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Abstract

In this paper we describe in full details a new family of recently found exact solutions of rela-

tivistic, perfect fluid dynamics. With an ansatz, which generalizes the well-known Hwa-Bjorken

solution, we obtain a wide class of new exact, explicit and simple solutions, which have a remark-

able advantage as compared to presently known exact and explicit solutions: they do not lack

acceleration. They can be utilized for the description of the evolution of the matter created in high

energy heavy ion collisions. Because these solutions are accelerating, they provide a more realistic

picture than the well-known Hwa-Bjorken solution, and give more insight into the dynamics of

the matter. We exploit this by giving an advanced simple estimation of the initial energy density

of the produced matter in high energy collisions, which takes acceleration effects (i.e. the work

done by the pressure and the modified change of the volume elements) into account. We also give

an advanced estimation of the life-time of the reaction. Our new solutions can also be used to

test numerical hydrodynamical codes reliably. In the end, we also give an exact, 1+1 dimensional,

relativistic hydrodynamical solution, where the initial pressure and velocity profile is arbitrary, and

we show that this general solution is stable for perturbations.
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INTRODUCTION

Hydrodynamics is in a unique position among the different branches of theoretical physics:

it relies only on the assumption of local charge and energy-momentum conservation, and on

the concept of local thermal equilibrium. The hydrodynamical equations do not have an

internal scale, in contrast to other theories. Consequently, among the possible applications

of hydrodynamics we find the largest known physical systems, systems of intermediate size

and the smallest and shortest events of nature as well. For example, it is well known, that

the evolution of the whole Universe (the Hubble flow) can be treated in a hydrodynamical

manner. The applications in the ordinary sizes and temporal extents are known since the

birth of hydrodynamics. Considering the smallest temporal and spatial scales: as a surprising

new result, it has been understood recently, that the new form of nuclear matter created in

high energy heavy ion collisions can be considered as an (almost) perfect fluid — because

its properties (like the single-particle spectra, elliptic flow data and two-particle correlation

functions) are best explained in terms of models based on perfect fluid hydrodynamics.

From this point of view, we can say that hydrodynamics is simple and efficient, and it has

applications from the very small to the very large scales.

The hydrodynamical equations, however, are highly nonlinear even in the nonrelativistic

case, this is the reason for the appearance of chaos, instability and other beautiful flow pat-

terns in realistic flows. Recent interest in hydrodynamics emerged mostly from the challenge

to explain the properties of the nuclear matter in high energy collisions, it is clear that in

this context one has to deal with not only hydrodynamics, but relativistic hydrodynamics.

Relativity makes the case even worse: relativistic terms (such as speed-addition and proper-

time factors) make the equations much more complicated as compared to the nonrelativistic

case. From this point of view, hydrodynamics is a horrendously complicated area of physics,

which can be seen also from the intensity of recent efforts — both analytical and numerical

— to find relevant solutions for the relativistic hydrodynamical equations.

There are only a few exact solutions for these equations. One (and historically the first)

is the famous Landau-Khalatnikov solution discovered more than 50 years ago [1–3]. This

is a 1+1 dimensional solution, and has realistic properties: it describes a 1+1 dimensional

expansion, and does not lack acceleration. Landau was able to calculate approximately an

important observable, the rapidity distribution of the flowing particles from this solution,
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and it was found to be an (approximately) Gaussian distribution. Recent measurements at

the RHIC particle accelerator (BNL, USA) suggest that this prediction is not at big vari-

ance with the observations made even at the highest presently attainable collision energies.

However, considering its formulation, the Landau-Khalatnikov solution is a very unpleasant

one: it is an implicit solution, the independent variables (the space and and the time co-

ordinate) are given by extremely complicated integral formulas, involving the fluid rapidity

and temperature.

Another renowned relativistic hydrodynamical solution is the Hwa-Bjorken solution [4, 5],

which is a simple, explicit and exact, but accelerationless solution. This solution (in its

original form, where no conserved baryonic charges are present) is boost-invariant, and from

this it follows that the rapidity distribution should be constant. This prediction would be

valid for the limiting case of infinitely high center of mass collision energy. Although such

a flat ,,plateaux” (a narrow domain of constant rapidity distribution around mid-rapidity)

is indeed seen in recent rapidity measurements at RHIC, the observed distribution is far

from constant, so Bjorken’s approximation fails to describe the data. However, the solution

allowed Bjorken to obtain a simple estimate of the initial energy density reached in high

energy reactions from final state hadronic observables. (This is why mostly only Bjorken is

credited with this solution, though Hwa discovered it independently almost 10 years before.)

The Bjorken-estimation is widely used, but it is well known, that the acceleration of the

matter influences the energy density estimation. In order to obtain more realistic estimation,

one should use explicit and exact, but accelerating solutions of relativistic fluid dynamics.

In this paper we present a detailed description of such new simple, exact and explicit

solutions of relativistic fluid dynamics. The essential features of these solutions were first

presented in two short Letters in refs. [6, 7]. To our best knowledge, these solutions were

the first explicit solutions with relativistic acceleration, following the implicit and accel-

erating Landau-Khalatnikov solution. (There are other interesting solutions to relativistic

hydrodynamics, see e.g. refs. [8–11], but these solutions are all accelerationless.)

Apart from the purely theoretical point of view of finding new exact solutions for nonlinear

differential equations, our new solutions are important due to other reasons, too. First, they

provide an advanced estimate of the initial energy density and life-time of high energy

reactions, we focus on these applications in this paper. Second, they can be applied to

test numerical solutions of relativistic hydrodynamics: no finite, accelerating relativistic
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solutions were available before for 1+3 dimensional tests.

The organization of the paper is as follows. We discuss the equations of relativistic

hydrodynamics, then present the newly found solutions. We then calculate the rapidity

distribution, and use it to estimate the initial energy density and the life-time. In the four

Appendices, details of calculations are summarized. In Appendix A we derive the solutions

themselves, and in Appendix B we prove their uniqueness (in some sense discussed there).

Appendix C presents the calculation of the rapidity distribution, and finally, in Appendix

D we present a general solution and investigate the stability of the solutions for a specific

choice of the equation of state.

NOTATION AND BASIC EQUATIONS

In this section we specify the notations used throughout the paper, and derive the equa-

tions of relativistic hydrodynamics.

Notation

We use three-dimensional as well as four-dimensional notations depending on which one

is more convenient. In four-dimensional notation the independent variables are the com-

ponents of the xµ coordinate four-vector: xµ = (t, r), with t being the time and r the

coordinate three-vector, r = (rx, ry, rz). The metric tensor is denoted by gµν , we use the

gµν = diag (1,−1,−1,−1) sign convention. The four-velocity field is denoted by uµ, nor-

malized to unity, uµuµ = 1, that is, we treat the speed of light as 1. The three-velocity v is

defined as uµ = γ (1,v), with γ = (1− v2)
−1/2

. We denote the so-called comoving derivative

by d
dt
: d

dt
= ∂

∂t
+ v∇.

The thermodynamical quantities are the following: ε is the energy density (including

rest energy contribution), p is the pressure, w = ε + p is the enthalpy density, T is the

temperature, σ is the entropy density. When there are some (conserved or non-conserved)

charges present, we denote them by ni, and the corresponding chemical potentials by µi.

All the above densities are defined in the local rest frame, so these densities are scalar

quantities, while for example the entropy density in the laboratory frame is defined as the

0-th component of the entropy current vector, σu0.
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The equations of relativistic hydrodynamics

Assuming perfect fluid (that is, neglecting heat conductivity, bulk and shear viscosity) the

equations of relativistic hydrodynamics are obtained by Landau’s heuristic argumentation:

we guess the form of the energy-momentum tensor Tµν in the local rest frame: Tµν =

diag (ε, p, p, p), and from this we have in arbitrary frame

Tµν = wuµuν − pgµν . (1)

The equations then follow from the energy-momentum conservation law ∂νT
µν = 0. Substi-

tuting eq. (1) and projecting orthogonal and parallel to uµ, we obtain the relativistic Euler

equation and the energy conservation equation as

wuν∂νu
µ = (gµρ − uµuρ) ∂ρp, (2)

w∂µu
µ = −uµ∂µε. (3)

The general form of the charge conservation equations (for one type of charge) is as follows:

∑

i

µi∂µ (niu
µ) = 0, (4)

this is valid for the case of non-conserved charges, as their chemical potentials vanish, for

one conserved charge n with non-vanishing chemical potential, as the conservation law is

∂µ (nu
µ) = 0, and also for various mixtures. (For instance, in case of baryonic or electric

charge, particles and antiparticles carry opposite charges, and they chemical potentials are

the same but of opposite sign, so eq. (4) is valid also for this case.)

For latter usage we write down these equations also in a three-dimensional notation. The

relativistic Euler equation, the energy conservation equation and the continuity equation

(for one conserved charge) are

w

1− v2
dv

dt
= −

(

∇p+ v
∂p

∂t

)

, (5)

1

w

dε

dt
= − (∇v)− 1

1− v2
d

dt

v2

2
, (6)

d

dt
ln

n√
1− v2

= − (∇v) . (7)

The thermodynamical quantities obey general rules, which follow directly from thermody-
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namics:

dε = Tdσ +
∑

i

µidni, (8)

w = Tσ +
∑

i

µini, (9)

dp = σdT +
∑

i

nidµi. (10)

The last equation is a consequence of the first two ones. From eqs. (8) and (10) and eq. (3)

one can derive the entropy conservation equation:

∂µ (σu
µ) = 0. (11)

This is a consequence of the special choice of the energy-momentum tensor. The perfectness

of the fluid can be defined alternatively by requiring that eq. (11) holds.

In order to get a closed set of equations, we have to specify the Equation of State (EoS)

of the flowing matter. In the following we shall investigate a case, which resembles to that

of ideal gas, that is

ε = κp. (12)

The κ constant is 3 for a three-dimensional, ultra-relativistic ideal gas, but now we retain the

more general possibility of arbitrary κ. With the choice of eq. (12) the charge conservation

equation decouples from the Euler and the energy conservation equations. That is, in order

to find new solutions, one has to deal with v and p only, because eqs. (5) and (6) contains

only these variables, and charge densities occur in the calculation only after one found proper

solutions for p (t, r) and v (t, r).

An important property of this specific EoS is, that if one finds a solution with this EoS,

then these solutions can be generalized for a bag-model type of EoS in a straight-forward

manner, as the following replacements leave the hydrodynamical equations invariant:

ε → ε+B, (13)

p → p−B. (14)

The value of the bag constant, B cancels from eqs. (5) and (6), that is, one can introduce

an arbitrary value of the bag constant. This does not change the time evolution of the

entropy density or the flow field as long as it is a constant, independent of position and

time. Because this possibility is simple, we do not explicitly write down the bag constant in

the following calculations, but emphasize, that this can be done without difficulty.
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Rindler coordinates

We discuss below exact solutions of relativistic perfect fluid hydrodynamics in 1+1 di-

mensions and spherical solutions in 1+d dimensions as well (the 1+1 dimensional case is

a special case of this latter one). The number of spatial dimensions is denoted by d. The

notation r stands for the rz spatial coordinate in 1+1 dimensions, and for the radial coor-

dinate in 1+d dimensions. All quantities depend only on t and r, and the velocity field is

radial. We use the well-known Rindler coordinates τ and η as independent variables, which

naturally fit to the Hwa-Bjorken solution.

These coordinates have different definitions for t > r (we will refer to this case as ,,inside

the forward lightcone”) and for t < r (that is, outside the lightcone). We have

t = τ cosh η, r = τ sinh η (15)

inside the lightcone and

t = τ sinh η, r = τ cosh η (16)

outside the lightcone.

In the next section we use these coordinates in order to find new solutions of the hydro-

dynamical equations. We investigate an ansatz for the flow and pressure field, which leads

to a new and interesting class of exact, explicit and simple solutions. Among these solutions

we find ones that overcome the shortcoming of almost all presently known exact solutions:

the lack of acceleration.

DERIVING NEW SOLUTIONS

We parametrize the velocity with the Ω(τ, η) rapidity as v = tanhΩ(τ, η). In this section

we take t > r, that is we are inside the forward lightcone. The Rindler variables τ and η are

defined by eq. (15). The Bjorken-solution is easily written down in terms of these variables

saying Ω = η, and σ
σ0

= τ0
τ
. Our new ansatz is the following generalization of the Bjorken

flow:

Ω = λη, λ ∈ R. (17)

Here λ is an (up to now) arbitrary constant, a parameter of the solution. Substituting (17)

into the hydrodynamical equations (the Euler and energy conservation equations with the
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ε = κp EoS) after some calculations detailed in Appendix A we obtain that p must have the

following form:

p = p0

(τ0
τ

)−K(κ+1) 1

cosh
K+λ
λ−1

(κ+1) ((λ− 1)η)
. (18)

with K being a constant. The value of λ and K are constrained by the equation

κK + (d− 1)
sinhλη

sinh η
cosh ((λ− 1)η) +

+ λ
(

cosh2 ((λ− 1)η)− κ sinh2 ((λ− 1)η)
)

= 0. (19)

The detailed calculations which lead to these equations are found in Appendix A.

Let us emphasize, that eq. (19) is derived from the hydrodynamical equations including

the equations of state within lightcone, |t| > |r|, using Rindler coordinates. Outside the

lightcone, for |t| < |r|, this equation is modified to eq. (69), that governs the “external”

hydrodynamical solutions.

In the next subsection we summarize and investigate the possible solutions.

NEW EXACT SOLUTIONS

There are 4 different sets of the parameters λ, d, κ andK which solve eq. (19), as discussed

below. A fifth solution in this class is the λ = 1 particular case, which is known as the Hwa-

Bjorken solution in 1+1 dimensions, and whose multi-dimensional generalizations, often

called as Buda-Lund type of relativistic solutions, were discovered in the past years [9, 10].

In Appendix B, we present the proof that these five solutions are the only possible non-

trivial solutions in this class (where Ω = λη.) In Appendix B, we also prove the uniqueness

of these solutions in a broader sense: If one allows λ to be not only a constant but a proper-

time dependent function (i.e. if Ω = λ(τ)η), no other exact solutions exist, except the five

solutions a.) - e.) listed in Table I. The properties of these solutions are detailed below.

Flow profile and pressure

In all cases, the velocity field and the pressure is expressed as

v = tanhλη, (20)

p = p0

(τ0
τ

)λdκ+1

κ
(

cosh
η

2

)−(d−1)φλ

. (21)
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Case λ d κ φλ

a.) 2 ∈ R d 0

b.) 1
2 ∈ R 1 κ+1

κ

c.) 3
2 ∈ R

4d−1
3

κ+1
κ

d.) 1 ∈ R ∈ R 0

e.) ∈ R 1 1 0

TABLE I: The new family of solutions.

Table I shows the possible cases: every row represents one solution. In what follows, we

discuss the various cases separately.

• Case a.): In this case, λ = 2, and the solution is obtained in arbitrary number of

spatial dimensions, (d is arbitrary), but then κ should be equal to d. For instance,

in three dimensions κ should be 3, which is the EoS of an ultrarelativistic ideal gas

or a photon gas. The corresponding flow profile has a non-vanishing relativistic ac-

celeration: uν∂
νuµ 6= 0. We will see that this solution in the same form solves the

hydrodynamical equations outside the lightcone, too. If we write down the velocity

field in Minkowskian coordinates, it has the form both for t < r and t > r

v =
2tr

t2 + r2
, (22)

and we can solve the equation of motion for an individual particle, that is, we can

determine the flow trajectories r(t). For a fluid element that is at position r0 at t0

time-point, we have

r(t) =
1

a0
(
√

1 + (a0t)2 + 1) (23)

with a0 = 2r0

|r20−t2
0| . These trajectories have constant a0 acceleration in the local rest

frame. A possible interesting application of this is mentioned briefly later. The tra-

jectories of this solution are shown in Fig. 1. It has a realistic equation of state,

corresponding to a massless ultra-relativistic gas in d dimensions.

Note that we have found this solution first, using other methods. This solution can

also be found using the criteria that the pressure depends only on proper-time and the

solution should work in any d number of dimensions. These criteria select this case

and the well known the λ = 1 Hwa-Bjorken solution, detailed as case d.).
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• Case b.): In this case λ = 1
2
, the number of spatial dimensions is arbitrary, but κ = 1.

The flow is accelerating. This case together with case c.) was found first in d = 3

dimensions by T. S. Biró [12], and we generalized it for arbitrary d. An important

point is that this case and case d.) are the only ones where the pressure field can have

explicit η-dependence, and p can be finite in η (actually, it is finite if and only if d 6= 1).

• Case c.): This case is characterized with λ = 3
2
, d is arbitrary, but κ = 4d−1

3
, that is,

for example for d = 1 we get κ = 1, and for d = 3 it gives κ = 11
3
. This case also was

found in d = 3 by T. S. Biró first, and we have generalized it. The pressure field is

also finite in η for d 6= 1.

• Case d.): In this case λ = 1, d and κ can be arbitrary. For d = 1 this case is known as

the Hwa-Bjorken solution, and for d > 1 these solutions were found in refs. [9, 10]. The

flow profile in the d > 1 case is called Hubble flow. Thus these solutions were already

known inside the light cone, but we quoted them for the sake of completeness. They

are also the basis of new solutions, the the extensions of these solutions to the region

outside the lightcone. These solutions are discussed in the next subsection. Inside the

light-cone, this flow is not accelerating, uν∂
νuµ = 0.

• Case e.): In this case, the value of the parameter λ is arbitrary, but d and κ must

be equal to 1. The flow is accelerating, uν∂
νuµ 6= 0 if λ 6= 1. The velocity field

is pretty general, but the EoS is very particular. Nevertheless, this solution can be

considered as a ,,smooth extrapolation” between the previous cases, although this kind

of generalization — the arbitrary λ case, which can be expected knowing the previous

cases — works only with this special choice of d and κ. In the forthcoming we shall

use this solution to calculate the rapidity distribution. We show in Appendix C, that

the width of the observable rapidity distribution is controlled by the parameter λ.

Hence in principle, the value of the parameter λ of the hydrodynamical solution can

be obtained from measurements.

Outside the lightcone

The hydrodynamical equations can also be rewritten in Rindler-coordinates outside the

lightcone (that is, for |t| < |r|). We investigate here how the solutions presented in the

10
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FIG. 1: (Color online) Fluid trajectories of the λ = 2 solution.

previous subsection can be extended to this domain. The equations are found in Appendix

A, here we only go through the possibilities. The statements below can be directly checked

if one substitutes these expressions into eq. (69) in Appendix A, which is derived from the

hydrodynamical equations in the |t| < |r| region.

• Case a.): This solution can be extended outside the lightcone in a straightforward

manner. The properties are the same: it works in arbitrary d with κ = d, the velocity

field has the same expression in Minkowskian coordinates as inside the lightcone (see

eq. (22)), hence it is also uniformly accelerating. Fig. 1 shows the trajectories outside

the lightcone, too. These trajectories are given by the same form, eq. (23), outside as

well as inside the lightcone.

• Case b.) and c.): These solutions can be extended to t < r only in the d = 1 case, but

these extensions are special cases of the extension of case e.) discussed below. These

extensions do not depend explicitly on η. (Such a dependence was only present for

t > r only if d 6= 1.)

• Case d.): An interesting new result is that there are solutions outside the lightcone

which can be viewed as the extensions of the λ = 1, or Hwa-Bjorken internal solutions.

The velocity and the pressure have the form

v = tanh η =
t

r
, (24)

p = p0

(τ0
τ

)κ+1

cosh− d−1

κ
(κ+1) η. (25)
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Moreover, this extension is an accelerating flow. The equation of the trajectories is

r(t) =
1

a0
(
√

1 + (a0t)2 + 1) (26)

for r0 > t0. These trajectories are also of constant a0 acceleration, as the a.) (λ = 2)

case. However, the expression of a0 is different from that of case a.), we have now

a0 =
r0

r2
0
−t2

0

.

It is interesting to note at this point the following. As both the λ = 2 and the λ = 1

external solutions are uniformly accelerating (in local rest frame), they both contain

event horizons. This property of the uniform acceleration was utilized recently by

Kharzeev and Tuchin [13] to describe thermalization in heavy ion reactions via the

Unruh effect.

• Case e.): The case when λ is arbitrary and d = κ = 1 can be extended to t < r

without difficulties, the outside solution is also an accelerating one. The velocity and

the pressure is given by

v = tanhλη, (27)

p = p0

(τ0
τ

)2λ

, (28)

but remember, that the definition of τ and η are given by eq. (16), which differs from

the case of |t| > |r|.

Temperatures and densities

The previously presented pressure and velocity fields solve eqs. (5) and (6), the Euler and

the energy conservation equations. It is specific to the ε = κp EoS utilized here, that the

continuity equation can be treated separately. But if we investigate the temperature and

perhaps other charge densities, the relation between ε and p does not fully determine the

EoS. In this subsection we solve the continuity equations for some cases.

Before doing this, we introduce the scaling variable S (τ, η) with the definition that its

comoving derivative vanishes, that is (for one-dimensional or spherical flows)

dS

dt
=

∂S

∂t
+ v

∂S

∂r
= 0. (29)

12



S (τ, η) λ 6= 1 λ = 1

t > r (τ0/τ)
λ−1 sinh ((λ− 1)η) η

t < r (τ0/τ)
λ−1 cosh ((λ− 1)η) τ/τ0

TABLE II: The S (τ, η) scaling functions inside and outside the light-cone. Note, that the λ = 1

case has to be handled separately from the other cases.

Every specific flow profile has a corresponding S function, which can be determined by

solving eq. (29). Table II contains the expressions of S for the investigated class of solutions.

(A remark: S is not uniquely determined by eq. (29), if S is a good scaling function, then

any function of S is also a good scaling function. But we shall see, that this ambiguity does

not really matter, as it cancels from the observables.)

After this preparation, let us describe the solutions to the entropy (or in general, conti-

nuity type of) equations.

First, if there are no charges present at all, then from the (9) Gibbs-Duhem relation we

have Tσ = (κ + 1) p, and it can be verified, that the solution of the entropy conservation ,

eq. (11) is

σ = σ0

(

p

p0

)
κ

κ+1

νσ(S), (30)

T = T0

(

p

p0

)
1

κ+1 1

νσ(S)
(31)

where p (τ, η) is given by eq. (21), and of course (κ+ 1) p0 = T0σ0. The function νσ(S) > 0

can be chosen arbitrarily. This approximation (that is, the baryonic charges are negligibly

small) is often used for the description of high energy heavy ion collisions and of the quark-

hadron transition of the early Universe.

Second, if we have one conserved charge n, and as an ideal gas EoS we have p = nT , then

the solution of the conservation equation is very similar:

n = n0

(

p

p0

)
κ

κ+1

νn(S), (32)

T = T0

(

p

p0

)
1

κ+1 1

νn(S)
. (33)

The constants are chosen so that p0 = n0T0.
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The case of more than one charges can be treated similarly: we have (κ + 1)p = Tσ +
∑

i niµi, and the solution is

σ = σ0

(

p

p0

)
κ

κ+1

νσ(S), (34)

T = T0

(

p

p0

)
1

κ+1 1

νσ(S)
, (35)

ni = n
(i)
0

(

p

p0

)
κ

κ+1

νi(S), (36)

µi = µ
(i)
0

(

p

p0

)
κ

κ+1

Mi(S), (37)

where the functions and the constants are constrained as νi(S)Mi(S) = 1 and (κ + 1)p0 =

T0σ0+
∑

i n
(i)
0 µ

(i)
0 . These forms are solutions to the hydrodynamical and continuity equations

simultaneously.

Let us emphasize, that the scaling functions of the scaling variable S are quite arbitrary,

they are only constrained by using a physical normalization, which implies νi(0) = Mi(0) =

1. As we mentioned earlier, any function S ′ of the scaling variable S is again a good scaling

variable, as long as S ′(0) = 0, because the same solutions are obtained when new scaling

functions are chosen, that correspond to the new scaling variable as ν ′
i(S

′(S)) = νi(S). Thus

it is possible to use the most natural form of the scaling variable S, when describing these

solutions.

THE RAPIDITY DISTRIBUTION

If we want to apply our solutions to the description of some physical phenomena, we have

to calculate the final state observables from these solutions. We have chosen the rapidity

distribution, and in order to be able to fit measured data, we apply here our new solution

described as case e.) in the previous section. Here the parameter λ (which we can call

,,acceleration parameter”, because it somehow influences the acceleration of the flow) can

be arbitrary, but the dimension is restricted to d = 1, and what is more inconvenient, κ is also

equal to 1. But the λ parameter can be fitted to measured datasets, and this compensates

the drawback of the specific EoS.

The detailed calculation of the rapidity distribution is presented in Appendix C, here we

briefly summarize the main steps. We use Boltzmann approximation, and neglect baryonic
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charges and chemical potentials, so T and σ are given by eqs. (30) and (31). Although

the solution is valid only for the EoS of massless particles, we assume that at the freeze-

out particles of rest mass m appear (e.g. pions with m = 140MeV). We have chosen the

freeze-out condition as follows: the freeze-out hypersurface is pseudo-orthogonal to the four-

velocity field uµ, and the temperature at η = 0 reaches a given Tf value. The equation of

this hypersurface is
(τf
τ

)λ−1

cosh ((λ− 1)η) = 1, (38)

where τf is the proper-time coordinate when the temperature reaches Tf at η = 0 (see

Appendix C for details).

With a saddle-point integration in η, for λ > 1/2, m/Tf ≫ 1 and νσ(s) = 1 we got

dn

dy
≈ dn

dy

∣

∣

∣

y=0
cosh±α

2
−1
( y

α

)

e
− m

Tf
[coshα( y

α)−1]
, (39)

with α = 2λ−1
λ−1

. In an actual fit to data, the parameter α can be determined more directly,

than λ. From the value of the shape parameter α, the parameter of the acceleration λ can

thus be determined from the inverse formula as

λ =
α− 1

α− 2
. (40)

This equation also indicates, that the flat rapidity distribution corresponds to λ → 1 and

α → ∞.

In the formula eq. (39) and in the subsequent discussion of this distribution the upper

sign always means the true 1 + 1 dimensional case (that is, not only the flow, but the

produced particles have only one degree of freedom), while the lower sign is for the case

when the 1 + 1 dimensional solution is embedded in the 1+3 dimensional space-time, and

the produced particles have transverse degrees of freedom as well. The embedding means

that the fluid occupies infinite volume, and it is homogeneous (it has no velocity, no pressure

gradient components) in transverse directions.

The Gaussian ,,width” of the eq. eq. (39) distribution (obtained from the second deriva-

tive at y = 0) is

∆y2 =
α

m/Tf ∓ 1/2 + 1/α
. (41)

We see from the expression of ∆y2 that it changes sign if λ (and thus α) varies. It has two

roots in λ: ∆y2 = 0 if λ = 1, or λ = 1
2

(

1 +
Tf

2m∓Tf+Tf

)

. If λ = 1 (this is the Hwa-Bjorken
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FIG. 2: (Color online) Normalized rapidity distributions from the new solutions in 1+1 dimensions

for various λ, Tf and m values. Thick lines show the result of numerical integration, thin lines the

analytic approximation from eq. (39). For λ > 1 and not too big Tf it can be used within about

10 % error.

case), the distribution is entirely flat, and if λ equals the other root, it is not flat but has only

higher order non-vanishing derivatives at y = 0. In other cases, the sign of ∆y2 determines

the behavior of the rapidity distribution (around y = 0): it has a minimum at y = 0, if

∆y2 < 0, and it has a maximum (that is, it is approximately Gaussian) if ∆y2 > 0. The

typical cases are plotted in Fig. 2. This figure is just an illustration, the parameter values

on this figure are not realistic ones, they were chosen in order to make the behavior of the

distribution transparent in the different cases.

APPLICATIONS

In the previous section we have calculated the rapidity distribution from our new solution.

We are now able to fit real rapidity measurements with our calculation, and we can extract

the λ parameter from the data. (Fig. 2 shows that the analytic approximation for not too
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high temperatures has less than 10% error, so it can be used reliably.) We can also see on

Fig. 2 that in the λ → 1 limiting case the distribution approximates the Bjorken-like flat

one, and the more λ differs from 1, the more the distribution deviates from the flat shape.

That is, the acceleration effects make the distribution a finite one, and since our calculation

takes acceleration into account, it provides a realistic description of the real distributions,

which have finite widths. We present two applications: the improvement of the Bjorken

energy density estimation, and an advanced reaction life-time estimation.

Energy density estimation

We follow Bjorken’s method [5] and deviate from it at the point when acceleration effects

(which are neglected by the Bjorken estimate) become important. Let us focus on a thin

transverse piece of the produced matter at mid-rapidity, illustrated by Fig. 2 of ref. [5].

The radius R of this slab is estimated by the radius of the colliding hadrons or nuclei:

R = 1.18A1/3fm. Its volume is dV = (R2π)τdη, where τ is the proper time of observation

and dη is the space-time rapidity element corresponding to the slab. The energy content

in this slab is dE = 〈mt〉dn, where 〈mt〉 is the average transverse mass at mid-rapidity, so

similarly to Bjorken, the initial energy density is

ε0 =
〈mt〉

(R2π)τ0

dn

dη0
. (42)

Here τ0 is the proper-time of thermalization. (Bjorken’s estimate was τ0 ≈ 1fm.) For accel-

erationless, boost-invariant Hwa-Bjorken flows η0 = ηf = y, however, for our accelerating

solution we have to apply a correction factor of ∂y
∂ηf

∂ηf
∂η0

. From our λ ∈ R solutions the shift

of the point of maximum emittiviy is ∂y
∂ηf

= (2λ− 1), while the volume element change is
∂ηf
∂η0

= (τf/τ0)
λ−1. These two factors contain the acceleration effects on the energy density

estimation: the first one is the effect of work done by the pressure, and the second one

characterizes how acceleration influences the expansion of the initial volume element. For

an accelerating flow both factors should be greater than 1, which is indeed the case if λ > 1.

Thus the initial energy density ε0 can be accessed by an advanced estimation εc as

εc
εBj

= (2λ− 1)

(

τf
τ0

)λ−1

, εBj =
〈mt〉

(R2π)τ0

dn

dy
. (43)

Here εBj is the Bjorken estimation, which is recovered if dn
dy

is flat (i.e. λ = 1), but if λ > 1,

ε0 is under-estimated by the Bjorken formula. Fig. 4 shows our fits to BRAHMS dn/dy
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FIG. 3: (Color online) Fluid trajectories of the λ = 1.2 solution, which fits to BRAHMS dn
dy

data. We illustrated the possible hypersurfaces (the hypersurfaces pseudo-orthogonal to the flow

trajectories), among these ones there is the proper freeze-out hypersurface, selected by the criterion

T (η = 0) = Tf .

data [14]. From these fits we have found λ = 1.18 ± 0.01. On Fig. 3 we plotted the fluid

trajectories and illustrated the ensemble of possible freeze-out hypersurfaces, as given by

eq. (38) inside the lightcone for this specific λ value. For illustration we also calculated the

rapidity distribution for λ = 1.18: the bottom panel on Fig. 2 shows it with this λ value for

pions, kaons and protons.

Using the Bjorken estimate of εBj = 5 GeV/fm3 as given in ref. [15], and τf/τ0 = 8 ± 2

fm/c, we find an initial energy density of εc = (2.0 ± 0.1)εBj = 10.0± 0.5 GeV/fm3. If the

evolution deviates from a 1+1 dimensional perfect flow, then our estimation is only a lower

limit for the initial energy density.

Life-time estimation

For a Hwa-Bjorken type of accelerationless, coasting longitudinal flow, Sinyukov and

Makhlin [16] determined the longitudinal length of homogeneity as

Rlong =

√

Tf

mt

τBj . (44)

Here mt is the transverse mass and τBj is the (Bjorken) freeze-out time. This result provides

a means to determine the life-time of the reaction: it can be simply identified with τBj .

However, if the flow is accelerating, the estimated origin of the trajectories is shifted back in
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α 7.4 ± 0.13

dn
dy |y=0 294 ± 1

χ2/NDF 30.6/14

CL 0.6 %

Tf (MeV) 200 (fixed)

m (MeV) 140 (fixed)

λ 1.18 ± 0.01 (derived)

TABLE III: The parameters of the best fit with eq. (39) (1+3 dimensional case, lower signs) to

dn/dy data of negative pions, as measured by the BRAHMS collaboration [14] in central (0-5%)

Au+Au collisions at
√
sNN = 200 GeV. The free fit parameters were α and dn

dy |y=0 . The fit

range was −3 < y < 3 . The confidence level of the fit, CL was calculated from χ2/NDF . The

temperature parameter Tf was fixed to 200 MeV, corresponding to the slope parameter of the single

particle spectra, as in the fitted 1+3 dimensional case a 1+1 dimensional exact hydro solution was

embedded to a 1+3 dimensional space. For the pion mass, a fixed 140 MeV value was used. The

parameter of the acceleration, λ was calculated from the fitted parameter α using eq. (40).
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FIG. 4: (Color online) Panel (a): dn/dy data of negative pions, as measured by the BRAHMS

collaboration [14] in central (0-5%) Au+Au collisions at
√
sNN = 200 GeV, fitted with eq. (39)

(1+3 dimensional case, lower signs). The fit range was −3 < y < 3, to exclude target and projectile

rapidity region, CL = 0.6 %. The parameters of the fit are summarized in Table III. Panel (b):

εc/εBj ratio as a function of τf/τ0.
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proper-time, so the life-time of the reaction is under-estimated by τBj . (This was pointed out

also in refs. [17–20].) From our solutions we have (for a broad but finite rapidity distribution,

where the saddle-point approximation is valid):

Rlong =

√

Tf

mt

τc
λ

⇒ τc = λτBj . (45)

So the new estimation of the life-time, τc contains a λ multiplication factor. As mentioned

in the previous subsection, BRAHMS rapidity distributions in Fig. 4 yield λ = 1.18± 0.01,

so they imply a 18 ±1 % increase in the estimated life-time of the reaction.

SUMMARY

In this paper, we presented new simple, explicit analytic solutions to the relativistic hydro-

dynamical equations. These new solutions are characterized by a non-vanishing relativistic

acceleration, which is a significant development compared to the already known solutions.

Many of these new solutions work not only inside the lightcone, but outside of it as well.

As a by-product, we have demonstrated that the well-known Hwa-Bjorken solution also has

such an extension, and this extension turns out to have uniformly accelerating trajectories.

We have calculated the rapidity distribution of the particles from our new solutions

numerically, and presented a simple and reliable analytic approximation as well. These

distributions have finite widths, hence they can be used to fit real experimental rapidity

distribution data. We have fitted BRAHMS data, and obtained a value of λ = 1.18 ± 0.01

for the acceleration parameter of the solution.

The famous Bjorken estimate of the initial energy density could be refined, taking ac-

celeration effects into account. Using the Bjorken estimate given in the BRAHMS White

Paper [15] (εBj = 5 GeV/fm3) and τf/τ0 = 8 ± 2 fm/c, we find an initial energy density

of εc = (2.0 ± 0.1)εBj = 10.0 ± 0.5 GeV/fm3, which is a significant increase. We have also

given an improved estimation for the life-time of the reaction: a 18± 1 % increase is due to

the presence of acceleration, based on our model of the initial accelerating period.
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Note that during the process of finalizing this manuscript, we have encountered two inter-

esting, new family of relativistic hydrodynamical solutions, in ref. [23] and also in ref. [24],

both of which look to be very interesting and deserve more detailed, further investigations.

APPENDIX A: HYDRODYNAMICAL EQUATIONS IN RINDLER COORDI-

NATES

In this Appendix we present the derivation of eqs. (18) and (19) in more detail. First

we rewrite the hydrodynamical equations in terms of the Rindler variables, then investigate

the assumption for the velocity field made in eq. (17). In this Appendix, as in the body of

the paper, Ω stands for the rapidity of the flow, v = tanhΩ, and here we use the notation

d
dr

= ∂
∂r

+ v ∂
∂t
, this appears on the r.h.s. of the Euler equation. We treat the two different

domains of the variables — inside and outside the lightcone — carefully, because the Rindler

coordinates have different definitions. We shall see that the Ω = η case is a particular one.

(We refer to it as Hwa-Bjorken case, but emphasize that for d > 1 such solutions were found

only recently.) So we investigate it in a separate subsection, in the following two subsections

— where we derive the general equations inside and outside the lightcone — we assume

λ 6= 1.

Inside the forward lightcone

First, we deal with the t > r, t > 0 case. The definition of the Rindler coordinates, the

inverse formulas and the derivation rules are as follows:

t = τ cosh η , r = τ sinh η, (46)

τ =
√
t2 − r2 , η = arctanh

r

t
, (47)
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∂

∂t
= cosh η

∂

∂τ
− sinh η

τ

∂

∂η
, (48)

∂

∂r
= − sinh η

∂

∂τ
+

cosh η

τ

∂

∂η
, (49)

d

dt
=

cosh (Ω− η)

coshΩ

∂

∂τ
+

sinh (Ω− η)

τ coshΩ

∂

∂η
, (50)

d

dr
=

sinh (Ω− η)

cosh Ω

∂

∂τ
+

cosh (Ω− η)

τ coshΩ

∂

∂η
. (51)

The domain of the variables is −∞ < η < +∞, and 0 ≤ τ < ∞. We introduce the notation

Q = 1
κ+1

ln p. (The convenience of this notation is due to the special EoS we utilize here,

the ε = κp one.) Rewriting and rearranging the Euler and energy conservation equations

we obtain the following:

∂Ω

∂τ
+

1

τ

∂Q

∂η
+ tanh (Ω− η)

(

∂Q

∂τ
+

1

τ

∂Ω

∂η

)

= 0, (52)

κ
∂Q

∂τ
+

1

τ

∂Ω

∂η
+

d− 1

cosh (Ω− η)

sinh Ω

τ sinh η
+

+ tanh (Ω− η)

(

∂Ω

∂τ
+

κ

τ

∂Q

∂η

)

= 0. (53)

Here we used the expression for the divergence of the velocity field: (∇v) = ∂v
∂r

+ d−1
r
v.

Our special assumption was that Ω = λη, so substituting ∂Q
∂η

from eq. (52) into (53) we

have

tanh ((λ− 1)η)

(

τ
∂Q

∂τ
+ λ

)

+
∂Q

∂η
= 0, (54)

κτ
∂Q

∂τ
+ (d− 1)

sinh λη

sinh η
cosh ((λ− 1)η) +

+ λ
(

cosh2 ((λ− 1)η)− κ sinh2 ((λ− 1)η)
)

= 0. (55)

From eq. (55) we see that τ ∂Q
∂τ

must be τ -independent, that is Q must have the form

Q = H (η)+K (η) ln τ . Then from eq. (54) we have that K (η) is also constant. Again with

eq. (55) we have then

Q = K ln τ +H (η) , (56)

where the H (η) function is determined by eq. (54). The solution is easily obtained as

H (η) = −K + λ

λ− 1
ln cosh ((λ− 1)η) + const. (57)

for λ 6= 1, so p has the form

p = p0

(τ0
τ

)−K(κ+1) 1

cosh
K+λ
λ−1

(κ+1) ((λ− 1)η)
. (58)
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The integration constant was absorbed into the definitions of the p0 and τ0 initial values.

For the K constant we have from eq. (55)

κK + (d− 1)
sinhλη

sinh η
cosh ((λ− 1)η) +

+ λ
(

cosh2 ((λ− 1)η)− κ sinh2 ((λ− 1)η)
)

= 0. (59)

Essentially this is eq. (19), so what we need is to find such λ and K constants, which solve

this equation, then we have the pressure and the velocity field. The solutions were found,

they are presented in the body of the paper.

Outside the forward lightcone

In this case the calculation goes almost in the same way as inside the lightcone. The

definitions and the derivation rules are:

t = τ sinh η , r = τ cosh η, (60)

τ =
√
r2 − t2 , η = arctanh

t

r
, (61)

∂

∂t
= − sinh η

∂

∂τ
+

cosh η

τ

∂

∂η
, (62)

∂

∂r
= cosh η

∂

∂τ
− sinh η

τ

∂

∂η
, (63)

d

dt
=

sinh (Ω− η)

cosh Ω

∂

∂τ
+

cosh (Ω− η)

τ coshΩ

∂

∂η
, (64)

d

dr
=

cosh (Ω− η)

coshΩ

∂

∂τ
+

sinh (Ω− η)

τ coshΩ

∂

∂η
. (65)

We have in this case for the hydrodynamical equations

∂Q

∂τ
+

1

τ

∂Ω

∂η
+ tanh (Ω− η)

(

∂Ω

∂τ
+

1

τ

∂Q

∂η

)

= 0, (66)

∂Ω

∂τ
+

κ

τ

∂Q

∂η
+

d− 1

cosh (Ω− η)

sinhΩ

τ cosh η
+

+ tanh (Ω− η)

(

κ
∂Q

∂τ
+

1

τ

∂Ω

∂η

)

= 0. (67)

If we now assume Ω = λη, then going through the same steps as inside the lightcone we

have (for λ 6= 1)

p = p0

(τ0
τ

)−K(κ+1)

sinh−K+λ
λ−1

(κ+1) ((λ− 1)η) , (68)
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and the equation which constrains K and λ is

κ (K + λ)

sinh ((λ− 1)η)
− (d− 1)

sinhλη

cosh η
+

+ (κ− 1) λ sinh ((λ− 1)η) = 0. (69)

This equation is analogous to eq. (59), but it is slightly different. We used this equation to

investigate the solutions outside the lightcone.

The Hwa-Bjorken case

The λ = 1 case is the Hwa-Bjorken solution in 1+1 dimensions, and the Buda-Lund case

(refs. [9, 10]) in 1+d dimensions. which is simply obtained from eqs. (52) and (53). We have

∂Q

∂η
= 0, κ

∂Q

∂τ
= −d

τ
, (70)

and the solution is

Ω = η, p = p0

(τ0
τ

)
d
κ
(κ+1)

. (71)

What is perhaps more interesting, is that this solution can be extended to outside the

lightcone, as we see it from eqs. (66) and (67), if we substitute λ = 1:

∂Q

∂τ
+

1

τ
= 0,

∂Q

∂η
= −d− 1

κ
tanh η, (72)

so the ,,outside Hwa-Bjorken-Buda-Lund solution” is

Ω = η, p = p0

(τ0
τ

)(κ+1)

cosh− d−1

κ
(κ+1) η. (73)

This is an accelerating solution, its properties are discussed in the body of the paper.

APPENDIX B: TAYLOR EXPANSION AND UNIQUENESS

In this Appendix we sketch the proof of uniqueness of the presented solutions. We deal

only with the t > r case. We investigate a less restrictive assumption for the velocity field

than in the body of the paper, namely allow the λ factor to be proper-time dependent:

Ω = λ (τ) η. (74)
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We denote the τ ∂
∂τ

derivation operator by a comma, and if possible, we suppress the τ

argument of the functions in the notation. The λ(τ) = 1 case was investigated in Appendix

A as well as in the body of the paper, so we assume λ(τ) 6= 1 throughout this Appendix.

We will use a Taylor-expansion around η = 0 for Ω and the pressure (that is, for Q =

1
κ+1

ln p):

Q = A (τ) +B (τ) η +
C (τ)

2
η2 +

D (τ)

3
η3 +

E (τ)

4
η4 + . . . , (75)

We have nothing more to do than to put this into eqs. (52) and (53), and make the l.h.s.

vanish order by order in powers of η. It can be done without any essential difficulty, but it

is a very long calculation. Here in this Appendix we only consider the case when one makes

an additional assumption for the pressure field, namely, that it factorizes in terms of τ and

η, as in the solutions presented in the body of the paper:

p = F (τ)H (η) (76)

That is, for the Taylor expansion we have

Q = A (τ) +Bη +
C

2
η2 +

D

3
η3 +

E

4
η4 + . . . , (77)

where A (τ) = 1
κ+1

lnF (τ) and the other functions are constants (denoted by the same

letter), the expansion coefficients of 1
κ+1

lnH (η). We will need only the second order terms

for the present calculation: we expand eq. (52) to O (η3), and eq. (53) to O (η4). The

following auxiliary formulas are needed:

tanh ((λ− 1)η) = (λ− 1) η − 1

3
(λ− 1)3 η3 + . . . ,

sinhλη

cosh ((λ− 1)η)

1

sinh η
= λ− 1

3
λ (λ− 1) (λ− 2) η2+

+
1

45
λ (λ− 1) (λ− 2)

(

6λ2 − 12λ+ 7
)

η4 + . . . .

Eq. (52) thus gives

B + {λ′ + C + (λ− 1) (A′ + λ)} η +Dη2 +

+

(

E − 1

3
(λ− 1)3 (A′ + λ)

)

η3 = 0, (78)

and eq. (53) is (to second order in η)

{κA′ + dλ}+ (λ− 1)κBη +

+ (λ− 1)
{

d−1
3
λ (2− λ) + λ′ + κC

}

η2 = 0. (79)

25



We immediately see that B = D = 0, and we obtain the following equations:

κA′ + dλ = 0, (80)

λ′ + C + (λ− 1) (A′ + λ) = 0, (81)

d− 1

3
λ (2− λ) + λ′ + κC = 0, (82)

1

3
(λ− 1)3 (A′ + λ)−E = 0. (83)

For brevity we did not write the O (η4) term in eq. (79), but we will use the equation, which

follows from the condition that the O (η4) term vanish:

d− 1

45
λ (λ− 1) (λ− 2)

(

6λ2 − 12λ+ 7
)

+

+ (λ− 1) κE − (κC + λ′)
(λ− 1)3

3
= 0. (84)

Now substituting A′ from eq. (80) into eq. (81), and then λ′ from eq. (81) in eq. (82), this

last equation will contain only λ (not its derivative), and the C constant. So eq. (82) will

yield an algebraic equation for λ, that is, λ must be a constant, thus λ′ vanishes. It follows

that A′ is also constant. So the constants are

A′ = −d

κ
λ, (85)

C = −λ (λ− 1)

(

1− d

κ

)

, (86)

E =
1

3
λ (λ− 1)3

(

1− d

κ

)

, (87)

and from eqs. (82) and (84) we have two equations containing only λ:

κ− d =
(d− 1) (2− λ)

3 (λ− 1)
, (88)

2 (λ− 1)3 (κ− d) +
d− 1

15
(λ− 2)

(

6λ2 − 12λ+ 7
)

= 0. (89)

We excluded the trivial λ = 0 case, and as mentioned before, the λ = 1 Hwa-Bjorken case

was treated separately. Substituting eq. (88) into eq. (89) we obtain

(d− 1) (λ− 2)
(

4λ2 − 8λ+ 3
)

= 0. (90)

It is now easy to see that there are only those solutions which we presented in the body

of the paper: if d = 1, then eq. (88) implies that κ = 1, but then eq. (90) is satisfied by
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any value of the parameter λ. Second, if λ = 2, then eq. (90) is satisfied in any number

of dimensions d, but eq. (88) implies a condition for the equation of state, κ = d. Third,

the other two roots of eq. (90) are λ = 3
2
, and λ = 1

2
, and it is clear, that there are no

other solutions of eq. (88). So the only possibilities are those listed in Table I. They are

indeed solutions, as can be verified straigthforwardly by substituting these solutions to the

hydrodynamical equations in Rindler coordinates. The conclusion of this Appendix is that

we cannot extend the investigated class of solutions in an easy way even if we allow λ to be

τ -dependent.

APPENDIX C: RAPIDITY DISTRIBUTIONS

In this Appendix we derive eq. (39), the formula which gives the rapidity distribution of

the produced particles for our new 1+1 dimensional solutions, which are given by eqs. (20)

and (21), and the constants are those in case e.) in Table I. We assumed µB = 0, that is

ε + p = Tσ. We utilized the following expressions for σ and T , similarly to eqs. (30) and

(31):

T = Tf

(

p

pf

)
1

1+κ

, σ = σf

(

p

pf

)
κ

1+κ

, (91)

so we assumed νσ(S) ≡ 1 for the scaling function, and p(τ, η) is given by eq. (21). Of course,

pf = σfTf . The subscript f means freeze-out. (The constants in eqs. (30) and (31) can

always be re-scaled, so we denoted the proper-time coordinate of the freeze-out hypersurface

at η = 0 by τf , and pf , Tf and σf are the values of the thermodynamical quantities in this

space-time point.) Here, as in the body of the paper, m is the mass of the produced particle,

and we parametrize the momentum of it as kµ = (E, p) = m (cosh y, sinh y), with y being

the rapidity.

We calculate the rapidity distribution in two cases. First, in the fully 1 + 1 dimensional

case, when not only the flow but also the produced particles have only 1 degrees of freedom,

as they propagate along the z axis. Second, in the case, when this 1+1 dimensional solution

is embedded in a 1 + 3 dimensional space, and the produced particles can have transverse

momentum as well.
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The 1 + 1 dimensional case

The rapidity distribution is given by

dn

dy
= E

dn

dp
=

∫

d2xS(xµ, kµ), (92)

where S(xµ, kµ) is the source function, and the notation d2x refers to the fact that we are

in an 1 + 1 dimensional space-time. The explicit form of S(xµ, kµ) is

S(x, k) =
g

2π~
exp

(

µ(x)

T (x)
− kµu

µ(x)

T (x)

)

kµdΣ
µ(x)δ(x− xf), (93)

where the notations are: uµ is the four-velocity of the flow, µ is the chemical potential, g

is the spin-degeneracy factor, and dΣµ(x) is the Cooper-Frye flux term. (The Cooper-Frye

flux term, together with the delta function, which selects the freeze-out hypersurface, is

essentially the Lebesgue vector-measure of the freeze-out hypersurface).

In our particular solution, µ(x) = 0, and kµu
µ(x) = m cosh (λη − y). We selected the

freeze-out condition in a way to take advantage of the simplicity of this relation: our con-

dition is that the temperature at η = 0 reaches a given Tf value, and the hyper-surface is

pseudo-orthogonal to the four-velocity field, or in other words, uµ(x) is parallel to dΣµ(x).

(This hypersurface is not of constant temperature nor of constant τ . This choice is also moti-

vated by the success of the Buda-Lund model in describing particle spectra, see e.g. [21, 22].)

Another formulation of this condition is that the freeze-out hypersurface is ,,locally synchro-

nized”: an observer which moves together with the flow sees this hypersurface as a constant

time surface in its neighborhood. The equation of this hypersurface is

(τf
τ

)λ−1

cosh ((λ− 1)η) = 1. (94)

We can now calculate the Cooper-Frye term. We have for the integration

∫

d2xδ (x− xf ) kµdΣ
µ(x) →

→
∫ ∞

−∞

dηmτf cosh (λη − y) cosh
1

λ−1
−1 ((λ− 1)η) . (95)

So the rapidity distribution is

dn

dy
=

∫ ∞

−∞

dη
mτf
2π~

cosh (λη − y) cosh
1

λ−1
−1 ((λ− 1)η)×
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× exp

(

−m

Tf

cosh (λη − y) cosh
λ

λ−1 ((λ− 1)η)

)

. (96)

This integration can be calculated numerically, but an analytic approximation is also avail-

able. The formula of the saddle-point integration is

∫ ∞

−∞

dx f(x)g(x) ≈ g(x0)

√

2πf 3(x0)

−f ′′(x0)
, (97)

for an f(x) function, that has a sharp maximum peak at x0, and a g(x), which changes

smoothly around x0. Essentially this is an approximation where one treats the smooth func-

tion as a constant g(x0), and the sharp function as a Gaussian peak with parameters obtained

from f(x0) and f ′′(x0). This method can be applied very effectively when the peaked func-

tion has a parameter, which rules its half-width, so this parameter can be changed in such

a way that f(x) approximates a Dirac-delta. The more f(x) is like a Dirac-delta, the better

the saddle-point approximation is (and in the limiting case it becomes exact).

In our case, f(η) is the exponential, g(η) is the remaining, and m
Tf

is the parameter, which

governs the half-width of f(η). For convenience, we introduce the α = 2λ−1
λ−1

notation. We

have

η0 =
y

2λ− 1
, f(η0) = exp

{

−m

Tf
cosh

1

α

( y

α

)

}

, (98)

f ′′(η0) = −f(η0)
m

Tf

λ (2λ− 1) cosh
λ

λ−1
−1
( y

α

)

, (99)

g(η0) =
mτf
2π~

cosh
1

λ−1

( y

α

)

. (100)

Putting all this together, we obtain (approximately)

dn

dy
= N cosh

α
2
−1
( y

α

)

exp

{

−m

Tf

coshα
( y

α

)

+
m

Tf

}

, (101)

N =

√

2πTf

mλ (2λ− 1)

mτf
2π~

exp

(

−m

Tf

)

. (102)

This is the expression of dn
dy

in the true 1 + 1 dimensional case. The normalization constant

N is dn
dy

∣

∣

∣

y=0
, the value of dn

dy
at mid-rapidity.

The 1 + 3 dimensional, embedded case

If we take the transverse dynamics into account, that is, we embed the 1 + 1 di-

mensional solution in a 3 dimensional space (with vx = vy = 0 and no pressure gra-

dients in transverse directions), the previous (101)–(102) formulas need to be modified.
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We have (in 3 spatial dimensions) 1
(2π~)3

instead of 1
2π~

, and mT instead of m, where

mT =
√

E2 − p2z =
√

m2 + p2x + p2y is the transverse mass. With these modifications, the

above (101)–(102) expressions have the following meaning:

E
dn

d3k
=

dn

dy 2πmTdmT
= N cosh

α
2
−1
( y

α

)

×

× exp

{

−mT

Tf
coshα

( y

α

)

+
mT

Tf

}

, (103)

N =

√

2πTf

mTλ (2λ− 1)

mT τf

(2π~)3
exp

(

−mT

Tf

)

. (104)

In order to obtain the rapidity distribution, we have to integrate over the transverse mass:

dn

dy
= 2π

∫ ∞

m

dmT mT

√

2πTf

mTλ (2λ− 1)

mT τf

(2π~)3
×

× exp

{

−mT

Tf

coshα
( y

α

)

}

cosh
α
2
−1
( y

α

)

. (105)

Here m is the real mass of the produced particles, e.g. m = 140 MeV for pions. The integral

over mT can be also calculated in the limiting case of m
T
→ ∞. (This is the same condition

as that for the saddle-point integration to be exact.) In this case, we can apply the simple

approximation
∫ ∞

a

h(x) exp (−βx) dx ≈ h(a)

β
(106)

for a ≫ 1
β
, and for any h(x), that varies smoothly around a. Our case is h(mT ) = m

3/2
T . So

we have
dn

dy
= N ′ cosh−α

2
−1
( y

α

)

exp

{

−m

Tf
coshα

( y

α

)

}

, (107)

N ′ =

√

2πmT 3
f

λ (2λ− 1)

Amτf
2π~

, (108)

with A being the transverse cross section of the fluid. These are the results quoted in

eq. (39).

APPENDIX D: GENERAL SOLUTION FOR THE d = 1, κ = 1 CASE, INVESTI-

GATION OF STABILITY

If ε = κp, and we take the choice of κ = 1, then the hydrodynamical equations (that is,

eqs. (5) and (6)) have an intrinsic simplicity. Let us write them down in this case! In this
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Appendix we denote the derivation with respect to t by dotting, and the derivation with

respect to r by comma. So the Euler equation is

1

1− v2
(v̇ + vv′) = − 1

2p
(p′ + vṗ) . (109)

We have ε+ p = 2p for the enthalpy density. The energy conservation is

1

2p
(ṗ+ vp′) = − 1

2 (1− v2)

((

v2
)

˙+ v
(

v2
)

′
)

− v′, (110)

or in another form
1

1− v2
(v′ + vv̇) = − 1

2p
(ṗ+ vp′) . (111)

We used the fact that in d = 1 dimensions (∇v) = v′ simply. Taking a proper linear

combination of eqs. (109) and (111) we have the following:

1

1− v2
v′ = Ω′ = − 1

2p
ṗ, (112)

1

1− v2
v̇ = Ω̇ = − 1

2p
p′. (113)

Here we again used the Ω = arctanhv notation. These equations are analogous to the

Cauchy-Riemann equations known in complex analysis, and the general solution of them

is easily written down: it contains two arbitrary functions, F (t + r) and G (t− r), one for

each direction of wave-propagation:

Ω (t, r) =
1

2
{G (t− r) + F (t + r)} , (114)

ln(p (t, r) /p0) = {G (t− r)− F (t+ r)} . (115)

Thus this case is a particular one: the general solution of the relativistic hydrodynamical

equations is found, and then it can be easily fitted to a given initial condition. If we prescribe

p (t(r), r) and Ω (t(r), r) on some t = t(r) Cauchy hypersurface, then the proper F and G

functions can be found as detailed below, and then the solution of the initial value problem

is that the two wave-shapes propagate in the opposite direction. As a first example, let us

consider the Ω = λη solution presented in the body of the paper. It can be easily verified,

that the following F and G functions indeed yield it:

F (t+ r) = λ ln

(

t+ r

τ0p
−1/2λ
0

)

, (116)

G (t− r) = − λ ln

(

t− r

τ0p
−1/2λ
0

)

. (117)
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To simplify the presentation of the general case, let us introduce

Π(t, r) =
1

2
ln(p (t, r) /p0), (118)

and give the initial boundary conditions in the form of three functions, the Cauchy hyper-

surface t0(r), the initial velocity field v = tanh(Ω) given by the form of Ω(t0(r), r) and the

initial pressure distribution is given by p = p0 exp(2Π(t0(r), r).

Let us introduce the positive and the negative light-cone coordinates on the initial Cauchy

hypersurface as

x±(r) = t0(r)± r. (119)

It is important to assume, that on the Cauchy hypersurface, these relations can be inverted,

and r can be expressed as a function of both the positive and the negative light-cone coor-

dinates:

r = f(x+), (120)

r = g(x−). (121)

For example, if the initial Cauchy hypersurface is given by τ = τ0 = const, then the equation

of this hypersurface in time and coordinate is t0(r) =
√

τ 20 + r2 and the relation between

the coordinate r and the light-cone coordinates,

x±(r) = t0(r)± r =
√

τ 20 + r2 ± r, (122)

which relations can be inverted as

r = f(x+) =
x+

2
− τ 20

2x+
, (123)

r = g(x−) = −x−

2
+

τ 20
2x−

. (124)

Then the general solution of the hydrodynamical equations in this case simplifies in terms

of Ω and Π to the following relations:

Ω(t, r) =
1

2
[Ω(t0(f(t+ r)), f(t+ r)) + Ω(t0(g(t− r)), g(t− r))] + (125)

+
1

2
[Π(t0(f(t+ r)), f(t+ r))− Π(t0(g(t− r)), g(t− r))] , (126)

Π(t, r) =
1

2
[−Ω(t0(f(t+ r)), f(t+ r)) + Ω(t0(g(t− r)), g(t− r))]− (127)

−1

2
[Π(t0(f(t+ r)), f(t+ r)) + Π(t0(g(t− r)), g(t− r))] . (128)
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A by-product of the treatment of this Appendix is, that any 1 + 1 dimensional relativistic

hydrodynamical solution with ε = p EoS (including our one presented in the body of the

paper, with Ω = λη) is always stable in terms of Ω and Π: if there is a perturbation in the

initial condition for Π and Ω, then this perturbation propagates in both directions, but it

does not grow exponentially. It is interesting to contrast this behaviour, the stability of our

solutions in terms of rapidity and logarithmic pressure, to the numerically found instability

of the famous Landau-Khalatnikov solution for the perturbation of their initial conditions.

Such a stability of our new, general solutions makes them particularly attractive for testing

various algorithms that integrate the solutions of relativistic hydrodynamics numerically.
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