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THREE-DIMENSIONAL ANALYSIS OF

SURFACE CRACK-HERTZIAN STRESS FIELD INTERACTION

R. Ballarini and Y. Hsu

Dept. of Civil Engineering

Case Western Reserve University

Cleveland Ohio

SUMMARY

This thesis presents the results of a stress intensity factor analysis of

semicircular surface cracks in the inner raceway of an engine bearing. The loading

consists of a moving spherical Hertzian contact load and an axial stress due to

rotation and shrink fit.

A three dimensional linear elastic Boundary Element Method code was

developed to perform the stress analysis. The element library includes linear and

quadratic isoparametric surface elements. Singular quarter point elements were

employed to capture the square root displacement variation and the inverse square

root stress singularity along the crack front. The program also possesses the

capability to separate the whole domain into two subregions. This procedure

enables one to solve non-symmetric fracture mechanics problems without having to

separate the crack surfaces a priori.

A wide range of configuration parameters was investigated. The ratio of

crackdepth to bearing thickness was varied from one-sixtieth to one-fifth for

several different locations of the Hertzian load. The stress intensity factors for



several crack inclinations were also investigated.

The results demonstrate the efficiency and accuracy of the Boundary

Element Method. Moreover, the results can provide the basis for crack growth

calculations and fatigue life prediction.
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CHAPTER ONE

INTRODUCTION

Surface cracks commonly occur in machine and structural components. An

example of such a component is a rotating engine bearing subjected to roiling

contact. Under high speed rotation and cyclic contact loading, the surface crack

initiating at the raceway of the bearing might propagate and lead to catastrophic

failure. Raceway fracture is a totally unacceptable failure mechanism because it

may cause serious damage to engine operations and consequently produce

catastrophic en_ne failure. An accurate crack stress analysis of the surface-cracked

component is essential in order to make a reliable prediction of fatigue life.

However, due to the complexities of the nature of the surface crack problem,

mathematical closed form solutions are not possible, and a numerical analysis or an

experimental approach must be used to determine the stress intensity factors for

surface cracks under different types of loading. The Boundary Element Method is

an efficient and accurate tool for fracture mechanics analyses if singular elements

and multi-domain crack modeling are employed. This method is used in this

research.

Several factors will affect the growth of surface cracks in a rotational

bearing under rolling contact loads. These include the geomety and inclination of

the crack, the tensile hoop stress due to rotation and shrink fit, the moving Hertzian

load, the pressure of the lubricant seeping into the crack, the shear stress on the

raceway surface due to the sliding contact, and friction along the crack surfaces. A

significant amount of research has been conducted aimed at gaining a better



understandingof theeffectsof eachof thesefactors. While thesurfacecrack is a

three-dimensionalproblem,mostof theanalyseswhichappearin theIiteratureare

two-dimensional.Theseinclude theworkof Way [1], whichconsiderstheeffect

of the lubricant, Flemingand Sub [2,3], which considersthe effectsof surface

friction, Rosenfield[_], which considerstheeffectsof cracksurfacefriction, and

Clark [5], which considersthe effectsof tensilehoopstresses.A recentpaperby

Mendelsonand Ghosn [6] presentsthe resultsof ratine life predictionsof a

propagatingsurfacecracksubjectedto tensilehoop stressesand cyclic Hertzian

contact loadings. Using a modified Forman-typecrack propagationlaw they

predicted the fatigue life of a typical bearingand comparedtheir resuitswith

experimentallyobservedfatigue lives. Their predictionswereconservativeby a

factor of 12. However, they demonstratedthat the crackdriving force in such

problemsis thealternatingmixed-modeloadingthatoccurswitheachpassageof the

roller. Basedon theseresults,thepresentresearchwasaimedat quantifyingthe

th.ree-dimensionaleffectsof the problem. Threedimensionalanalysesof surface

cracksas appliedto contact fatigue wererecentlyperformedby Murakami [7].

However, in his analysis the tensile hoop stresseswereignored. The model

proposedin thepresentresearchne_ectssomeof thefactorsmentionedpreviously.

It is assumedthat lubrication renderssurfacesliding friction negli_ble. The

pressureon thecracksurfaceswhichmayarisefrom thelubricantseepinginto the

crackis i_ored sincetheHertzianloadingmovespastthecrackveryfast,thusthe

viscosity,compressibility,andinertiaof theoil will preventpressurizationof the

crack surfaces[8]. Moreover, sincetheradius of theHertzian contactarea is

smallerthanthesurfacelengthof thecrack,thecrackmouthwill notbecompletely

coveredandtheoil is allowedto squeezeoutof thecrack.The friction between the

crack surfaces is neglected, since it tends to increase the resistance to crack growth.
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Thiswill leadto aconservativepredictionof fatiguelife.

Thus,theonly factors assumed to be important in the present model are the

mechanical loads arising from the Hertzian contact, rotation, and shrink-fit. The

remaining five chapters of this paper are organized as follows:

In Chapter two the boundary integral equation is derived. The equation is

reduced to a system of algebraic equations, and a procedure is described which

treats the singularities which appear in the kernels. An algorithm for multi-domain

analyses is also presented.

Chapter three is a brief review of linear elastic fracture mechanics. The

formation of quarter point elements and traction singular elements as well as the

displacement correlation method for calculating the stress intensity factors are also

discussed. Several verification problems follow in Chapter four to elucidate the

accuracy and efficiency of the Boundary Element Method for solving three

dimensional linear elastic solid mechanics problems including crack stress analysis.

In Chapter five, the spherical Hertzian stress distribution and the hoop

tensile stress due to the rotation and shrink fit of the inner raceway of the engine

bearing are calculated. Results are presented for a wide range of configuration

parameters. These include several different locations of the Hertzian load, different

inclinations of the crack surface, several ratios of the crack depth to the raceway

thickness and different intensities of the Hertzian load. A large number of the stress

intensity factor versus these factors are presented.

3



The final chapter presents a discussion of the results and recommendations for

future research.
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CHAPTER TWO

BOUNDARY ELEMENT METHOD

This chapter reviews the development of the Boundary Element Method and

presents a detailed derivation of the boundary integral equation. The procedures of

numerical implementation and a multi-domain technique of the Boundary Element

Method are also illustrated.

2.1 Introduction

The boundary integral equation was first derived explicitly by Rizzo [9],

who reduced two dimensional isotropic elastostatics problems to an integral

equation by using the Betfi-Somigliana formula. The equation was then discretized

into line segments along the boundary over which constant displacement and

traction distributions are assumed to solve the elastic problem numerically.

Although much of the mathematical theory of Rizzo's formula can be traced to

Kupradze [10], and severn papers about integral equation methods such as Jawson

[ll] and Symm [12], his work presented a clear form of the inte_al equation

relating the boundary traction and displacement which is now commonly associated

with the term " Boundary Integral Equation". Following Rizzo's work, Cruse [13]

extended the Boundary, EIement Method to three dimensional isotropic elastic

problems by using trian_lar elements with linear variations. The accuracy of the

Boundary Element Method was later improved by Lachat and Watson [14.], and

Rizzo and Shippy [15] using higher order isoparametric elements. The application

of the Boundary Element Method to fracture mechanics was carried out by Cruse

[13], [16] by modeling the crack as an open notch. The results obtained using this



approachtend to beinaccuratebecauseasthecrackssurfacesaremovedcloseto

eachotherthesystemof equationsbecomessingular. Thisproblemwasremedied

by Blandford et al. [17], who usedtwo subregionsto model the crack. The

quarter-pointtechniquedevelopedfor theFiniteElementMethodbyBarsoum[18]

wasadoptedandmodified by Cruseand Wilson [19] to capturethe squareroot

singularitypredictedby linearelasticfracturemechanics.

The BoundaryElementMethoddevelopedin thispaperutilizesfour kinds

of isoparametricsurfaceelements:a three-nodelinear triangularelement,a four-

nodelinearquadrilateralelement,asix-nodequadratictriangularelement,andeight-

nodequadraticquadrilateralelement.A libraryof Gaussianintegrationquadrature

is installed in a subroutine which can be used to accomplish the numerical

integration.Thequarterpointelementandthetractionsingularelementareusedin

theprogramto representthecracktip singularity. Themulti-domaintechniqueis

alsoappliedto modelthetopology.

2.2Derivationof BoundaryIntegralEquation

Themathematicalfundationsof theboundaryintegralequationarebasedon

theKelvin solutionandBetti'sreciprocaltheorem[20].

Let P andQ be two arbitrarypoints in an infinte elasticbody asshownin

Fig 2.1. A unit concentratedloadactingatpointP in i directionisdefinedas



n

Infinite elasticbody

Figure2.1DomainandBoundaryGeometry



fi (P,Q)=8(P,_ ei

whereei is theunit vectorin i dii=_cdonand8(P,Q)is theDiracdeltafunctionwhich

is definedas a function that is equalto zerofor Q doesnot coincidewith P and

becomesinfinite whenP=Qin suchmannerthat

for anypoint P which liesin domainf2. Thedisplacementin directionj atpoint Q

due to aunit concentratedload appliedin directioni atpointP in aninfinte linear

elasticbodyis g'ivenbyKelvin's solution[21]

uj - Uij(P,Q) ei (2.I)

where

Uij(P,Q)_. 116xg(1-v)r [ ( 3-4v)SiJ+r'ir'j] (2.2)

andei is thecomponentof theunit basevectorin directioni, g is shearmodulus,v



is Poisson'sratio, and r is thedistancebetweenpoint P andpoint Q. Notethat

(2.3)

and

a2r _ 1 ( 8ij . r,ir,j ) (2._-)r'ij = ax.ax. - 7"
j 1

where 8ij is the Kmnecker delta which is equal to 1 when i = j and 0 when i _=j and

comma i denotes partial differentiation with respect to direction xi. Cartesian tensor

notation is used hereinafter with all the subscripts ranging from 1 to 3 and the

convention that repeated indices are summed is employed. The stress-strain relation

for an isotropic linear elastic material is [22]

ojk = 2p. ej_ + _.Sjk arm (2.5)



andthestrain-displacementrelationis

1
_k =y(Uj,k +%,j) (2.6)

The stress-displacement relationship for an isotropic elastic material are obtained by

substituting Eq.2.6 into Eq.2.5, i.e.

ajk = kSkUm'm + l.t( uj.k+ th. j) (2.7)

where _. = vE , and E is Young's Modulus
(l+v)(1-2v)

Substituting Eq.2.1 into Eq.2.7, the stress field can be obtained as

Dijx(P,Q)= ;L_k Uma,m(P,Q) + g(Uij._(P,Q)+ u_,j(P,Q))

__ -I {(1-2v)(r@ki +r,kSij-r,iSjk) + 3r, ir,jr,k}
8_(i-v)_

(2.8)
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whereDijk (P,Q)is interpretedasthestresscomponent_jk atpointQdueto a unit

load in the i direction at point P. If point Q is put on the boundary r" of a finite

body with domain f2 cut out from the infinite body,as shown in Fig.2.1, the

tractions at point Q on the surface can be determined as

tj =  jknk (2.9)

where n k is the kth component of the outward normal to the surface at point Q.

Substitution of Eq.2.8 into Eq.2.9 Ieads to

T_j(P,Q) = Dijk(P.Q)nk(Q)

8_:(l-v)_

where Tij(P,Q) is the traction at point Q in direction j on the surface with outward

normal n k due to a unit load in direction i at point P. The free body cut out from the

infinite body forms an equilibrium state subjected to the concentrated unit force

fj(P,00 and the boundary tractions Tij(P,OOe i with the corresponding boundary

displacement Uij(P,O0e i. Betti's reciprocal theorem can now be applied to derive

the boundary integral equation. Suppose that there are two generalized force

11



systems. The first system includes body forces bj, surface tractions tj and

displacements uj , and the second one consists of body forces bj*, boundary

tractions tj* and displacements uj*. If these two systems act simultaneously on ._

linear elastic body with domain fl enveloped by the boundary surface F, Betti's

reciprocal theorem states that [23]

ftj u:dFj + JJJfb'u:dfl= ft'j u.dFj + JJ[b:u.d.Qj

F _ F fl

(2.11)

That is, the work done by the forces of the first sysmm with the displacements of

the second system is equal to the work performed by the forces of the second

system on the displacements produced by the first system. Now let the Fast system

be the one we are seeking a solution to with the assumption that the body forces are

neglected and let the second system correspond to the fundamental solutions for the

traction and displacement due to a unit concentrated load fj in an infinite body, as

shown in Fig.2.2. That is,

b.=O
J

t. =5(00J

uj=4(00

b: = f. = 8(P,Q)e.
J J J

t_ = Tij(P,Q) e i

u.*.I = Uij(P'Q) ei (2.12)

12



(a)

(b)

prescribed

tj

r P

_n

Prescribed
U.

j t.j = Tij (P,Q) e i

)
n

uj= .. ,Q) ei

Figure 2.2 GeneralizedForce Systems: (a) First System with Traction tj and

Displacement u j (b) Second System of Kelvin's Solution
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Substitution of Eq.2.12 into Eq.2.11, leads to the following equation

r r a (2.13)

Noting that

S(P,Q)ejuj(Q)d.Q(Q) = uj(P) ej = uj(P)_Sij e i (2.14)

and using Eq.2.14, Eq.2.13 can be rewritten as

f U_j(P,OD_(Q)_(Q)e_=fT_j(P,Q)_(Q)dF(Q)e_+ _jujfP)e_
r r

(2.15)

or

14



F F

(2.16)

So far the point P is inside the boundary F. In Order to have the equation relate

only the points on the boundary surface F, we need to move the point P toward the

surface. However, due to the singular nature of the kernels Uij(P,Q) and Tij(P,Q)

as r tends to zero, a limiting process must be employed in order to obtain the

boundary integral equation. Let us f'n'st choose a new boundary

r" n = F_+ F¢

where I"e is a surface of semi-spheric shape and F. is the rest of the surface as

shown in Fig.2.3. 1"e should envelop the point P such that P is still in domain f2

and thus Eq.2.16 is still available. With the new boundary, Eq.2.16 now becomes

F. r_

F. re

(2.17)

15



As £ tends to zero, the boundary F becomes the original boundary F. We also note

that when point Q is within the re,on Fg we have

dF(Q) = e2sinO dO dq_

r=£

r, i = ni

sine cos
= sin0 sin

cos0

nkr, k = 1

r, i nj - r,j ni = 0

tj(Q)=tj(P)and uj(Q) = uj(P)
(2.18)

where tj(P) and uj(P) are the tractions and displacements at point P which are

constants over the surface of the sphere as e tends to be zero. Substituting these

relations into Eq.2.17. the second term on the fight hand side of Eq.2.17 becomes

f Uij(P,Q)tj(Q)dl"(Q)=f f, 1 [(3-4v) 8ij+ninj] £2sin@d@dCtj (P'16=_(1-v)e
F_ 0 0

= 16_l.t(1-v)_tJ(P)fj_ (3_4v)_ij+ninjlsin0d0d_

00

(2.19)

16



n

n
. m

Figure 2.3 Domain and Boundary Used forLimiting Process
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As e _ 0, the limit of the second integral on the right hand side of Eq. 2.17

becomes

fu j(P,Q)tj(OOar(O3=o
F¢

(2.20)

The integral of Eq.2.19 is no longer singutar and thus Eq.2.20 tends to be zero as e

is approaching zero. As for the fourth term on the fight hand side of Eq. 2.17

fTij(P,Q)uj((_dy(Q)=ff ' -1 [(1_2v)6ij + 3 ninj] 82sin0dOd(_uj (p)
8=(I-v)E 2

F_ 0 0

8_(1-v)
00

(2.21)

Substituting Eq.2.18 into Eq.2.21 leads to a matrix expression for the kernel inside

the integration and taking the limit as e approaching zero

18



$§

limll Tij(P,Q)uj(Q)ds(Q)_--_0

O0

•_ #(1-2v)+3sin2ecos2q), sin2Osin4_cosq}, sinecosecosq)] Ul (P_

_ -u](P) [[i sin2Osin_osq), (1.2v)+3sin2esin2@ ' sinecose sin¢I u=(P)I
8_(1-v) jj 2

o o Lsmocosecos(L smOcosOsin¢, (1-2v) + 3cos OJb(P _

smedOd_

(2.22)

The integral ranges will depend on the local geometry of the point P. If point P lies

on a smooth surface,

e=T =a $=2=

and each term inside the matrix in Eq.2.22 becomes

_m ITij(P,Q)u](Q)dI'(Q) o,o fo1 ,o, T'

_ JL_e)_lO, O, T

(2.23)

19



or in Cartesiantensorform

lira Tij(P'O)uj(O)dl-(O)"_ "-" ""= 2 ijj--u'(P)e "-'_0

1"e

(2.24)

Substituting Eq.2.20 and Eq.2.24 into Eq.2.17 leads to the boundary inte_al

equation for P lying on a smooth surface

r" r"

(2.25)

If P is not on a smooth surface, the boundary integral equation is

F F

(2.26)

where

20



Ci](P)uj(P) = 8ij+ IE__oim ITi](P,Q)dl-(Q)

F_

(2.27)

which is only a function of the local geometry in the vicinity of point P. The

integration in Eq.2.27 can be carried out by using Eq.2.22 with the appropriate

integral range according to the local configuration of point P. The Cij(P,Q) can also

be calculated from the concept of rigid body motion[24]. When the body

undergose a rigid body translation, the surface is free of traction and the

displacement is an arbitrary constant. By setting

5(O3= o

uj(Q) = constant

Eq.2.26 becomes

C_](P) = -IT_j(P,Q) dF(Q)

F

(2.28)

Comparing Eq.2.27 and Eq.2.28, it is apparent that the former depends on the local

21



geometry of each point and is different point to point. Thus it is very tedious to

calculate. On the other hand, the latter is an integration on the whole boundary

surface with a different kernel function and is easy to calculate for different points

on the boundary. In fact, Eq.2.28 is merely a by-product of the second term on the

right hand side of Eq.2.26 when it is carried out by numerical integration method.

Therefore, with little effort, the term Cij(P ) can be easily obtained. Eq.2.28 is thus

adopted in this paper to calculate the Cij(P) term.

Eq.2.26 is also known as Somigliana's identity for three dimensional linear

elastostatics with zero body force. In a well-posed boundary value problem, either

traction or displacement in a direction on a boundary will be prescribed. Therefore,

any corresponding unknown value on the boundary can be solved by the boundary

integral equation of Eq.2.26.

After the unknown boundary tractions and/or displacements have been

solved, the displacement of any point inside the body can be solved by Eq.2.16

from the boundary data. In order to obtain the stresses for the interior points,

Eq.2.16 is differentiated and substituted into Eq.2.7. This resuhs in

F F

(2.29)

22



where

Dijk(P,Q) = %SjkUim,m(P,Q) + _.[Uij,k(P,Q) + U_,j(P,Q)]

8ll:(l-v)r2-I [(l.2v)(r,j_ki+ r,k_ij-r,iSjk)+ 3 r,ir,jr,k]
(2.30)

and

Sijk(P,Q) = LSjkTim,m(P,Q) + I.t[Tij,t(P,Q) + Twj(P,Q)]

_ E { 3nmr,m[(1-2v)r, iSjk+ 5
81(1-v2)r 3 v(r'jSki+r'kSiJ)" r'ir'jr'k]

+3v(njr._+nkr,j)r u + (1-2v)(3nir,z,k+ njSti+nk8ij)

- (1-4v)niS.t } (2.31)

23



2.3NumericalImplementationof BoundaryIntegralEquation

Owing to thedifficultiesof solvingtheboundaryintegralequanonin closed

form for practicalproblemswith complicatedgeometriesandboundaryconditions,

it is necessaryto solvetheboundaryintegralequationnumerically.

Theproceduresfor obtaininganumericalsolutionof thethreedimensional

boundaryintegral equationstartsoutwith a discretizationof theboundarysurface

1"intom piecewiseisoparametricsurfaceelements.Suchelementshavebeenwell

developedfor theFiniteElementMethod[25]. Eachelementconsistsof nm nodes,

thenumberdependingon whatkind of interpolationis employedin eachelement.

The elementsimplementedin thepresentwork includethree-nodelineartriangular

elements,four-node linear quadrilateralelements,six-nOdequadratictriangular

elements,andeight-nodequadraticquadrilateralelements.Theshapefunctionsfor

the isoparametricelementsarederivedin AppendixA. Thecartesiancoordinateof

eachnodeis_ven by

xt --_N_X(_)x?t (2.32)

wherexiCtis the i - Cartesiancoordinateof nodeor,Na(_) is theshapefunctionfor

node a which is a polynominal function of intrinsic coordinates _ = ( _1,_2 )"

Eq.2.32 represents a one-to-one mapping of any point on the element from the

24



three dimensionalCatesiancoordinatespaceinto the two dimensional(qI,_2)

coordinate system,asshown in Fig.2.4. The isoparametricelementsalso use

identical shapefunction to interpolateany function on the element,suchasthe

displacementsandtractionsin theBoundaryElementMethod.Symbolically,

n_

= Z N°_(_) u °_
Ui a= 1 i

n_

t. = z N'_(_)t? (2.33)
I C_=I i

where uia, ti °_ are the nodal values of displacement and tractions, respectively. By

discretizing the surface F into m segments and utilizing the shape function,

Eq.2.26 becomes

c._.u?=_ z _))N=({)J_(_)_({)
*J J l=lcz=l

FI

E Y., (P,Q({))N=({) ({)dF({)u l
1=1_=1

F1

, P not summed (2.34)

where CijP and uj p stand for the coefficients Cij and displacement in j-direction of

nodal point P, respectively. The integral over the whole surface is carried out by

summing up the integral over each element surface F I . The ticd and uiCd is the

25



_2 3

2

1

4

8

1

_2

7

P

5 2

X

_2

=I _I 2

5

3 6 i = _i

Figure 2.4 Mapping ofIsopammetric Elements
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traction and displacement in i-direction of node o_ in element I. The term Jl(_) is

the determinant of the Jacobian matrix of element i deduced from the change of the

integration variables from the Cartesian coordinate to the intrinsic k-coordinate

system. It is found to be

8x2 Ox2

n= 0N ({1,{2) n_ 0N ({1,{_)v al - al

_=t_ 0_1 xl '_t 0_2 xl

_1 0{1 x2 '_1 0_2 x:

(2.35)

Similar3,, Eq.2.28 is rewritten as

C_,J='1=_t IT_J(P'Q({))J_ ({)dF({) (2.36)

I"1

A Gaussian quadrature scheme can now be applied to accomplish the integration.

For the case when the point P is not on the element which is being integrated over,

the Gaussian quadranxm is straight forward, that is,

27



f n, % wlw2urll(e'_l'_2)_pl(p,_)dr(_)=E1bE'===' • b • b

Ft

(2.37)

where

or

_PI(P,_) = Uij(P,Q(_))N°t(_)JI(_)

_(P,_) =Tij(P,Q(_))Na(_)JI(_)

In Eq.2.37 n a and nb are the order of Gaussian quadrature and wla and w2b are

the weights of the corresponding Gaussian integration points {1, {2, respectively.

When point P is one of the nodes of the element under integration, the standard

Gaussian quadrature will not give accurate results because of the 1/r and l/r 2

singularities of UijCP, Q) and Tij(P,Q), respectively. Therefore, special treatment of

this singular integral must be used in order to obtain an accurate solution. The

method employed here follows the work of Rizzo and Shippy [15]. The element is

divided into triangles according to the position of the point P as shown in

Appendix B. Inside each triangle, the {-coordinate system is transformed into a

local polar coordinate system, r and e, and the d{ term in the integral becomes

rdrde. The additional r due to this transformation eliminates the 1/r singularity of

the kernel Uij(P,Q). Gaussian quadrature can then be applied to the polar

coordinate system. Of course, one more transformation is needed to map the r,e

coordinate system to another polar coordinate system r and e so that the range

28



varies from -1 to 1. The details of the procedures are illustrated in Appendix B.

For the integration of the kernel Tij(P,Q), a 1/r singularity remains after the

transformation from the _-coordinate to the polar coordinate. However, by

substituting Eq.2.36 into Eq.2.34, Eq.2.34 can be rewritten as

a. fTii(p,Q (-x u.P
1=l J

FL

Ft

m _ fTij _lr 1E E (P,Q(_))Na(_)u (_)dF(_)
1= tct= I

Ft
(".38)

Distinguish the elements containing point P from those elements without point P for

the integration involving the kernel Tij(P,Q), and Eq.2.38 becomes

1=l

FI

= E E (P,Q(_))N a (_)dY(_)-
i=i_=I

Ft

l=lOt=l

FI

- X; .X Q(_))N=(_) _)dY'(_)+
I= la= l I

I"t

f Tij(P,Q(_) )Jt(_)dY(_) u

Ft

(2.39)
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where m x is the total number of the elements excluding point P and mp is the total

number of the elements including point P. Obviously, m = m x + rap. Combining

the last two terms on the right hand side of Eq.2.39, results in

ij j

E 2 _))Na(_)J'l(_)dl-(_) '- Z _))NCt(_)J'l(_)di'(_)u I1= let= 1 1=l_t= 1

Ft F1

.[- l=Zt.=Z1 Tij (P'Q(_))(Na(_)

1-l

(2.40)

where

F_

(2.41)

Eq.2.41 is the negative of the integral of the kernel Tij(P,Q) over the elements

which do not contain the point P, hence, Eq.2.41 is no longer sing-ular. As for

Eq.2.40, the remaining 1/r singularity of the kernel Tij(P,Q) is removed by the

special shape function Net({) - 8c_P in the last term on the right hand side of

equation because when c_ coincides with point P ,the constant term is eliminated
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andthusthesmallestorderof the shapefunctionis of orderr. Thisaddkionalr can

cancelthe 1/r singularity after thecoordinatehasbeentransformedinto the local

polar coordinate. Using this proceduresall the singularitiesareeIiminatedand

Gaussianquadraturecanbeused.

Eq.2.40representsan equationat eachdiscretepoint P on the boundary

surfaceconstrainingtheboundarydisplacementsandboundarytractionsin the i-

direction. For asurfaceincludingN nodes,Eq.2.40canbeexpressedas

p p[ i 2 u_ I 2 N

.....i

/

(2.42)

n

where each term of Tij for node n is the integration summed up from the

contribution of the elements which share the same node n. The same applies for

n

Uij . Eq.2.42 can be rewritten as

o-i J-_o_ (2.43)
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This equation can be expressed more simply by combining the fl.rst term into the

summation on the left hand side, i.e.,

N N
Z T[nu. n = Z U:._t.n (2.44)

n= 1. U J n= 1 U J

where

(2.a.5)

Another way of dealing with the singularity which is worthy to mention here is

through the use of rigid body motion. For a rind body motion in direction j,

Eq.2.44 reduces to

N
Z T:.n = 0 (2.46)

n=l 1J

This indicates that the sum ofTij *n from each node in a row for certain direction j

should be zero. Hence the value of the singular term Tij*P when n = P can be
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easilycalculatedonceall theothertermsareknown,thatis,

T;P=- TF
_J n= I q

n_P

(2.47)

For three dimensional problems the indices i and j range from 1 to 3. Therefore,

for a surface including N nodes, the dimension of the total algebraic system of

equations formed by Eq.2.,_t for each node in each direction is 3Nx3N. The

system can be represented in matrix form as

T*u = U*t (2.,*8)

The matrixesT* and U* are rearrangedby interchangingthesuitablecolumns on

each sideof equation so thatallthe unknown variablesarccontainedina column

vectorx and alltheprescribedvaluesof theboundary areincludedinthecolumn y

on theothersideof theequation. Symbolically,

Ax = By = f (2.49)

The system of equations can now be easily solved by the Gaussian elimination

method.
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After all theboundarydataareobtained,thedisplacementsandstressesat

interiorpointsaresolvedby substitutingtheboundarytractionsanddisplacements

into Eq.2.16andEq.2.29,respectively,andusingtheshapefunctionsto carryout

the integration.

2.4SubregionTechnique

Since the boundary integral equationis a constraintrelation between

boundarytractionsandboundarydisplacementswith thekernel functionswhich

include the term 1/r and 1/r2, any two distinct points on the boundarycan not

coincide. Thereforeproblemsfor whichthe boundaryincludestwo contacting

surfacescannot besolvedby theBoundaryElementMethodusingasingleregion.

Partitioning the whole boundaryinto subregionsis necessaryto dealwith such

problems.

Considerfor simplicity the casewherethe body is partitionedinto two

subregions.Similar procedurescanbe followed to separatethebody into more

than two regions. A body with domainf2 surroundedby the boundary1"is

partitionedinto two subre_ons;oneconsistsof domainf21andboundaryF1 and

the otherpossessesthe domain f22 andboundaryF2, aswasshownin Fig.2.5.

The tworegionssharethesameinterfaceFi. Eachsubregioncanbe treatedasan

independentbody. Thus the proceduredescribedin Section2.1canbeusedto
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5

Figure 2.5 Domain Divided into Two Subregions
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form the system of algebraic equations for each subregion. Before the compatibility.

and equilibrium conditions are enforced along the interface between two

subre_ons, the corresponding columns of the matrix U* of unknown tractions and

the corresponding columns of the matrix T* of known displacements in Eq.2.48

must be interchanged so that all the known and unknown variables will be at the

same side of the equations. Let A s and B s be the kernel matrices related to the

unknown column vectors UkeS and KeS on the external surface of region s after

rearrangement. Furthermore let ti s, uiS be the unknown tractions and unknown

displacements on the interface of region s. The system of equations for subre_on

one can be expressed as

LA I

m

u

r3 =
1

m

B 1

m

1

m

u1
t

(2.50)

After pre-multiplying each side by the inverse orB 1, Eq.2.50 becomes

1
D_

I31
is

1
13ei

i31
ii I b.

m

w

u.1
l

m

(2.51)
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whereD1= B1"1 A1. By thesameprocedurethesystemfor thesecondsubregion

becomes

D2
ie

D 2"

11 (2.52)

Enforcing the compatibility and equilibrium condition along the interface

ti 1 = -ti 2 = ti

ui 1 = ui 2 = u i (2.53)

Equations 2.51 and 2.52 can be combined to be [26]

1
D_

D 1
ie

0

D I. 0

DI.D2 D.=
ii il! le

_D 2. 2
D_

m

m

t.

m

2
LTke

! m
i

K_J
¸--'-7

= !0!

2:
Ke (2.54)
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(2.54)

This is a systemof 3( Ne1+ Ne2 + Ni ) equationsfor 3Ne1 unknownson the

externalsurfaceof subre_onone, 3Ne2 unknownson theexternalboundary,of

subsurfacetwo, and 3Ni unknown tractionson the interface. The unknown

displacementson theinterfacecanbeobtainedthrougheitherEq.2.51or Eq.2.52

after Eq.2.54hasbeensolved. The equationwhich is not usedcanbeusedasa

check.

This method is simple and direct. However it is not usually adopted

becausethe inverse of the matrix of kernel B s must be calculated for both

subre_ons. This involves a tremendous amount of computer processing time and

requires a lot of memory space. Therefore, this method is not used in this paper.

An alternative procedure which eliminates the need for solving the inverse

of the matrLx is described herein. After the appropriate columns of T* and U*

have been interchanged, the system of equation of the two subre_ons are

assembled into two big matrices and two column vectors as

A I 0

0 O

A"

m

u4
m

t3

0

r.rk 
m

I.

m

• |

(2.55)
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To be more specific,

A! A!.
le II

0

0

2 ;.
A_ ¢I

Uk_l

t !

m

tngl

B! B!.

0
B2
ie

0

m

i
K_

u.l
l

B2 ' 2
el e_

B?. u.2
n t

(2.56)

Using the compatibility and equilibrium conditions (Eq.2.53), Eq.2.56 reduces to

i A t B 1A_ = _,

0
A! A!. B!.

I_ U U

0

9 O 9

-A;i A_ B;i

-A_ A? B.2
tl t_ I1

t<l

l I

t.rk__

U.
!

B 1
ie

0

0

9

B_,

B?

fl [

e:l

(2.57)

Since now the known variables appear on the right hand side of the equation and

the unknown variables appear on the other side,the equations can be solved without
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anydifficulT. Althoughthis methodavoidssolvingfor theinversematrixandthus

savesa lot of computerprocessingtime,it still hasthedrawbackof usingtwo big

matriceswhich occupytremendousstoragespace.Thereforemotheralgorithmis

introducednext.

Let thenumberingof thenodesalongtheinterfacebealwaysarrangedat the

positionfollowing the externalnodesfor bothstibregions,asshownin Eq.2.50.

RewriteEq.2.50for thefin-st re,on as follows

A 1
e 1

m

m

u!
t

m

B1 B!

l
I (2.58)

where the dimensions of each block are as following

i i 3(Nle + Ni)x 3N iA 1 andB I are

1 1 1
K, and Uk= are 3Ncx 1

t} and u.1 are 3N}x 1
t 1 I.

Bel and Kel can be multiplied together to form a known column vector fI
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4

i

' i

A!I [_ f_i

ui (2.59)

Moving the second term of the right hand side of Eq.2.58 to the left hand side leads

tO

i

A 1_ ] A!i B_I

I
! , ,

i .

rail

U: I

i .

_._ |

i

(2.60)

Note that the left hand side of Eq.2.60 now become a matrix with dimension of

3(Nel + N i) by 3(Nel + 2Ni) multiplied by an unknown vector with dimension of

3(NeI + N i) by 1. Obviously, this system can not be solved since there are 3N i

more unknown than the total number of equations. Before we proceed to the

second subregion, Eq.2.60 is reduced to

p ,'1 B.*I
I /'k i 1

0 q
i

i

m

u.I
1

m

t!
1

u

= If*l

(2.61)
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Eq.2.61canberepresented more conveniently as

GI

0 H I

I
Uk_

u.:
I

m

d
I

gl

m

hI

(2.62)

Eq.2.62 can be treated as two set of equations ,viz.

+ G 1

(2.63)

r: [:]
(2.64)

The same procedure can be applied to the second subregion and a similar set of
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equationsis obtained

+ G2

(2.65)

(2.66)

Note that the unknownsin Eq.2.64andEq.2.66now only involve theunknown

displacementsandunknowntractionsontheinterfacebetweenthetwo subregions.

By applyingthecompatibilityandequilibriumconditionof Eq.2.53,

ti 1= .q2 = ti

uil -. ui 2 = ui

these two sets of equations can be assembled together as Eq.2.67 to solve for the

unknown tractions and unknown displacements along the interface.
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H1

(2.67)

where

_2 = _ H 2

After the displacement u i and the traction ti of the interface have been solved using

Eq.2.64, the unknowns on the external surfaces of each subregion can be solved

through Eq.2.63 and Eq.2.65.

This method not only saves computer excution time by eliminating the need

for solving for the inverse of the matrices but also saves a lot of memory storage

space because the procedure can be performed on the system of equations of each

subregion separately with little effort by using an index control in the computer

pro_am. It is therefore used in this paper.
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2.5Discontinuityof Traction

Thedataof prescribedtractionsandprescribeddisplacementsmustberead

into thecomputeraccordingto theelementratherthanthenodedueto thepossibility

of a nodelying on a position without anuniquetangentplane. Thatis, when a

nodeis atthe intersectionof two or moreplanes,thetractionactingon this node

dependson which planeis considered,sinceeachsurfaceis associatedwith a

differentnormal. For example,in Fig.2.6,threeelementssharethesamenodeP.

For the sakeof easyinterpretation,we let theunit normalof thesethreeelements

coincidewith theunitvectorsof theCartesiancoordinatesystem.

,'x

H1----1

,,3

n2=J

n3=

The component of the traction of node P in direction i on element 1 is the normal

stress _11 but the traction of point P in the same direction on element 2 is the shear

stress g12 and the traction in the i-direction on element 3 is the shear stress c13 at

point P. Therefore, the prescribed traction must be input according to the element

so that each different traction on the same node can be multiplied by an appropriate

kernel contributed from each element surface. Also note that when the displacement

in one direction is prescribed at a certain node, for a unique solution only one of
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thecorrespondingtractionson this nodecan be unknown and all the others must be

prescribed. For the same example in Fig.2.6, two of three tractions on three

different elements must be known if the displacement of that node is prescribed.

Eq.2.37 in fact is a concise expression for convenient intrepretation. To be more

specific, it should read

m

u P

... U1v .... v vU2,.. U 3 ............

-p
t 1

(2.68)

Thus, the equation for a certain row is

....÷_ +.......= .........+_{_+_{+_:_"+...... _,_.6_)

When the tractions tiP, t2P and t3P are known at point P, they must be multiplied

by these different kernel function UI P, u2P, and u3P which are calculated from

each different element with different normal vector. As for the case of the

displacement being prescribed, only one traction can be unknown, say t2P, and the

traction on another surface tlP and t3P must be forced to be known. Thus, the
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Figure 2.6 Illustration of Different Tractions at Node P
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equadonbecomes

_ PP U_,p....+ :u P ulq-u3Pt3 p+ ....... = ......... + 2t_+ ...... (2.70)

so that only one unknown is left on the right hand side of the equation which is

needed to be solved and all the known vnlues are Summed up on the left hand side

of the equation.

One ia-tcident merit of inputting the traction element by element is that

discontinuous tractions can be modeled exactly.
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CHAPTERTHREE

LINEAR ELASTICFRACTUREMECHANICS

3.1Introduction

The presenceof cracks in a materialcausesa stressconcentrationin the

vicinity of thecracktip. Consequently,plasticfielding ormicrocracking will occur

in the region surrounding the crack tip. Linear elastic fracture mechanics assumes

that the nonlinear deformations are restricted to a region whose dimensions are

small compared to other characteristic dimensions, so that the elastic solution

provides an accurate description of the stress and displacement fields in the vicinity

of the crack tip. This is often referred to as small scale yielding (S.S.Y.).

It can be shown that the loading on a crack is in general a super'position of

three independent modes as shown in Figure 3.1. The first (Fig.3.1.a) is called

the crack opening mode, or mode-I, which is a result of a relative normal separation

of the crack surfaces (symmetric with respect to x-z and x-y planes). Fig.3.1.b is

called the crack sliding mode, or mode-H, which is associated with a relative sliding

displacement in the x-direction (symmetric with respect to x-y plane and skew-

symmetric with respect to the x-z plane). The tearing mode (mode-HI) corresponds

to relative motion in the z-direction of the two crack surfaces (skew-symmetric with

respect to the x-y and x-z planes). Using Westergard's technique, Irwin and

Williams showed that the stress and displacement fields in the vicinity of a crack tip

can be expressed as an infinite series whose leading term is square root singular.

The coefficient of this singular term is defined as the stress intensity factor. With

respect to a r-0 polar coordinate system as shown in Figure 3.2, the stresses and
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(a)ModeI

(b)ModeII

Y

X

Y

X

(c) Mode ITI

Y

X

Figure 3.1 The Three Basic Modes of Crack Surface Displacement
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displ.acementsnearacrackrip are given by [27]

Mode I

K I

°'xx-=

K I

O'yy=

K I

O'xy = 24C_r

O'zz= V (_xx + O'yy ), O'xz = O'yz= 0

KI /-"_ cos20_. [ 1 _ 2v + sin220__]ul=_-qi-f

i_/2=

u3=0 (3.1)

Mode H

Cxx-2-_-Krr sin20_ [ 2 + cosOcos.._ -]

KII in_O- co (9cos-_-
O'yy-- 2f2f_ $ 2 s2 -

Kn cos__0 sinO sin_
O'xY=_ 2 [ 1 - ]

_== v (Cxx+ %y ), O'x_=c_= 0
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Krr x/22_ sin20-" ['_- 2v + cos220--]Ul -- --_--

Ku r sin2} ]u2 = ,-ff-'_2_ cos_ [-1 + 2v +

u3=0 (3.2)

Mode III

Kin sin o
cxz=" 2-if"_ _-

Km c 0
=-- OS--

_yz _ 2

(;x.x= _yy= (_zz= (;xy = 0

U I =U2=0

113 ---'7
(3.3)

where KI, KII, and KIII are the stress intensity factors corresponding to modes I,

12, and ITr, respectively. Note that Eq.3.1-3.3 are valid only when r << L, where L

is another charactericdc length of the geometry (may be the crack length). Also note

that these equations do not contain any information about the externally applied

loading, crack geometry, geometric confi=mn'ation, etc, and that the stress intensity

factors are not functions of the local coordinate r and 0. These factors are embedded
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Crack Surfaces

Fibre 3.2 Coordinate and S mess Components for Crack Tip S u'ess Field
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in KI, KII, andKIII. Thatis, the stressintensityfactorsKI, KII, andKIII, which

must be determinedby the boundaryconditions and the loadings control the

magnitudesof thestressanddisplacementfields aroundthe crack tip. Thus, a

Nven combinationof valuesof KI, KII, andKIII representsuniquelyacracktip

stressfield environmentfor small scaleyielding. Thedeterminationof thestress

intensityfactorsis thusthemostimportanttaskin linearelasticfracturemechanics.

AlthoughEq.3.1-3.3arevalid for theplanestrainproblem,theymaybemodified

to representthe planestressproblem by letting Cz= 0 and substitutingv with

v/(l+v).

Eq.3.1 and Eq.3.2 were derived for planeproblems. However, it was

shownby SihandLiebowitz [28] thatfor anelliptical crackin athreedimensional

linearelasticbody,the local stress and displacement fields along a crack front are a

superposition of plane strain and antiplane shear. Hence, Eq.3.1-3.3 can still be

used for three dimensional crack problems as long as the coordinate system is

allowed to move along the crack front with its z-axis tangent to the crack front and

the y-coordinate perpendicular to the crack surface, as shown in Fig.3.3. Referring

to the moving coordinate, the stress intensity factors are now also a function of the

position of the oriNn on the crack front and the formulas are not available for a

crack near a free surface because the stress singularity is not of inverse square root

there.
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Figure 3.3 Coordinate System on the Crack Front forThree Dimensional Crack
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3.2 Calculation of Stress Intensity Factors Using the Boundary Element Method

The variation of any function in an isoparametric element is polynominal.

The degree of the polynominal depends on the number and arrangement of the

nodes. Therefore, if a quadratic surface element is used in the vicinity of a crack,

the distributions of the displacement and traction in the element will have at most

quadratic variations. Since the variation of the displacement is square mot of r and

the variation of the tracton is inverse of square root of r around the crack, a fine

mesh is needed to model the crack so that the quadratic variation can imitate the

correct distribution inside each small segment. However, even this refinement

cannot achieve a high degree of accuracy.

Fortunately, this problem was solved by Barsoum [18] who modified the

quadratic isoparametric element by relocating appropriate midside nodes to the

quarter-point to capture the inverse square root singularity. Even though he had

done this for the Finite Element Method, a similar approach can be used in the

Boundary Element Method. For example, consider an eight node quadrilateral

element with two sides having equal length L perpendicular to the crack front ( side

1-5-2 ),as shown in Fig.3.4. Relocate the two midside node ( 6 and 8 ) to the

quarter-point near the crack front. Denoting the distance originated fi'om the crack

front to any point on the element by r, then

8

r = Z Ni({1,_2)ri (3.4)
i=l
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Figure 3.4 Illustration of 8-node Quarter Point Element
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Choosing r I = r 2 - r5 = 0, r3 = r4 = r7 -- L, and r 6 = r 8 = L / 4, Eq.3.4 becomes

r= 24(qi+_2" I)(I+_i)(l+ _2)L + + (_I"_2+ I)(_i-I)(_2+I) L

2 L 2!.(1+ 2 2 L

Simplifying,

= 2V_ - I (3.5)

Substitution of Eq.3.5 into Eq.2.33, leads to the following variation of the

displacement and traction in direction i versus the distance r
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ui(r) = _ Nku.k
k=t t

= [(-u} - u.2- u.3- u.4 - u.5 + 2u.6 + u.7 + 2u.8 )
I I I I I I I l

2

+'_-('ul-t u2+L u3+i u4+i 2u_-2u_)]

+ [(u 1 + u 2 + u3 + u a'- 2u_- 2u_)i i i i

2

--(_' u 1 u2 _L(uI+u2 2u_)]+[uS+ + )+ -i 2"'i i i (3.6)

which can be rewritten as,

ui(r)= i +A + i L (3.7)

Similary,

B t 2N/-_ B 3rti(r)= i +B + i_" (3.8)
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The displacement variation _ven in Eq.3.7 contains the square root of r term which

is asymptotically correct. However, the traction appearing in Eq.3.8 does not

include the correct inverse square root of r term needed to model the stress

singularity around the crack tip. The correct singularity is obtained by multiplying

the right hand side of Eq.3.8 by the factor [19]

/7" 2
¢(r) =,/_ -

W _
(3.9)

such that the variation of traction becomes

ti(r)=( B1 _Nf_ B3 ri+B + iE)

(3.10)

which possesses the correct inverse square root of r term.

For six node triangular quadratic elements, if all the sides are straight as

shown in Fig.3.5, by similar procedure, the relation between r and the nature

coordinate _ can be obtained as
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Figure 3.5 Elustradon of 6-node Quarter Point Element

61



_ = I -_ (3.11)

where c is the ratio _2 / %3 which is constant for a _ven direction n It is easy to

show that the variation of the displacement has the same form as Eq.3.7 by

substituting Eq.3.11 into Eq.2.30 with the help of appropriate shape function. The

correct traction variation is obtained by multiplying the shape function for traction

by the correction factor

O(r):_= 1 (3.12)

The stress intensity factors are then evaluated by the displacement correlation

technique [29]. By setting O = 180 ° in Eq.3.1-3.3, the displacement fields become

2(1"v2) _ KI
Ul : E

2(1"v2) qf_ Krru2- E

2(1+v) _ Kmu3- E (3.13)
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Equating the square root of r term in Eq.3.I3 to that in Eq.3.6 yields

Kr =- E2(1-v2) - [(-u I _ 3
-UI2.U I -Ula. UIS+2U16 +UI7+2U18)

+_I(3ull 3u12
_" - _ ui3 + ui4 + 4u16 - 4uls )

2

+ _t 2 5 7
"_"(-ulI-u 1 +u13+u1_+2u 1 -2u 1 )1

K_ _- .__g_E
2(1-v 2) V _" [(-u2

- U22 - U23 - U24 - U25 + 2U26 + U27 + 2U28 )

_l (3 uz 1 3+ _- - 3u22. u2
2

+ _1 3
T" (" u21" u: 2 + u2

+ u24 + 4u 26 . 4u 28 )

+ u24 + 2u25.2u27)]

2(I+v) x/2/., [('u'zX'u_ -u 3 .u3 .u. 3 +2u 3 +u3 +2u3 )

+_(3% _-3%22
2

+ _1(.%1 25"- "u3

.%3 +,.54 +4%6.4%s )

+ u3 3 + %4 + 2_ 5.2% 7)]

(3.I4)
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For non-symmetric problems both crack surfaces must be modeled. The stress

intensity factors are given by

KI _ m "3 ,4 211"16+ ,7E _: {[(. u 3_ u14+ 2u16 + UlT+ 2ui8 ) . (_ ul _ ul + ut + 2u_S)]
4(1-v 2)

+ _[(- u13
2

+ 5-[ ( u13

*3 "4 "6 "8
+Ul 4+4u16-4uls)-(-u 1 +U 1 +4u 1 -4u 1 )]

. "3 "4 _ 2u[7 )] }+u14 2UJ)- (u 1 +u 1

KII =
4(1-'v 2) { [(- u3- u24+ 2u26+ u27+ 2u28 ) - (- u2 - u 2 + u2 +

_l " 3 "4 "6 *8+ [(_1123 +U24+4u26 .41.128).(.u2 +U2 +4U 2 -4U 2 )]

2

_,L *3 *4+ [(U23 +U24-21127)-(U 2 +1.12 -2U; 7)]}

K=_ E/-&-__={t 2u;><- 2u? l
4(i+_.).4.__ (_ u34+ u37+ _3 u3 +

+_[(-a33

a.

+TC(%

+ u3,t + 4u 36. 4u38 )_(. _33 + u_4+ 4_6_ 4u;8 )]

+a 3 4.2u3 7).( u3"3+ u3"4.2u3"7 )]}

(3._5)

where the asterisk refers to the displacement of the node on the element opposite to

the one shown in Fig.3.5. Note that Eq.3.14 and Eq.3.15 involve the natural

coordinate _ 1 up to quadratic terms. Therefore a quadratic variation of the stress

intensity factor in the _1 direction can also be represented.
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CHAPTERFOUR

VERIFICATIONPROBLEMS

Severalverification problemswerestudiedto examinethe accuracyand

efficiency of the BoundaryElementMethod. This chapterpresentsthe resuhs

obtainedusing the techniquesdescribedin the previouschaptersfor problems

whoseanalyticalsoludonis known aswell asfor aproblemwhosesolutionwas

obtainednumericallyby otherresearchersusingdifferenttechniques.All problems

wereperformedusingsingleprecisiononaCRAY-X-MP. Thematerialproperities

are:E = 30,000ksi andv = 0.3.

4.1PrismaticBar underUniform Tension

The furst verification problem is a linear elastic prismatic bar under simple

tension as shown in Figure 4.1. Only one-eighth of the specimen is modeled due to

the symmetry of this problem. The domain is chosen to be a cube with side lengh

equal to 1 subjected to a uniform tension on the surface z=l. The planes x=0,

y=0,and z=0 are fixed in x, y, and z directions, respectively. The geometry and

boundary segments are given in Figures 4..2 to 4.5. Four different elements: 3-

node trian_lar element, C-node quadrilateral element, 6-node trian_lar element,

and 8-node quadrilateral element were tested. Different schemes of Gaussian

quadrature were chosen to perform both the regmlar integral and singular integral as

described in Section 2.3. The traction in direction z at point A and the transverse

displacement in the x-direction of point B in Figure 4.1 were calculated and

compared with the exact solution [ 31]:
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Figur_ 4.1 Geometry and Boundary Conditions for Prismatic Bar in Uniform Tension
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Numberof Nodes:8

Numberof Elements:12

Figure 4.2 3-Node Triangular Element Mesh for Uniform Tension Problem
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Numberof Nodes:8

Numberof Elements:6

Fi_tre 4.3 4-NodeQuadrilateralElementMeshfor Uniform Tensiort Problem
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Numberof Nodes:26

Numberof Elements:12

Figa_re4.4 6-NodeTriangularElemen_Meshfor Uniform TensionProblem
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/

/

Number of Nodes: 20

Number of Elements: 6

Figure 4.5 8-Node Quadrilaterial Element Mesh for Uniform Tension Problem
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tA=- (_

%= -v cr/E (4. I)

The results are summarized in Table 4.1 to 4.4. The results indicate that as long as

the singular integral is evaluated with at 1east a 3x3 quadrature, then the accuracy

depends on the number of points used to evaluate the regular integrai. For reliable

results the regular integral should be evaluated using at least a 3x3 quadrature for

quadrilateral elements and 6 points quadrature for triangular elements.

Tables 4.5 to 4.8 demonstrate the accuracy of the multi-domain technique.

The conclusions are similar to those for the single region. However. the two-

re,on results are more accurate since for the same number of integration points

there are more nodes.
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NRI

!

12

NSI

!xl

2x2

3x3

4x4

5x5

6x6

ixl

2x2

3x3

4x4

5x5

6x6
ixl

2x2

3x3

4x4

5x5

6x6

!xl
2x2

3x3

4x4

5x5

6x6

ixl

2x2

3x3
4x4

5x5

6x6

Ixl

2x2

3x3

4x4

5x5

6x6

CPU Time
u A ( x lu6^" ) Error (%) tB Error (%) f second )

! .4397

1.4214

1.4197

!. 4197

1. 4197

0.7303

0.9376

0. 9600

0.9582

0.9580

0.9580

0.7244

0.9310

0.9548

0.9549

0.9547

0.9547
0.7564

0. 9746

! .O035

1.0017

1.0019

1.0019

0.7559

0.9739
0.9984

0.9988

0.9989

0.9989

0.7552

0. 9728

0.9979

1.0002

1.0001

I .0001

>I00

43.97

42.14

41.97

41.97

-0.4897

-0.5409

-0.5451

-0.5454

>i00

51.03

45.91

45.49

45.46

41.97 -0

26.97 -0

6.24 -0

4.00 -i

4.18 -i

4.20 -I

4.20 -i

27.56 -0

6.90

4.52

4.51

4.53

4.53
24.36

2.54

0.35

0.17

0.19

0.19

24.41

2.61

0.16
0.12

0.II

0.ii

24.48

2.72

0.21

O.O2

0.01

0.01

.5454

.4628

.9861

.0470

.0611

.0611

.0611

.4808

-1.0121

-1.0800

-1.0862

-1.0867
-1.0867

-0.4041

-0. 9250

-0.9907

-0.9967

-0. 9971

-0. 9971

-0.4031

-0.9237
-0.9897

-0.9956

-0.9960

-0.9960

-0.4072

-0.9280

-0.9937

-0.9997

-I.0000

-I.0000

45.46

53.72

I .39

4.70

6.11

6.11

6.11

51.92

I .21

8.00

8.62
8.67

8.67

59.59

7.50

0.93

0.33

0.29

0.29

59.69
7.61

1.03

0.44

0.4O

0.4O

59.28

7.20

0.63

0.03
0.00

0.00

0.0628

0.1156

0.2056

0.3362

0.4948

0.7030

0.!Ii0

0.1629

0.2430

0.3808

0.5437

0.7409

0.1312

0.1852

0.2762

0.3998

0.5635

0.7684

0.1954

0.2466

0.3379

0.4635

0.6254
0.8280

0.2184

0.2692

0.3623

0.4865

0.6615

0.8518

0.4131

0.4764

0.5624

0.6848
0.8425

1.0503

NR.[ : Number of Gaussian quadrature points for regular integral

NS I • Number of Gaussian quadrature points for singular integral

Exact solution • u= 1.E-06, t=- 1.00

Table 4.1 Beam in Uniform Tension, 3-node Triangular Element: Comparison
of Error for Displacement and Traction, and CPU Time
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NRI NSI

ix! Ix!

2x2

3x3

4x4

5x5

6x6

2x2 ixl

2x2

3x3

4x4

5x5

6x6

3x3! Ix!

2x2

3x3

4x4

5x5

6x6

4x4 ixl

2x2

3x3

4x4

5x5

6x6

5x5 Ixl

2x2

3x3

4x4

5x5

6x6

6x6 ixl
2x2

3x3

4x4

5x5

6x6

CPU Time
u x ( x lu6'" ) Error (%) tB Error (%) ( second )

i .3438

1.3453

1.3453

1.3453

1.3453

0. 9264

0. 9559

0. 9568

0.9568
0. 9568

0.9568

0.9689

! .0O08

! .0017

1.0017

1.0017

! .0017

0. 9673

0.9992

1.0000

1.0000

1.0000

1.0000

0.9673

0.9991

1.0000

1.0000

1.0000

1.0000

0. 9673
0.9991

!.0000

1.0000

1.0000

1.0000

>!00

34.38

34.53

34.53

34.53

34.53

7.36

4.41

4.32

4.32

4.32

4.32

3.11

0.08

0.17

0.17

0.17

0.17

3.27
0.08

0.00

0.00

0.00

0.00

3.27

0.09

0.00

0.00

0.00

0.00

3.27

0.09

0.00

0.00
0.00

0.00

-I.0000

-I.0000

-i.0000

-i.0000

-I.0000

-i.0000
-1.0000

-i.0000

-i.0000

-I.0000

-I.0000

-I.0000

-i.0000
-i.0000

-!.0000

-i.0000

-i.0000

-!.0000

-i.0000
-i.0000

-i.0000

-i.0000

-I.0000

-I.0000

-I.0000

-I.0000

-I.0000

-i.0000
-I.0000

-i.0000

-I.0000

-I.0000

-I.0000

-i.0000

-I.0000

>i00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00
0.00

0.00

0.00

0.00

0.00
0.00

0.0565

0.1445

0.2951

0.4984

0.7735

1.0980

0.0764

0.1659

0.3120

0.5217

0.7866

1.1149

0.1118

0.2003

0.3492

0.5586

0.8286

1.1609

0.1582

0.2502
0.3997

0.6060

0.8679

1.2027

0.2204

0.3112

0.4604

0.6677

0.9362

1.2642

0.2985

0.3882

0.5335
0.7416

1.0112

1.3333

NRI • Number of Gaussian quadrature points for regular integral

NSI • Number of Gaussian quadrature points for singular integral

Exact solution • u= 1.E-06, t=- 1.00

Table 4.2 Beam in Uniform Tension, 4-node Quadrilateral Element: Comparison
of Error for Displacement and Traction, and CPU Time
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NRI

I

6

12

NSI uA(X10 "6)

Ixl
2x2 !. 8007

3x3 1. 8843

4x4 1.8754

5x5 ! .8759

6x6 i. 8776

!xl

2x2 0.7482

3x3 0. 8437

4x4 0.8473

5x5 0. 8459

6x6 0.8465

!xl

2x2 0 .7151

3x3 0. 8083

4x4 0.7938

5x5 0.7970

6x6 0. 8002

ix!

2x2 0. 9357

3x3 ! .0349
4x4 ! .0286

5x5 i .0278

6x6 1.0284

Ixl

2x2 0. 9252

3x3 ! .0422

4x4 1.0185

5x5 1. 0176

6x6 1.0200

Ixl

2x2 0. 9057

3x3 0. 9799

4x4 0.9926

5x5 0. 9962

6x6 0. 9986

Error (%)

>I00

8O .O7

88.34

87.54
87.59

87.76

>i00

25.18

15.63
15.27

15.41

15.35
>I00

28.49

19.17

20.62
20.30

19.98

>i00

6.43

3.49

2.86
2.78

2.84

>I00

7.48

4.22

1.85
1.76

2.00

>I00

9.43

2.0!
0.74

0.38
0.14

-0
-0

-0

-0

-0

tB

.4114

.3102

.3153

.3239

.3224

-1.3980

-1.2393

-1.2196

-1.2299

-1.2291

-1.4042

-1.2411

-1.2162

-1.2266

-1.2260

-1.1711

-0.9648

-0.9564

-0.9667

-0.9653

-1.2021

-0.9718

-0.9836

-0.9794

-0.9791

-1.2149
-1.0127

-1.0061

-1.0021

-1.0017

E_or(%)

>i00

58.86

68.98

68.47

67.61

67.76

>I00

39.80

23.93

21.96

22.99

22.91

>!00

40.42

24.11

21.62

22.66

22.60

>i00

17.11

3.52
4.36

3.-33

3.47

>I00

20.21

2.82

1.64

2.06

2.09

>I00

21.49

1.27

0.61

0.21

0.17

CPU Time!
( second ]

0.3332

0.5378

0.8721

1.3492

1.9639

2.7301

0.5478

0.7635
1.0886

1.5714

2.1947

2.9585

0.6481

0.8548

!.1982

1.6839

2.2990

3.0547

0.9212

1.1272

1.4828

1.9553

2.5755

3.3316

1.0463

1.2503

!.5904

2.0833

2.6995

3.4563

1.9069

2.1113
2.4536

2.9403

3.5512

4.3225

• Number of Gaussian quadrature points for regular integral

NS I • Number of Gaussian quadrature points for singular integ'ral

Exact solution • u=l.E-06, t=- 1.00

Tabte 4.3 Beam in Uniform Tension, 6-node TriangularElement: Comparison
of Error for Displacement and Traction, and CPU Time
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NRI NSI UA( x l0 -6 )

Ixl Ix!

2x2

3x3

4x4

5x5

6x6

2x2 Ixl 1.1266

2x2 0. 8189

3x3 0. 8074

4x4 0.8086

5x5 0. 8086

6x6 0. 8086

3x3 ixl 0.9108

2x2 1.0389

3x3 I .0228

4x4 1.0210

5x5i 0.9814

6x6 I .0208

4x4 Ixl 0.9283

2x2 !. 0187

3x3 i. 0028

4x4 0. 9984

5x5 0. 9984

6x6 0. 9984

5x5 ixl 0.9278

2x2 1. 0139

3x3 !. 0014

4x4 0. 9997

5x5 0.9997

6x6 0. 9997

6x6 !xi 0.9275

2x2 !. 0143

3x3 !. 0018

4x4 1.0002

5x5 1. 0000

6x6 ! .0000

Error (%)

>i00

>i00

>i00

>I00

>i00

>i00

12.66

18.11

[B

-0.3553

-0.3430

-0.3441

-0.3441

-0.3441

-0.6751

-1.2086

.2429

.2390

•1979

.2497

.3704

.9424

.9710

.9736

.9738

.9738

.3788

.9648

.9959

.9984

.9990

.9988

.3453

.9666

.9971

.0003

.0006

.0006

.3459

.9660

.9969

.9997

.0000

.0000

19.26 -i

19.14 -i

19.14 -I

19.14 -I

8.92 -i

3.89 -0

2.28 -0

2.10 -0

1.86 -0

2.08 -0

7.17 -i

1.87 -0

0.28 -0

0.16 -0

0.16 -0

0.16 -0

7.22 -I

1.39 -0

0.14 -0

0.03 -i

0.O3 -I

O.03 -I

7.25 -i

1.43 -0

0.18 -0

O.02 -0

0.00 -I

0.00 -I

Error (%)

>!00 0

64.47 0

65.70 0

65.59 1

65.59 2

65.59 2

32.49 0

20.86 0

24.29 0

23.90 i

19.79

24.97

37.04

5.76

2.90

2.64

2.62

2.62

37.88

3.52

0.41

0.16

0 .i0

0.12

34.53

3.34

0.29

0.03

0.06

0.06

34.59

3.40

0.31

0.03

0.00

0.00

CPU Time
( second )

.1926

.4299

.8292

.3935

.1057

.9901

.2595

.4985

.8954

.4562

2.1756

3.0527

0.3715

0.6111

!.0103

1.5556
2.2889

3.1837

0.5236

0.7674

!.!598

! .7!92

2.4486

3.3228

0.7288

0.9667

!.3594

1.9274

2.6425

3.4846

0.9826

! .2132

1.6159

2.1875

2.8705

3.7663

NRI • Number of Gaussian quadrature points for regular integal

NS I • Number of Gaussian quadrature points for singular integral

Exact solution : u=l.E-06, t=-l.00

Table 4.4Beam in Uniform Tension, 8-node Quadrilateral Element: Comparison

of Error for Displacement and Traction, and CPU Time
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b_RI NSI

3 3x3 0

4x4 0

5x5 0
6x6 0

4 3x3 0

4x4 0

5x5 0
6x6 0

6 3x3 1

4x4 1

5x5 1
6x6 1

7 3x3 0
4x4 !

5x5 1

6x6 1

12 3x3 0
4x4 1

5x5 !

6x6 1

13 3x3 0

4x4 1

5x5 1

6x6 !

_-6 CPU Time
u A ( x lu ) Error (%) tB ( second )

.9426

.9438

.9438

.9439

.9260

.9272

.9273

.9273

.0034

.0029

.0030

.0030

.9992

.0028

.0029

.0028

.9974

.O000

.0000

.0000

.9974

.0000

.0000

.O000

5.74

5.62

5.62

5.61

7.40

7.28

7.27

7.27

0.34
0.29

0.30

0.30

0.08

0.28
O .29
0.28
0.26

0.00

0.00

0.00

0.26

0.00
0.00

0.00

-I.0365

-I.0418
-1.0415

-I.0418

-I.0529

-!.0579

-1.0582

-1.0582

-0.9928
-0.9978

-0.9981

-0.9981

-0.9923

-0.9972
-0.9975

-0.9975

-0.9948

-0.9997

-i.0000

-i.0000

-0.9948
-i.0000

-I.O000

-!.0000

Emor(%)

3.65 O
4.18 i

4.15 0

4.18 1

5.29 0

5.79 0

5.82 1

5.82 !

0.72 0

0.22 !

0.19 !

0.19 !
0.77 0

0.28 1

0.25 1

0.25 !

O.52 i

O.O3 !

0.00 !

0.00 2
O.52 i

0.00 i

O.O0 1

0.00 2

.6251

.2028

.8792

.6006

.6661

.9229

.2458

.6534

.7982

.0496

.3701

.7863

.8463

.0990

.4222

.8274

.2506

.5061

.8256

.2321

.3041

.5561

.8756

.2818

NRI • Number of Gaussian quadrature pointsfor regular integral

NS I : Number of Oaussian quadrature points for singular integral

Exact solution : u=i.E-06, t=-l.00

Tabte 4.5 Beam in Uniform Tension, 3-node Triangular Element, Double Region:
Comparison of Error for Displacement and Traction, and CPU Time
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3x3

4x4

5x5

6x61

NSI
CPU Time

u A ( x 10 .6 ) Error (%) ts Error (%) ( second )

3x3 ! I. 0017

4x4 i .0017

5x5 I. 0017

6x6 !. 0017

3x3 !. 0000

4x4 ! .0000
5x5 !. 0000

6x6 !. 0000

3x3 ! .0000

4x4 i .0000

5x5 !. 0000

6x6 !. 0000

3x3 i .0000

4x4 I .0000

5x5i !.0000
6x61 !.0000

0.17

0.17

0.17

0.17

0.00

-I

-I

-I

-!

-i

.0000

.0000

.0000

.0000

.0000

0.00 -I

0.00 -I

0.00 -I

0.00 -i

0.00 -I

0.00 -i

0.00 -i

0.00 -i

0.00 -i

0.00 -i
0.00 -I

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

.00 0

.00 !

.00 1

.00 2

.00 0

.00 !

.00 2

.00 2

.00 !

.00 1

.00 2

.00 2

.00 !

.00 i

.00 2

.00 3

.8452

.3190

.9215

.6509

.9502

.4150

.0153

.7682

.0912

.5542

.!523

.8998

.2692

.7257

.3466

.0907

• Number of Gaussian quadrature points for regular integral

NS I" Number of Gaussian quadrature points for singular integral

Exact solution • u= 1.E-06, t=- 1.00

Table 4.6 Beam in Uniform Tension, _node Quadrilateral Element, Double Region:

Comparison of Error for Displacement and Traction, and CPU Time
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12

13

NSI
CPU Time

u A ( x Iu6" ) Error (%) tB Error (%) ( second )

3x3 0. 7582

4x4 0.7391

5x5 0. 7420

6x6 0. 7448

3x3 1.0412

4x4 1. 0299

5x5 1. 0304

6x6 1.0311

3x3 1. 0458

4x4 1.0212

5x5 !. 0236

6x6 i. 0257

3x3 !. 0197
4x4 0. 9932

5x5! 0.9968

6x6: 0.9991

3x3 1. 0192
4x4 0. 9928

5x5 0. 9964

6x6 0.9987

24.18

26.09

25.80

25.52

4.12

2.99

3.04

3.11

4.58

2.12

2.36

2.57
1.97
0.68

0.32

0.09

1.92
0.72

0.36

0.13

-i .2355
-i .2142

-i .2183

-I .2182

-0. 9650

-0. 9536
-0. 9646

-0. 9638

-1.0546

-i .0357
-1.0441

-1.0443

-1.0087

-0.9881

-1.0017

-0.9994
-i .0086

-0.9883

-0.9948

-0.9984

23

21

21

21

3

4

3

3

5
3

4

4
0

1

0

0

0
!

0

0

.55

.42

.83

.82

.50

.64

.54

.62

.46

.57

.41

.43

.87

.19

.17

.06

.86

.17

.52

.16

2.3109

3.2921

4.5192

6.0571

2.8737

3.8452

5.0775

{.6007

3.1014

4.0894

5.2954

_.8005
4.8588
5.8394

7.0863
8.5758

5.1568

6.1327

7.3690

.8721

NRI" Number of Gaussian quadrature points for r%_tlar integral

NS I • Number of Gaussian quadrature points for singular integral

Exact solution • u- 1.E-06, t=- 1.00

Table 4.7 Beam in Uniform Tension, 6-node Triangular EIement, Double Region:
Comparison of Error for Displacement and Traction, and CPU Time

78



4x4

5z5

6x6

NSI

3x3
4x4
5x5
6x6

3x3
4x4
5x5
6x6
3x3
4x4
5x5
6x6
3x3
4x4
5x5
6x6

CPU Time
u A ( × 10.6 ) Error (%) tt3 Error (%) ( second )

1.0179

1.0170

i .0170

1.0169

I .0017

1.0012

1.0012

1.0012

1.0006

O. 9999

0. 9996

0.9996
O. 9993

1.0000

!.0000
!.0000

.79

.70

.70

.69

.70

.12

.12

.12

.12

-0.9653

-0. 9680

-0.9683

-@. 9683

-0.9955

-0.9986

-0.9988

-0.9989

-0. 9973

3.47

3.20

3.17

3.17

0.45

0.14

0.12

0 .II

0.27

0.0i

0.04

0.04

0.07

0.00

0.00
0.00

-i

-I
-I

-0

-0

-!

-i

.0004

.0007

.O0O7

.9966

.9997

.0000

.0000

0.04

0.07

0 .O7
0.34

0.03

0.00

0.00

1.9954

3.1194

4.5595

6.3246

2.30!3

3.4235

4.860O

6.6606

2.7091

3.8227

5.2572

7.0385

3.2110

4.3337

5.7791

7.5443

NRI • Number of Gaussian quadrature points for regular integal

NS I • Number of Gaussian quadrature points for singular integraI

Exact solution • u= 1.E-06, t=- 1.00

Table 4.8 Beam in Uniform Tension, 8-node Quadrilateral Element, Double Region:
Comparison of Error for Displacement and Traction, and CPU Time
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4.2 Beam Subjected to Pure Bending

The problem of a beam in pure bending was solved to investigate the

convergence of each element as a function of number of elements used. The

geometry and boundary conditions are shown in Figure 4.6. For each dement,

three different meshes were used as shown in Fig'ures 4.7 to 4.I0. The exact

solution for the displacements are [31]

Ux = vM xy
EI

M z2. vy2)vx2+

M
uz yz (4.2)

and the tractionatpoint B inFigure 4.6 is

t z = a" (4.3)

where M is the applied moment and I is the moment of inertia with respect to the z

axis. The displacements at point A and the traction in direction z at point B are

compared with these exact solutions. The results are listed in Tables 4.9 to 4.12.

The 3-node triangular element and 4-node quadrilateral element do not converge to

80



F

J

w_

F

/f

Y

L

(Y

_=1

L= 8
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h=2
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o : Fixed in y and z direction

[] : Fixed in x and z direction

Figure 4.6 Geometry and Boundary Conditions for Beam in Pure Bending
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(a) No. of Nodes:18, No.of Elements:32

(b) No. of Nodes:26, No.of Elements:48

J Jf
JJfJ

(b) No. of Nodes: 42, No. of Elements: 80

Fi_mare 4.7 3-Node Triangular Element Meshes for Beam in Pure Bending
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(a) No. of Nodes:18, No.of Elements:16

//

(b) No. of Nodes: 26, No. of Elements: 24

// / /Z

(b) No. of Nodes: 42, No. of Elements: 40

Figure 4.8 4.-Node Quadrilateral Element Meshes for Beam in Pure Bending
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(a) No. of Nodes: 26, No. of Elements:12

(b) No. of Nodes: 42, No. of Elements: 20

(b) No. of Nodes: 74, No. of Hements: 36

Figure J,.9 6-Node Triangular Element Meshes for Beam in Pure Bending
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(a) No. of Nodes: 20, No. of Elements: 6

(b) No. of Nodes: 32, No. of Elements: 10

(b) No. of Nodes: 56, No. of Elements: 18

Fig-u.re 4.10 8-Node Quadrilateral Element Meshes for Beam in Pure Bending
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the exact solution even for the highest order of Gaussian quadrature and for the

finest mesh. These results lead to the conclusion that the linear elements should

not be used for problems in which the order of traction and displacement

disu'ibutions are higher than linear. The 6-node triangular element and 8-node

quadriIateral element both converge to the exact solutions either by increasing the

number of Gaussian quadrature points or by ref'ming the mesh. It is also concluded

that the 8-node element is superior to the 6-node element. In order to obtain results

with less than 1% error in both the traction and displacement, the 6-node element

requires at least 17.9984 seconds using the 7 point Gaussian quadrature for the

regular integal and 6x6 for the sin_Iar integaI on the 42 node mesh but _e 8-

node element only needs 7.5160 seconds by choosing ax4 Gaussian quadrature for

the regmlar integTal and 3x3 for the sing-ular integral on the 56 node mesh.

The multi-domain technique was also applied using the 8-node element.

Two different meshes were tested, as shown in Figure 4.11. The resuIts in Table

4.13 show that the double region mesh can achieve an equivalent accuracy by

consumming less CPU time than that the sinNe domain mesh does. This is because

the system matrices for the two subreNons are, in fact, separated and thus for the

same number of nodes the double re,on mesh needs less calculation than the single

domain mesh.
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Interface

Region2

(a) Totalno.of nodes:40 ( 20nodesfor eachsubre_on)

Totalno.of Elements:12 (6 elements for each subre_on)

Interface

....
_' ii:/¸ _,

6n

(b) Total no. of nodes: 64 ( 32 nodes for each subreNon)

Total no. of Elements: 20 (I0 elements for each subre_on)

Figure 4.11 8-Node Quadrilateral Element, Two-Subre_on Meshes for Beam
in Pure Bending
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4.3 Circular Buried Crack Under Uniform Tension

The stress intensity factor of a circular crack buried in an infinite body

subjected to far field uniform distributed traction is studied in this section. The

exact solution is [32]

K I = 2_ (4.4)

where c is the applied stress and a is the crack radius. For this problem KII and

KIT I are zero since the load is perpendicular to the crack surface. Six different

meshes with either different number of nodes or different boundary conditions were

studied. The overall dimensions of these meshes were chosen large enough to

simulate the infinite medium.

The first mesh is a rwo-subre_on model which describes the whole domain

of the problem. Each subregion consists of 52 elements and 150 nodes in which 88

nodes belong to the interface which bonds the two subregions as shown in Figure

4.12. The crack face which is kept traction free. Each crack face is formed by

eight 8-node quadrilateral quarter point elements and eight 6-node triangular

elements. Traction singular elements are placed along the crack front. The uniform

distributed tractions c in direction z are applied on the plane parallel to the interface

plane of one subre_on mesh, and the same plane for another subre_on is then

fixed in the z-direction with node A fixed in direction x and node B fixed in
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L/
/

Crack Front

Interface _1

Total number of nodes: 300 (150 for each subreNon)

Torn number of elements: 104 (52 for each subregion)

Figure 4.12 Element Mesh of Double Region Model for Buried Circular Crack
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Fig.4.13 Average Error in Computed KI by Different L/A for Varied Poisson Ratio
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directiony, asshowmin Fig.4.12,to preventrigid body translationand rotation.

IngraffeaandMann[33] pointedout thattheratioof thelengthL of thecrackfront

element to the crack length a affects the accuracyof the results. Therefore,

convergencefor differentL/a ratiosundervariedPoisson'sratiov wasstudiedfirst.

Five different ratios of L/a varying from 0.1 to 0.5 were applied for Poisson's

ratiosvaryingfrom 0.0 to 0.4. Theresultsareshownin Figure4.13revealingthat

theabsoluteerroris confinedto within 5%whentheratioof L/a is in between0.26

and0.34for Poisson'sratiosrangingfrom 0.1to 0.4. Thus,theratio of L/a of the

modelsusedin thispaperis chosento be0.3.

In the secondexamplethe problem is modeledusing the coarsedouble

regionmeshshownin Figure4.14. It consistsof 73 nodesand25elements. The

ratio of L/a is 0.3. The maximumerror in the calculatedKI was found to be

0.23%. TheCPUtimefor this casewas31seconds.

Thethirdandfourthmeshesusedarethesameastheonesaboveexceptthat

only half of thesubregionis takeninto consideration.Thenodesbelongingto the

interfacearenowconstrainedin thez-directionasshownin Figure4.15and4.16to

simulatethecorrectsymmetricboundaryconditions. ThecalculatedKI is almost

constantalongthecrackfront andtheabsoluteerrorswere 1.6%and0.27%for the

meshof Figure 4.15andthe meshin Figure4.16,respectively. The CPUtimes

were71 secondsand20seconds,respectively.

Thefifth meshis thehalf cut of thethird meshwith anadditionalcut plane

y=0 which is fixed in the y-direction as shown in Figure 4.17. The 6-node

triangularelementsaroundthecracktip on thiscutplaneareconvertedto betraction
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CrackFront

Interface

Totalnumberof nodes:1_6(73for eachsubregion)
Totalnumberof elements:50 (25 for each subregion)

Figure 4.1._ Element Mesh of Double Region Model for Buried Circular Crack
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(a)

(b)

No. of Nodes: 150

No. of Elements: 52

m

/
Crack Front

Traction Sing'ular
Element

Quarter Point
Element

Figure 4.15 (a) Element Mesh for HaLf Domain of Buried Circular Crack

(b) Mustration of Elements around Crack
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(a)

(b)

No. of Nodes: 73

No. of Elements: 25

Crack Front

Traction Singular
Element

QuarterPoint
Element

Figure 4.16 (a) Element Mesh for Half Domain of Buried Circular Crack

(b) Illustration of Elements around Crack
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--- [ ----7 -m

TractionSin_lar
Element

Crack Front

Quarter Point
Element

Total number of nodes: 202

Total number of elements: 72

Figure 4.17 Element Mesh of Quarter Domain for Buried Circular Crack
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J

TractionSingular
Element

Crack Front

Quarter Point
Element

Total number of nodes: 110

Total number of elements: 40

Figure 4.18 Element Mesh of One-Eighth Domain for Buried Circular Crack
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Mesh

(fig.)

Mesh

Type

4.12

Double

Re,on

4.14

Double

Region

4.15

Single
Re,on

4.16

Single
ReNon

4.17

Single
Region

4.18

Single

ReNon

No. of
Node 300 146 150 73 202 I!0

No. of
Element 104 50 52 25 72 40

K[ 1.14604 1.13101 1.14647 1.13141.1.15534 1.15659

Error

(%) 1.6 0.23 1.6 0.27 2.4 2.5

CPU Time

(Second) 131 31 71 20 133 41

Exact solution • K I = 1.128379

where crock radius a=l, applied stress c=l.

Table 4.14 Circular Crack Buried in Inf_te Body Under Uniform Tension:
Comparison of Error for K I and CPU Time for Different Meshes

101



singular elements by relocating their middle nodes on the two sides to the quarter

position to capture the inverse square root singularity in stresses. This mesh is

composed of 202 nodes and 72 elements. The differences between the analytic

solution of K I and the calculated results ranged from 1.2% to 2.3%. This mesh

uses 133 seconds of CPU time.

The final mesh models one-eighth of the domain. Three planes, x=0, y=0,

and z----0,are fixed in the x, y, and z direction, respectively, to represent the correct

boundary conditions. The maximum error in K I is 2.5%.

The results of this section are summarized in Table 4.I4. From the table we

also observe that the last two cases which model only part of the whole domain

have the largest error. This is probably due to the asymmetry of the meshes.

Suprisingly, the coarsest mesh (73 nodes) leads to the most accurate result. Since

the K I is constant along the crack front and the quadratic element on both side of the

crack front can model the circular shape exactly, an accurate result can still be

obtained by using only a few elements to model the crack. This also counts for the

reason that the coarsest mesh can have such excellent results.

4.4 Circular Buried Crack Inclined at 30 Degrees Under Uniform Tension

This problem is used to ensure the ability of the Boundary Element Method

to calculate stress intensity factors for mixed mode fracture problems. A circular

crack deforms in three modes when the normal of the crack surface is not parallel to

the direction of the applied load The exact solutions for the stress intensity factors
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Fi_mare 4.19 Circular Crack Buried in Int'mite Body Inclined at an Angle ?With

Respect to the Direction of Applied Load
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are [33]

F2 l

K I = L-_--csin 24rffff ]

[ 4 (osin 7 cosy),/-_] coscoKrr = _(2-v)

F4(I-v) ((_sin7 cos, y)4r._]KIll= sin0J (4.5)

where cr is the applied stress, a the crack radius, y the anne between the direction of

applied load and the normal of the crack plane, and co is the angle as is shown in

Figure 4.19. Only a double region mesh can model this problem appropriately

since symmetry no longer exists. The mesh is composed of two parallelepiped

shaped subregions as shown in Figure 4.20. Each subregion is made up of 52

quadratic elements and 150 nodes including 88 nodes belonging to the interface.

Quarter point elements and traction singular elements are used along the crack front

as described in the previous section. The results are shown in Figures 4.21 to 4.23

in which the stress intensity factors are normalized. The calculated K I are almost

constant along the crack front. The error ranges from 1.17% to 1.19%. The

maximum error for KII and KIII are 2.34% and 5.71%, respectively. The total

CPU time is 131 seconds.
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Interface

nt

Tow/number of nodes:146 (73 foreach subregion)

Totalnumber of elements:50 (25 foreach subre_on)

Figure 4.20 Element Mesh of Double Region Model for Buried Circular Crack

Inclined at 30 Degrees
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0.5

0.4

0.3

0.2

0.1

0.0

-- Exact KI

Calculated KI
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Figure 4.21 Comparison of Calculated KI with Exact Solution for

Circular Crack Inclined at 30 Degrees
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12

1.0

Exact KII

-4- Calculated KII

0 45 90 135 180 225 270 315 360

co

Figure 4.22 Conparison of Calculated KII with Exact Solution for
Circular Crack Inclined at 30 Degrees
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-1.0

-1.2

Exact KIII

-'*- Calculated KIII

0 45 90 135 180 225 270 315 360

f,o

Figure 4.23 Comparison of Calculated KIII with Exact Solution for

Circular Crack Inclined at 30Degrees
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4.5 Semi-circularSurfaceCrackUnderUniformTraction

The purposeof this section is to check the accuracyof the methodfor

surfacecrackproblems.Sinceanexactsolutionfor thisproblemdoesnote,-dst,the

resultsarecomparedwith the work of Tada [33], andNewmanandRaju [34].

Tadapresentsthe stressintensity factorKI for a semi-circularsurfacecrack in a

semi-infinitebody asshownin Figure4.24as

2
K:(O)= _-(_j_ F(O) (4.6)

where

F(O)= 1.211- 0.186f--s'_ (10"< 0 < 170")

and g is the applied stress, a the crack radius, and e is the anne measured from the

surface as shown in Figure 4.24. Note that the K I is not constant along the crack

front. For the same problemNewman and Raju predict

F(O) (4.7)
KI = c,,'-_-i"( f.._ )
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Figure 4.24 Circular Crack ha Semi-infinite Body Under Uniform Tension
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where

F(O) - 1.04 [ 1+ 0.1 (1-sine) 2 ]

and Q = 2.464 for a semi-circular surface crack. A double reg-ion model, as shown

in Figxa'e 4.25, is used in the problem. Each subregion consists of 72 quadratic

elements and 202 nodes.

The comparison of the results with the work of Tada and Raju and Newman

is shown in Figure 4.26. The present results are quite consistent with these two

predictions when the 0 is between 35" and 90". The maximum difference appears

at the surface with the error of about 5.7%. This is because the K I is calculated

assuming of plane strain conditions and an inverse square root singularity of

stresses. At the points where the crack intersects the free surface these conditions

do not apply.
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Figure 4.26 Comparison of Stress Intensity Factors for a Circular

Surface Crack in a Semi-infinite Body Under Uniform

Tension
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CHAPTER FIVE

STRESS INTENSITY FACTOR ANALYSIS OF TIlE INNER

RACEWAY OF HIGH SPEED BEARINGS

In this chapter, the geometry of the engine bearing is described and the

loadings on the inner raceway (including the hoop stresses and the Hertzian contact

load) are calculated. The stress intensity factors for several semi-circular surface

cracks of different lengths and inclinations are presented as functions of the location

of the indenters.

5.1 Geometry and Applied Loading

The bearing analyzed in this report is a high performance engine bearing

which is used on the main shaft of an aircraft. The dimensions and the geometry

of the bearing are shown in Table 5.1 and Fig.5.1, respectively.

The bearing consists of 28 ball rollers. To simulate the passage of each ball

only 1/28th of the inner raceway is modeled. Since the radius of the inner raceway

is large compared to the other dimensions of the part, the curvature is neglected and

the mesh is modeled as a block with flat surface as shown in Fig.5.2.

The external loadings considered in the analysis are the hoop stresses and

the Hertzian load. The hoop stresses due to the rotation and the shrink fit are taken

from [22] and are given by
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Shaft

Inner raceway

Outer raceway

Inner radius a = 2.0 inch
$

Outer radius b s = 2.30233 inch

Inner radius a i = 2.3 inch

Outer radius b i = 2.6 inch

Inner radius a o = 3.1 inch

Outer radius b o = 3.35 inch

Bearing length L 0.57322 inch

Ball bearing Radius R = 0.25 inch

No. of ball bearings 28

Shaft speed 25,500 rpm

M50 steel

material properities

E = 3.0X 107 psi

9 = 0.288 Ib/in 3

v =0.3

K_C= 18 ksi4in

Table 5.1 Dimensions and Material Properities of Typical Ball Bearing for

Aircraft Engines
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Innerraceway
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Figure 5.1 Geometry of Bearing
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3+v _. 2r b2 a2 + _ _
(Yso ="_ lava I i + i

t i (bi/r )2 + 1a.%? 1+3v _2_+ p

r2 3+v (bi/ai) 2- 1

(5._)

where co is the angular velocity of the shaft and P is the pressure existing between

the shaft and the inner raceway which is equal to

p = E_n (4- a_)( b2-i a'2t )

ai 2aia(b_ - a_)

(5.2)

where 8 n is the difference between the outer radius of the shaft and the inner radius

of the inner raceway during rotation at speed co. It can be obtained by

8= = 8 - zX8 (5.3)

where 8 is the original shrink fit at 0 rpm which is equal to 0.00233 inch in this

case and AS is the difference in the radial displacement between the inner radius of

the inner raceway, Ur1, and the outer radius of the shaft, urS, under the rotation at

speed co, i.e.,
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_ po2bsPco2a 3+v)b 4E4E _[( + " [(3+V)bs2+ (I-v)_] (5.4)

Applying the data of Table 5.1 to the above equations results in

o'00 = 1973.61[ 3.5986 + 24.3286 ]

+ 0)2 X 10 -5 [ 3.6290 - 0.1941(r 2) + 9.1248 ] (psi) (5.5)
r2

where co is in rpm. The maximum hoop stress of the inner raceway is at the inner

radius. The hoop stresses range from 38 ksi to 44 ksi when the rotation speed is

25,500 rpm.

The contact region between a sphere and a fiat surface is circular and the

stress distribution is [30]

X_ x2 y2P = Po 1 - a2 a2 (5.6)

where a is the radius of the contact area and Po is the maximum stress which can be
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calculated from

3 PT
(5.7)

Po - 2 ga 2

where PT is the total load. The radius is

3/3P TR (1 - v 2)a = 2E (5.8)

where R is the radius of the sphere. As discussed in [6] the experimental data

indicates that for the bearing considered in the present analysis the maximum

Hertzian stress is 285 ksi. Subsequent calculations will be based on this value.

The distribution of the Hertzian contact loading is distorted when the

spherical body is rolling over a surface containing a surface breaking crack [31].

However, the influence of the subsurface crack on the Hertzian stress distribution

has been shown [31] to be insignificant. The interaction effects of the subsurface

crack on the Hertzian distribution are thus ignored.

Since the Hertzian stress fields can be solved in closed form, superposition

is applied in order to decrease the number of nodes needed to model the Hertzian
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contactload accurately. The superpositionmethodis illustratedin Fig.5.3. The

stressintensityfactorsof asurfacecracksubjectedto theHertzianloadareequalto

thestressintensityfactorsof thesamecrackloadedwith thenegativeof thestresses

producedbytheHertzianloading. Thestressesproducedin the interiorof theplate

by the hertziancontactloadingarecalculatedby integratingthestressesdue to a

concentratedforceactingon theboundaryof a semi-infinitesolid [22] asshownin

Fig.5.4. The hoopstressesaredirectly appliedon the theend of theplate. The

totalstressintensityfactoris thenthesuperpositionof thestressintensityfactordue

to the hoopstressesand theone resultingfrom the Hertzian load. It shouldbe

noted that the depth of the plate is assumedto be large enough so that the

distributionof loadingremainsHertzian.

5.2 StressIntensityFactorof Circular SubsurfaceCrackin theInnerRacewayof

theEngine Bearing

This sectionpresentsthe resultsof a quasi-staticstressintensity factor

analysisof a typical ball bearingwhich is usedasa supportfor the mainshaft of

aircraft engines. All the calculationsarebasedon the model shownin Fig.5.2

which consistsof anaxial hoopstressanda Hertzian load( contactradiusa and

maximumintensity Po) interactingwith asemi-circularcrack(radius,or length1)

inclinedat anangle_. Thedynamiceffect is ignoredandthedistancex, between

thecenterof theHertziandistributionandthecrackmouthischangedincrementally

to simulatethepassageof eachballbearing.

The stressintensityfactorsfor this problemvary with positionalong the
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V (a) Original problem
( a Hertzian load with

a crack)

m

_° °

lj

(b) Hertzian load applied
on a body without
crack

+
- (_.°

lj

(c) Negative stress applied
on the crack surfaces

K (a)= K (c) (K c°) 0 )

Figure 5.3 Illustration of Superposition Method
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Figure 5.4 Concentrated Force acting on the Boundary of a Semi-infinite Body
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crackfront (0). A typicalvariationof themodeI stressintensityfactorat0 = 90°

with roller position andcrack length for a vertical crack ( _ = 0° ) is shownin

Fig.5.5 for Po= 285 ksi ( a -- 0.00679inch ). When theroller is at a distance

greaterthanfour timesthecontactlengthfrom thecrackmouth,thestressintensity

factoris aconstantwhichresultsfrom theaxialstress.As the roller gets closer, the

compressive stress arising from the Hertzian load decrease the K I stress intensity

factor. When the load is on the crack mouth the stress intensity factors becomes

negative for the cracks which are shorter than 0.005 inch. The negative value of K I

indicates the closure of the crack. For longer cracks, the decrease of K I diminishes

since the crack tip is beyond the range of the highly compressive Hertzian stress

field.

The variation of the mode II stress intensity factor for the same loading

condition is shown in Fig.5.6. The value of KII is zero when the roller is far from

the crack mouth. As the roller approaches the crack, KII starts to increase and

reaches a maximum value when the load reaches the crack mouth. As the roller

crosses to the other side of the crack, KII abruptly changes sign and decreases to a

minimum value equal in magnitude to the previous maximum. For small cracks this

change is very abrupt, but for large cracks the change is more gradually. As

pointed out in [6], these abrupt variations in K I and KII may significantly affect the

propagation of short cracks.

The stress intensity factors for 0 = 45 ° are shown in Fig.5.7 to 5.9. It is

observed that the variations of K I and KII did not differ significantly from 0 = 90".

Another stress intensity factor KIII is observed based on the local coordinate

system moving along the crack front. The KIII behaves as KII. Fig.5.10 to 5.12
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show the stress intensity factors for different locations along the crack front. It can

be seen from Fig.5.10 that the magnitude of K I does not change significantly. The

magnitudes of KII and KIII change along the crack front but however it can be

calculated from Fig.5.11 and 5.12 that the square root of the sum of the squares of

KII and KIII are almost constant along the crack front. A comparison of the results

for ¢ -- 0 ° obtained in the presented analysis with those presented in Mendelson and

Ghosn [6] revealed that the magnitudes and variations in K I are similar. However,

the mode II stress intensity factors differ significantly. As seen in Fig.5.5, for I -

0.02 inch the maximum value of KII is approximately 1.5 ksi qin, while in

reference [6] it is approximately 10 ksi_/in.

Fig.5.13 and 5.14 present the stress intensity factors of K I and KII at

0=90 ° , respectively, for cracks inclined at ¢ = 30 ° for Po = 285 ksi. An increase of

K I is observed when the roller passes to the right hand side of the crack mouth for

short cracks. This is because the Hertzian load causes the inclined crack surfaces

apart when it is passing over the crack mouth. The value of KII before the roller

crossing over the crack from the left is much greater than the KII after the roller

moving to the right of the crack mouth since the Hertzian load is pushing the left

crack surface sliding along the right crack surface when the roller is on the right

hand side of the crack.

Fig.5.15 and 5.16 show K I and KII variations for several inclinations of a

crack length I = 0.02 inch. High values of Kii is observed for ¢ = 15° and ¢ = 30 °.

The mode I fracture toughness of M50 steel, which is used for this type of beating,

is of the order of 18 ksiqin. Assuming the mode II toughness is of comparable

magnitude, these results indicate that this applied loading would lead to large
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propagation rotes for cracks inclined at 30 °.
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CHAPTERSIX

CONCLUSIONS

A preliminarystressintensityfactoranalysisof a typical high speed bearing

was conducted using the Boundary Element Method. The results obtained in the

present three-dimensional analysis suggest lower mode KII stress intensity factors

than those predicted by the two-dimensional analysis in [6]. This is due to the fact

that the total load needed to produce the experimentally measured 285 ksi Hertzian

stress using a semi-spherical contact area is much lower than that using a cylindrical

contact (27.5 lbs instead of 1500 lbs ). This may be the reason why the predictions

of Mendelson and Ghosns' [6] analyses are overly conservative. High K I and KII

values were observed for cracks inclined at 30 ° . These results indicate that the

interaction of the Hertzian load would lead to large propagation rates for cracks

inclined at 30 ° .

Although the stress intensity factor data obtained from the analysis has not

been reduced to a form suitable for life prediction, these preliminary results can

provide a better understanding of the complex interactions between a surface crack,

a moving Hertzian load, and an axial stress.

As for the further work, an incremental crack growth analysis of elliptical

cracks using the Boundary Element Method and a fatigue crack growth law would

be the next step. Also, more factors which affect the stress intensity factors of a

crack such as friction between the roller and the raceway, the dynamic effect, etc.

could be taken into consideration.
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APPENDIXA

SHAPEFUNCTIONSFORISOPARAMETRICELEMENTS

Theshapefunctionsfor differentelementsarelistedbelowcorrespondingto

theelementsshownin Fig.A.1.

(1) 3-NodeLinearTriangularElement:

N1 =_1

N2=_ 2

N3= 3

where { 1+ _2 + {3 = 1

(2) 6-Node Quadratic Triangular Element:

NI ={1(2{1- 1)

N2={2 (2{2- 1)

N3 = {3 ( 2{3 - I)

N 4 = 4_1{2

N 5 = 4{2{3

N6 = 4{3_1

where _ 1+ _2 + _3 = 1
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(3)4-NodeLinearQuadrilateralElement:

N1=( 1-{1)( 1-{2) / 4

N 2= ( 1 +{i)(1 - _2 ) / 4

N 3 = ( 1 + _1)( 1 +{2) / 4

N4-(1- {1)(1+{2)/4

(4) 8-Node Quadratic Quadrilateral Element:

N I =-(I+_i-_2)( I- _I)( 1- _2)/4

N 2 =-(I+_i-_2) ( 1 +_i)(I -_2)/4

N 3 = (-I+_i+_2)( I + _I)( i+ _2) /4

N 4=-(I+{I-_2)( I- {i)( I+{2)/4

N 5 = ( I- _12)( i- _2) /2

N 6= ( 1+ {i)(I - {22) /2

N 7 = ( 1-_12)( 1 +_2) / 2

N 8=(1- _1)(1-_2 2)/2
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Figure A. 1 Isoparametric Elements
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APPENDIX B

TRANSFORMATION FUNCTIONS

as

The integral on a boundary surface element with domain F can be expressed

I = f_c(x,y)dxdy
F

In order to overcome the 1/r singularity of the kernel the integral is first transformed

from the Cartesian coordinate system to the parametric k-coordinate system by

using the shape functions

nnl

x = E Ni(_l'{2)Xi
i=1

nlrl

Y = E Ni(_l '_2)Yi

i=1

corresponding with the Jacobian
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=

_X

3y

_1

_X

such that the integral becomes

K(_I '_2 )Jl (_I '_2)d_l d_2

The integral on the isoparametric element is then divided into several triangles

according to the location of the singular node. The singular integral on each triangle

is carried out by using a polar coordinate system with its origin at the singular node

such that

_1 = fi(r,0)

_2 = gi (r'0)
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J2(r,0) =

br ' 30

and

%

I = _ f _¢(r,0)J 1(r,0)J2 (r,0)drd0
i=1 T.

t

where nT is the total number of triangles in which the isoparametric element is

divided and T i is the corresponding domain. The Jacobian J2 = r can remove the

1/r singularity. In order to accomplish the integral numerically by the Gaussian

quadrature the polar coordinate is again transfered to a system with both coordinates

ranging from -1 to 1 by the transforming functions

r = hi(r, _0)

0=li(r,0)
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ar _ [
J3 = ]

I°° °°1_' aN

The integral then becomes

,1T

I = Z I _:(r'0-)J1 (r'0")J2 (r-'0")J3 (r' 9 )_d0_

i=l Ti

n T

i=l
na nb 1

a=l b=l

where n a and n b are the order of the Gaussian quadrature. The transforming

functions for different element are illustrated in the following pages.
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