88 research outputs found

    Physicochemical characterization of starch from various varieties of sweet potato (Ipomoea batatas)

    Get PDF
    The physicochemical characteristics offive sweet potato varieties were studied and compared to potato starch. The parameters studied were starch yield, amylose content, proximate content, swelling power and solubility and yneresis. The starch content offive sweet potato varieties ranged between 23.21Yrr 29.7% The Ipomoea batatas variety 4 gave the highest yield of starch (29.7%) while Ipomoea batatas variety 3 gave the lowest yield (23.2%). The amylose contents ranged between 20. J3lYrr 25.73% Amylose content of Ipomoe~ batatas variety 5 was the highest (25.73%) while starch from Ipomoea batatas showed the lowest amylose content (20.13%). The moisture contents ranged were 8. 761Yrr9. 05% The moisture content of Ipomoea batatas variety 4 was the highest (9.05%) and the lowest was Ipomoea batatas variety 1 (8.76%). The ash content varied between 0.47IYrrO.52% Ipomoea batatas variety 3 showed the highest ash content (0.52%) and the lowest ash content was found for Ipomoea batatas variety 4 (0.47%). The lipid content varied between o. 091YrrO. 12% Ipomoea batatas variety 2 gave the highest lipid content (0.12%) while the lowest was found for Ipomoea batatas variety 3 (0.09%). The protein contents were in the range of o. 171YrrO. 19% Ipomoea batatas variety 4 gave the highest protein content (0.19%) while Ipomoea batatas variety 1 gave the lowest protein content (0.17%). The swelling power ofIpomoea batatas variety 3 starch was the highest among all samples of sweet potato starches at all the temperature ranged studied while Ipomoea batatas variety 5 showed the lowest swelling power. For solubility, it was found that Ipomoea batatas variety 5 showed the highest solubility and the lowest wasfoundfor Ipomoea batatas variety 3 at all the temperature ranged studied. Syneresis for Ipomoea batatas variety 5 starch was the highest while Ipomoea batatas had the lowest value ofsyneresis tendency among the sweet potato starches studied

    FAM161A, associated with retinitis pigmentosa, is a component of the cilia-basal body complex and interacts with proteins involved in ciliopathies

    Get PDF
    Retinitis pigmentosa (RP) is a retinal degenerative disease characterized by the progressive loss of photoreceptors. We have previously demonstrated that RP can be caused by recessive mutations in the human FAM161A gene, encoding a protein with unknown function that contains a conserved region shared only with a distant paralog, FAM161B. In this study, we show that FAM161A localizes at the base of the photoreceptor connecting cilium in human, mouse and rat. Furthermore, it is also present at the ciliary basal body in ciliated mammalian cells, both in native conditions and upon the expression of recombinant tagged proteins. Yeast two-hybrid analysis of binary interactions between FAM161A and an array of ciliary and ciliopathy-associated proteins reveals direct interaction with lebercilin, CEP290, OFD1 and SDCCAG8, all involved in hereditary retinal degeneration. These interactions are mediated by the C-terminal moiety of FAM161A, as demonstrated by pull-down experiments in cultured cell lines and in bovine retinal extracts. As other ciliary proteins, FAM161A can also interact with the microtubules and organize itself into microtubule-dependent intracellular networks. Moreover, small interfering RNA-mediated depletion of FAM161A transcripts in cultured cells causes the reduction in assembled primary cilia. Taken together, these data indicate that FAM161A-associated RP can be considered as a novel retinal ciliopathy and that its molecular pathogenesis may be related to other ciliopathie

    Identification of a novel homozygous nonsense mutation in EYS in a Chinese family with autosomal recessive retinitis pigmentosa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retinitis pigmentosa is the most important hereditary retinal degenerative disease, which has a high degree of clinical and genetic heterogeneity. More than half of all cases of retinitis pigmentosa are autosomal recessive (arRP), but the gene(s) causing arRP in most families has yet to be identified. The purpose of this study is to identify the genetic basis of severe arRP in a consanguineous Chinese family.</p> <p>Methods</p> <p>Linkage and haplotype analyses were used to define the chromosomal location of the pathogenic gene in the Chinese arRP family. Direct DNA sequence analysis of the entire coding region and exon-intron boundaries of <it>EYS </it>was used to determine the disease-causing mutation, and to demonstrate that the mutation co-segregates with the disease in the family.</p> <p>Results</p> <p>A single nucleotide substitution of G to T at nucleotide 5506 of EYS was identified in the Chinese arRP family. This change caused a substitution of a glutamic acid residue at codon 1,836 by a stop codon TAA (p.E1836X), and resulted in a premature truncated EYS protein with 1,835 amino acids. Three affected siblings in the family were homozygous for the p.E1836X mutation, while the other unaffected family members carried one mutant allele and one normal EYS allele. The nonsense mutation p.E1836X was not detected in 200 unrelated normal controls.</p> <p>Conclusions</p> <p>The <it>EYS </it>gene is a recently identified disease-causing gene for retinitis pigmentosa, and encodes the orthologue of <it>Drosophila </it>spacemaker. To date, there are only eight mutations in <it>EYS </it>that have been identified to cause arRP. Here we report one novel homozygous nonsense mutation of <it>EYS </it>in a consanguineous Chinese arRP family. Our study represents the first independent confirmation that mutations in <it>EYS </it>cause arRP. Additionally, this is the first <it>EYS </it>mutation identified in the Chinese population.</p

    Two Novel Mutations in the EYS Gene Are Possible Major Causes of Autosomal Recessive Retinitis Pigmentosa in the Japanese Population

    Get PDF
    Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease including autosomal recessive (ar), autosomal dominant (ad), and X-linked inheritance. Recently, arRP has been associated with mutations in EYS (Eyes shut homolog), which is a major causative gene for this disease. This study was conducted to determine the spectrum and frequency of EYS mutations in 100 Japanese arRP patients. To determine the prevalence of EYS mutations, all EYS exons were screened for mutations by polymerase chain reaction amplification, and sequence analysis was performed. We detected 67 sequence alterations in EYS, of which 21 were novel. Of these, 7 were very likely pathogenic mutations, 6 were possible pathogenic mutations, and 54 were predicted non-pathogenic sequence alterations. The minimum observed prevalence of distinct EYS mutations in our study was 18% (18/100, comprising 9 patients with 2 very likely pathogenic mutations and the remaining 9 with only one such mutation). Among these mutations, 2 novel truncating mutations, c.4957_4958insA (p.S1653KfsX2) and c.8868C>A (p.Y2956X), were identified in 16 patients and accounted for 57.1% (20/35 alleles) of the mutated alleles. Although these 2 truncating mutations were not detected in Japanese patients with adRP or Leber's congenital amaurosis, we detected them in Korean arRP patients. Similar to Japanese arRP results, the c.4957_4958insA mutation was more frequently detected than the c.8868C>A mutation. The 18% estimated prevalence of very likely pathogenic mutations in our study suggests a major involvement of EYS in the pathogenesis of arRP in the Japanese population. Mutation spectrum of EYS in 100 Japanese patients, including 13 distinct very likely and possible pathogenic mutations, was largely different from the previously reported spectrum in patients from non-Asian populations. Screening for c.4957_4958insA and c.8868C>A mutations in the EYS gene may therefore be very effective for the genetic testing and counseling of RP patients in Japan

    A novel locus (CORD12) for autosomal dominant cone-rod dystrophy on chromosome 2q24.2-2q33.1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rod-cone dystrophy, also known as retinitis pigmentosa (RP), and cone-rod dystrophy (CRD) are degenerative retinal dystrophies leading to blindness. To identify new genes responsible for these diseases, we have studied one large non consanguineous French family with autosomal dominant (ad) CRD.</p> <p>Methods</p> <p>Family members underwent detailed ophthalmological examination. Linkage analysis using microsatellite markers and a whole-genome SNP analysis with the use of Affymetrix 250 K SNP chips were performed. Five candidate genes within the candidate region were screened for mutations by direct sequencing.</p> <p>Results</p> <p>We first excluded the involvement of known adRP and adCRD genes in the family by genotyping and linkage analysis. Then, we undertook a whole-genome scan on 22 individuals in the family. The analysis revealed a 41.3-Mb locus on position 2q24.2-2q33.1. This locus was confirmed by linkage analysis with specific markers of this region. The maximum LOD score was 2.86 at θ = 0 for this locus. Five candidate genes, <it>CERKL</it>, <it>BBS5, KLHL23, NEUROD1</it>, and <it>SF3B1 </it>within this locus, were not mutated.</p> <p>Conclusion</p> <p>A novel locus for adCRD, named <it>CORD12</it>, has been mapped to chromosome 2q24.2-2q33.1 in a non consanguineous French family.</p

    Molecular Anthropology Meets Genetic Medicine to Treat Blindness in the North African Jewish Population: Human Gene Therapy Initiated in Israel

    Get PDF
    Abstract The history of the North African Jewish community is ancient and complicated with a number of immigration waves and persecutions dramatically affecting its population size. A decade-long process in Israel of clinicalmolecular screening of North African Jews with incurable autosomal recessive blindness led to the identification of a homozygous splicing mutation (c.95-2A &gt; T; IVS2-2A &gt; T) in RPE65, the gene encoding the isomerase that catalyzes a key step in the retinoid-visual cycle, in patients from 10 unrelated families. A total of 33 patients (four now deceased) had the severe childhood blindness known as Leber congenital amaurosis (LCA), making it the most common cause of retinal degeneration in this population. Haplotype analysis in seven of the patients revealed a shared homozygous region, indicating a population-specific founder mutation. The age of the RPE65 founder mutation was estimated to have emerged 100-230 (mean, 153) generations ago, suggesting it originated before the establishment of the Jewish community in North Africa. Individuals with this RPE65 mutation were characterized with retinal studies to determine if they were candidates for gene replacement, the recent and only therapy to date for this otherwise incurable blindness. The step from molecular anthropological studies to application of genetic medicine was then taken, and a representative of this patient subgroup was treated with subretinal rAAV2-RPE65 gene therapy. An increase in vision was present in the treated area as early as 15 days after the intervention. This process of genetically analyzing affected isolated populations as a screen for genebased therapy suggests a new paradigm for disease diagnosis and treatment

    Mutation Screening of Multiple Genes in Spanish Patients with Autosomal Recessive Retinitis Pigmentosa by Targeted Resequencing

    Get PDF
    Retinitis Pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterised ultimately by the loss of photoreceptor cells. RP is the leading cause of visual loss in individuals younger than 60 years, with a prevalence of about 1 in 4000. The molecular genetic diagnosis of autosomal recessive RP (arRP) is challenging due to the large genetic and clinical heterogeneity. Traditional methods for sequencing arRP genes are often laborious and not easily available and a screening technique that enables the rapid detection of the genetic cause would be very helpful in the clinical practice. The goal of this study was to develop and apply microarray-based resequencing technology capable of detecting both known and novel mutations on a single high-throughput platform. Hence, the coding regions and exon/intron boundaries of 16 arRP genes were resequenced using microarrays in 102 Spanish patients with clinical diagnosis of arRP. All the detected variations were confirmed by direct sequencing and potential pathogenicity was assessed by functional predictions and frequency in controls. For validation purposes 4 positive controls for variants consisting of previously identified changes were hybridized on the array. As a result of the screening, we detected 44 variants, of which 15 are very likely pathogenic detected in 14 arRP families (14%). Finally, the design of this array can easily be transformed in an equivalent diagnostic system based on targeted enrichment followed by next generation sequencing

    Nuclear Receptor Rev-erb Alpha (Nr1d1) Functions in Concert with Nr2e3 to Regulate Transcriptional Networks in the Retina

    Get PDF
    The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function
    corecore