cryptosystem under study can be
viewed as a pure shuffling algorithm that can be broken using a
method similar to the one developed in [14]. In the present paper,
in order to break the image cryptosystem, we propose two differ-
ent attacks specific to this scheme.

The rest of this paper is organized as follows: Section 2 gives a
brief description of the cryptosystem proposed in [2]. Section 3
gives an equivalent description of the cryptosystem that makes it
simpler to analyze. Using the equivalent description, a chosen
ciphertext attack and a known-plaintext attack are given. Simula-
tions results are given in Section 4. The paper concludes with final
remarks in Section 5.

2. Description of the cryptosystem

The cryptosystem proposed in [2] shuffles plaintext image bits
using chaotic systems. The shuffling parameters are generated by
the iterations of four 3D chaotic systems. The key of the cryptosys-
tem is the set of 12 initial conditions for the chaotic maps. The
parameters of the chaotic systems are fixed and public.

The shuffling is performed in two stages. In the first stage, des-
ignated bits of all the pixels are shuffled. In the second stage, the
bits of each pixel are shuffled among themselves.

We now give the detailed descriptions of each stage.
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2.1. Plaintext preparation

The original plaintext is a m� n RGB image with each pixel col-
or represented as a byte. For the purpose of encryption, the plain-
text is first vectorized using the usual row scan. The resulting
vector is a N � 1 vector of bytes, where N ¼ mn. In order to manip-
ulate the bits of pixels, the vector is further split into its bits, result-
ing in a N � 8 plaintext matrix, where each entry takes values 0 or
1. In the cryptosystem proposed in [2], each color component is
processed independently. Arb;Agb;Abb 2 f0;1gN�8 denote respec-
tively the Red, Green and Blue components of the vectorized and
binarized image.

2.2. Key preparation

The four chaotic systems are iterated N times to generate 12 se-
quences of length N each. Each of these sequences are sorted and
the indices of the sorted numbers in the original sequences give
the sorting sequences Fx1; Fy1; Fz1; Fx2; Fy2; Fz2; Fx3; Fy3; Fz3; Fx4; Fy4

and Fz4.
Here, x1; y1; z1 are the sequences of real numbers generated by

the Henon chaotic system. Likewise, x2; y2; z2 are generated by
the Lorenz system, x3; y3; z3 are generated by the Chua system
and finally x4; y4; z4 are generated by the Rössler system.

For example, if x1 ¼ f2:7;�0:4;1:7;0:1g, then the sorting
sequence is given as Fx1 ¼ f2;4;3;1g because that is the indices
of the ordered elements.

Note that the sequences Fxi; Fyi; Fzi;1 6 i 6 4, depend nonlinear-
ly on the secret initial conditions. Also note that each sorting se-
quence defines a permutation over the set of integers f1;2; . . . ;Ng.

2.3. Encryption

2.3.1. Vertical shuffling
Each column of the matrix Arb is shuffled using one of the se-

quences Fx1; Fx2; Fx3 and Fx4 to generate the intermediate matrix
Aerb. The choice of the shuffling sequence is determined as follows;

Aerbði; jÞ ¼

ArbðFx1ðiÞ; jÞ; j ¼ 1;2;
ArbðFx2ðiÞ; jÞ; j ¼ 3;4;
ArbðFx3ðiÞ; jÞ; j ¼ 5;6;
ArbðFx4ðiÞ; jÞ; j ¼ 7;8:

8>>><
>>>:

ð1Þ

The same vertical shuffling is applied to the green and blue compo-
nents Agb and Abb with the shuffling sequences Fy1; Fy2; Fy3; Fy4 and
Fz1; Fz2; Fz3; Fz4, respectively. After the vertical shuffling, we end up
with Aerb;Aegb and Aebb.

2.3.2. Horizontal shuffling
In this step, the rows of Aerb;Aegb and Aebb are shuffled hori-

zontally. This corresponds to the shuffling of pixel bits among
themselves.

For the shuffling of the ith row of red component, the sorting se-
quence for 4 numbers Fx1ðiÞ; Fx2ðiÞ; Fx3ðiÞ; Fx4ðiÞ are used. If the sort-
ing sequence is fj1; j2; j3; j4g; the ith row is shuffled into the row

BrbðiÞ ¼ ½Aerbði;2j1Þ;Aerbði;2j1 � 1Þ;Aerbði;2j2Þ;
Aerbði;2j2 � 1ÞAerbði;2j3Þ;Aerbði;2j3 � 1Þ;
Aerbði;2j4Þ;Aerbði;2j4 � 1Þ�; ð2Þ

where BrbðiÞ denotes the ith row of the N � 8 binary matrix of the
ciphertext red component.

The red component Br of the ciphered image B is obtained by
first concatanating the bits in each row of Brb to obtain the pixels
in vector format and then reshaping the vector into a m� n ci-
phered image.

A similar shuffling of the pixel bits is applied to the green and
blue components Aegb and Aebb with the sorting sequences de-
rived from Fy and Fz, respectively.

The final ciphered image B is obtained by joining all three color
components Br; Bg and Bb.

3. Cryptanalysis

In this section, we give chosen-plaintext and known-plaintext
attacks against the cryptosystem. Both of the attacks yield the sort-
ing sequences Fx; Fy and Fz with very little amount of computation.
We first give an equivalent representation of the encryption algo-
rithm using permutation functions.

3.1. Equivalent representation

As claimed in [2], the security of the cryptosystem relies on the
secrecy of the initial conditions driving the four chaotic systems. A
naive attack on the cryptosystem might try to reveal those initial
conditions. However, if an attacker knows the sorting sequences
Fx; Fy and Fz, he can decrypt the ciphered image. Thus, the sorting
sequences are the equivalent keys of the cryptosystem. Instead of
attacking the initial conditions, the attacker devises methods to re-
veal the sorting sequences.

At first glance, it might seem that, by using the equivalent rep-
resentation, we have unnecessarily increased the number of secret
parameters. Indeed, in the original proposal there are 12 secret
keys. Since each sorting sequence defines a permutation over N
elements, the new key space has ðN!Þ3 elements. Obviously, this
is a lot larger than what is necessary to preclude a brute-force at-
tack. However, as we show in the sequel, attacking the sorting se-
quences is very easy compared to attacking the secret initial
conditions.

The horizontal shuffling of bits within the ith pixel of Aerb uses
the sorting sequence that orders the four numbers Fx1ðiÞ; Fx2ðiÞ;
Fx3ðiÞ; Fx4ðiÞ. Let us denote this sequence by hi. When the sequences
Fx are known, hi can be trivially constructed. Even when the
attacker does not know Fx, if he can devise a method to reveal
the sorting sequences hi;1 6 i 6 N, it will be enough to break the
horizontal shuffling stage of the algorithm.

Therefore, we can treat the cryptosystem as if it has two sets of
independent secret parameters; the set of 12 sorting sequences
Fx; Fy; Fz used in the vertical shuffling and the set of N sorting se-
quences hi;1 6 i 6 N, used in horizontal shuffling.

We note that the vertical and horizontal shuffles do not sepa-
rate the bit pairs (1,2), (3,4), (5,6) and (7,8). Namely, the 1st and
the 2nd bits of a pixel are shuffled together and so on. Hence, we
can define a new N � 4 plain image P, where each entry Pði; jÞ takes
values in {0,1,2,3}.

The encryption first shuffles each column of P within itself. Let
us define four permutation functions p1;p2;p3;p4 corresponding
to Fx1; Fx2; Fx3 and Fx4, respectively. Namely, the first column of P
is shuffled using the permutation p1 and so on.

Denote by M the vertically shuffled image. Hence, we have

MðpjðiÞ; jÞ ¼ Pði; jÞ; 1 6 i 6 N; 1 6 j 6 4: ð3Þ

Let us also define the horizontal permutation ri corresponding to
the sorting sequence hi. Namely, the ith row of the intermediate im-
age M is shuffled using the permutation ri. Thus, we have

Cði;riðjÞÞ ¼ Mði; jÞ; 1 6 i 6 N; 1 6 j 6 4: ð4Þ

Since the horizontal shuffles permute the row pjðiÞ, using (3) and
(4), we obtain the overall expression for the encryption as

CðpjðiÞ;rpjðiÞðjÞÞ ¼ Pði; jÞ; 1 6 i 6 N; 1 6 j 6 4: ð5Þ
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In this new representation, P is the N � 4 plain image and C is
the ciphered image. Comparing with expression of the algorithm
in (1), P is the two-bit stuck version of Arb, e.g. if Arb has
[0,1,1,0,1,1,1,0] in a row, the corresponding row in P is
[1,2,3,2]. Note that this is the same as expressing binary matrix
Arb, in base 4, i.e. P 2 ZN�4

4 .

3.2. Chosen-plaintext attack

In the chosen-plaintext attack, the attacker chooses a plain im-
age and somehow obtains the corresponding ciphered image. By
analyzing the plain-ciphered image pair, he tries to reveal the se-
cret parameters.

Since each color component of the plain image is processed
independently, we give the attack only for the red component. In
this case, the attack reveals the permutations p1;p2;p3;p4 and
ri;1 6 i 6 N. The other color components are analyzed similarly
to reveal the rest of the sorting sequences.

For the purpose of the attack, we can take the plain image as the
N � 4 matrix P and the ciphered image as the N � 4 matrix C.

3.2.1. Revealing the horizontal sorting sequences
In order to bypass the vertical shuffling, the attacker chooses

the original plain image A such that P satisfies

Pði;1Þ ¼ 0; Pði;2Þ ¼ 1; Pði;3Þ ¼ 2; Pði;4Þ ¼ 3; 1 6 i 6 N:

ð6Þ

Namely, all the entries in the jth column of P has the value j� 1.
Note that this corresponds to choosing the original image A with
each pixel of all three color components equal to 27.

Obviously, P remains unchanged under vertical column shuf-
fling. Hence,

M ¼ P:

The horizontal shuffling ri permutes the ith row of P. Since each en-
try in the row is distinct, the location of the entries in the ith row of
C reveals the permutation ri.

In order to better see how this choice of plaintext reveals the se-
cret permutation ri, assume that the attacker observes

CðiÞ ¼ 3;0;2;1;

at the ciphertext red component for a particular row i. Comparing
this with (6), the attacker sees that

ri ¼ ð2;4;3;1Þ;

i.e. rið1Þ ¼ 2;rið2Þ ¼ 4;rið3Þ ¼ 3;rið4Þ ¼ 1.
Similarly, by comparing every row of C with (6), the attacker re-

veals ri;1 6 i 6 N.

3.2.2. Revealing the vertical sorting sequences
Now that the attacker knows ri;1 6 i 6 N, he can invert the

horizontal shuffling. Hence, once the attacker observes C, he can
obtain the output M of the vertical shuffling operation.

This time the attacker chooses the plain image P such that

PðiÞ ¼ 0;0; 0;0;
Pðiþ 1Þ ¼ 1;1;1;1; ð7Þ
Pðiþ 2Þ ¼ 2;2;2;2;

and all the other entries of P are identically 3. Comparing P with M
that he obtained by the inverse horizontal shuffling of C, the attack-
er reveals the permutations p1;p2;p3;p4. In order to see how this is
done, assume that the attacker observes that for some i1

Cði1;1Þ ¼ 0:

Then, the attacker concludes that

p1ðiÞ ¼ i1:

Likewise, if the attacker observes that for some i2

Cði2;4Þ ¼ 1;

he concludes that

p4ðiþ 1Þ ¼ i2:

In general, for v 2 f0;1;2g, if the attacker observes that Cði0; jÞ ¼ v ,
then he infers that

pjðiþ vÞ ¼ i0:

Continuing in the same fashion, the entries i; iþ 1 and iþ 2 of
p1;p2;p3;p4 are revealed.

For each i 2 f1;4;7; . . .g; i < N, the attacker chooses a plain im-
age using (7) and obtains the corresponding ciphered image. In
each case, he reveals 12 entries (4 entries for each of the three color
components) of the secret sorting sequences. In total, the attacker
needs dN=3e chosen plain images to reveal the vertical shuffling
parameters. Considering the single plain image used in revealing
ri’s, the attack takes a total of dN=3e þ 1 chosen plain images.

3.3. Known-plaintext attack

In some cases, it might be impossible for the attacker to choose
the plain images but instead the attacker may know some pairs of
(plain/ciphered) images. Extracting information about the secret
parameters using known plaintexts is known as known-plaintext
attack.

In this section, we assume that the attacker somehow obtains
some ðP;CÞ pairs. The aim of the attack is to reveal the secret
parameters p1;p2;p3;p4 and ri;1 6 i 6 N.

3.3.1. Revealing the vertical shuffling sequences
Suppose the attacker knows t (plain/ciphered) images pairs

ðP1;C1Þ; ðP2;C2Þ; . . . ; ðPt ;CtÞ. Further assume that the attacker ob-
serves that for a particular plain image coordinates ði; jÞ and a par-
ticular pair ðPk;CkÞ,

Pkði; jÞ ¼ Ckði1; j1Þ ¼ Ckði2; j2Þ ¼ � � � ¼ Ckðirk
; jrk
Þ:

Namely, the value of the plaintext at Pkði; jÞ appears in the rk cipher-
text locations ði1; j1Þ; ði2; j2Þ; . . . ; ðirk

; jrk
Þ. So, the permutation pj must

have mapped i to one of i1; i2; . . . ; irk
. Hence,

pjðiÞ 2 Rk ¼ fi1; i2; . . . ; irk
g:

Using similar observations for the other pairs, we obtain other sets
that include pjðiÞ. Intersecting these sets Rk, we have

pjðiÞ 2 R ¼
\t

k¼1

Rk:

If the set R contains a single point, then this means that the attacker
pinned down pjðiÞ. If not, he needs more pairs of plain and ciphered
images.

Repeating this set intersection method for all i; j;1 6 i 6 N;
1 6 j 6 4, the attacker reveals all the secret quantities pjðiÞ.

3.3.2. Revealing the horizontal shuffling sequences
Once the attacker reveals the 4 permutations p1;p2;p3 and p4,

he goes on to reveal the horizontal permutation functions
r1;r2; . . . ;rN .

Note that each horizontal permutation is defined over the set
{1,2,3,4}.

The attacker uses the vertical permutations to obtain the inter-
mediate images M1;M2; . . . ;Mt . The relation between Mk and Ck is
given as
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Ckði;riðjÞÞ ¼ Mkði; jÞ; 1 6 i 6 N; 1 6 j 6 4:

For each i, the attacker constructs the sets Sk ¼ fj1; j2; . . . ; jsk
g which

satisfy

Mkði; jÞ ¼ Ckði; j1Þ ¼ Ckði; j2Þ ¼ � � � ¼ Ckði; jsk
Þ:

Note that Sk has at most 4 elements.
Thus the attacker knows that

riðjÞ 2 fj1; j2; . . . ; jsk
g:

Intersecting these sets, the attacker pins down riðjÞ using

riðjÞ 2 S ¼
\t

k¼1

Sk:

4. Simulations

In this section we illustrate the success of our proposed attacks
using numerical examples.

4.1. Chosen-plaintext attack

Since each color component is encrypted separately, we illus-
trate the attack on the red component of a 3� 2 image. In this case,
m ¼ 3;n ¼ 2 and so N ¼ 6. Our attack aims to reveal the permuta-
tions p1;p2;p3;p4, and r1;r2; . . . ;r6. For the purpose of illustra-
tion, we generate the permutations randomly.

First, the attacker chooses the 3� 2 image Ar given in Fig. 1a. He
obtains the corresponding ciphered image in Fig. 1b. The plain and
ciphered images P and C of the equivalent representation are given
in Fig. 1c and d, respectively.

Note that the rows of P are shuffled in C. Inspecting the shuffling
patterns, the attacker reveals that r1 ¼ ð4; 1; 3; 2Þ;r2 ¼ ð4; 2;
1; 3Þ;r3 ¼ ð2; 3; 1; 4Þ and so on.

This time, the attacker chooses the plain image given in Fig. 2a.
This plain image corresponds to P given in Fig. 2c. The attacker ob-
serves the corresponding ciphered image given in Fig. 2b. This im-
age corresponds to the image C given in Fig. 2d. Since the attacker
knows the horizontal permutations ri, by applying their inverses
on C, he obtains the intermediate image M given in Fig. 2e.

By comparing P in Fig. 2c to M in Fig. 2e, the attacker concl-
udes that p1ð1Þ ¼ 6; p1ð2Þ ¼ 3; p1ð3Þ ¼ 5; p2ð1Þ ¼ 5; p2ð2Þ ¼ 1;
p2ð3Þ ¼ 2 and so on. By choosing another plaintext with the rows

of the one in Fig. 2a swapped, the attacker reveals the rest of the
vertical permutations.

4.2. Known-plaintext attack

In this case, assume that m ¼ n ¼ 256 and that the attacker
knows six 256� 256 randomly generated plain images and their
corresponding ciphered images. Thus, t ¼ 6.

By constructing the candidate sets Rk;1 6 k 6 6 and taking their
intersections, all the values of pjðiÞ;1 6 j 6 4;1 6 i 6 2562 are
determined.

The distribution of the number of intersected sets is as follows.
Out of 262,144 unknown values for the permutations p1;p2;p3,
and p3, 204,828 are pinned down with only 3 intersections. This
makes about 78% of all the unknowns. 56,301 are determined using
4 intersections. Thus, we see that for 99.8% of the permutation val-
ues, less than 4 intersections were enough. 993 of the values re-
quired 5 intersections. Only 22 values required 6 intersections.

Once the vertical permutations are known, determining the
horizontal permutations ri is similar and it is done by using set
intersections.

The attack takes less than 5 h under MATLAB running on Mac
OS X 10.5.7 with Intel Core 2 Duo 2.33 GHz processor and 3.3 GB
RAM.

5. Conclusion

In this paper, we have cryptanalysed a recently proposed image
cryptosystem by two different attacks. The weakness of this cryp-
tosystem arise from the use of the same shuffling process for every
plain image. And that is a consequence of using the same se-
quences generated by the four chaotic systems.
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