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NEW UPPER BOUNDS FOR KISSING NUMBERS 
FROM SEMIDEFI NITE PROGRAMMING 

CHRISTINE BACHOC AND FRANK VALLENTIN 

1. I NTRODUCTION 

in geomeLry, the kissing number problem asks for the maximum number Tn 
of unit spheres that can simultaneously touch the unit sphere in n -dimensional 
Euclidean space without pairwise overlapping. The value of Tn is on ly known for 
n = 1, 2, 3, 4, 8, 24. While its determination for n = 1, 2 is trivial, iL is not the case 
for other values of n. 

The case n = 3 was the object of a famous discussion between Isaac Newton and 
David Gregory in 1694. For a historical perspective of this discussion we refer to 
(6]. The first valid proof of the fact "T3 = 12", as in the icosahedron configuration, 
was only given in 1953 by K. Schutte and B.L. van der Waerden in (23]. 

In the 1970s, P. Delsarte developed a method, initially aimed at bounding codes 
on finite fields (see (8)) that yields an upper bound for Tn as a solution of a linear 
program and more generally yields an upper bound for the size of spherical codes 
of given minima.I distance. We shall refer to this method as the LP method. With 
this method, A.M. Odlyzko and N.J.A. Sloane ((16)), and independently V.I. Leven
shtein ((141), proved Ts = 240 and T24 = 196560 which are, respectively, the number 
of shortest vectors in the root lattice Es and in the Leech lattice. For other values 
of n, the LP method gives in many cases the best known upper bounds. However, 
for n = 3 and n = 4 it only gives the upper bounds T3 :::; 13 and T4 :::; 25. 

In 2003, 0.R. Musin succeeded in proving the conjectured value T 4 = 24, which 
is the number of shortest vectors in the root lattice D4 , with a variation of the LP 
method (see (15] and the survey (19] of F. Pfender and G.M. Ziegler). 

To complete the picture, let us discuss w1iqueness of the optima.I point con
figurations. For dimensions 8 and 24, uniqueness was proved by E. Bannai and 
N.J.A. Sloane ((3]). '!'heir proof exploits the fact that the LP method obtains 
exactly the aimed value. For dimension 3, there are infinitely many possible conng
urations. In the regular icosahedron configuration, the angular distances between 
the contact points are strictly greater than the required 7r /3; hence these points 
can be moved around obtaining infinitely many new suitable configurations. This 
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partially explains why Lhe deLennination of r3 is difficult. On the contrary, unique
ness of the optimal configuration of points in dimension 4 is widely believed, but it 
remains unproven. 

The LP method, which was established by P. Delsarte, J.M. Goethals and 
J.J. Seidel in [9), handles the more general problem of the determination of a bound 
for the maximaJ number 

A(n,8) = max{card(C): Cc sn-l wit.h c· c'::; cos8 for c,c' EC, c =f c'} 

of points on the unit sphere with minimal angular distance B. Such configurations 
of points, also called sphedcal codes with minimal angular distance B, are of special 
interest in information theory. The kissing number problem is equivalent to the 
problem of finding A(n, n/3). 

In this paper, we define a semidefinite program (SDP for short) whose optimal 
soluLion gives a.n upper bound for A(n,B) and strengthens the LP method. Com
putational results show that for several values of n this SDP method gives better 
upper bounds for rn than the LP method. 

To he more precise, let us recall that the LP method relies on the existence of 
polynomials Pl:(t), satisfying the so-called positivity property: 

(1) forallfiniteCcsn- 1
, L P'f:(c·c')?.0. 

(c,c' )EC2 

These polynomials arise as zonal spherical polynomials on the sphere, i.e. the zonal 
polynomials associated to the decomposition of the space of polynomial functions 
under the action of the orthogonal group O(JR11

). 

The consideration of the action restricted to a subgroup H of O(lRn ), chosen 
to be the stabilizer group of a fixed point e E S"-1, leads us to some symmetric 
matrices sr whose coefficients a.re symmetric polynomials in three variables such 
that 

(2) for all finite cc sn- 1, sr (c. c'' c. c", c' . c") t 0 
(c,c' ,c")EC3 

where the sign "t O" stands for "is positive semidefinite". 'fhe reason why we obtain 
matrices instead of functions comes from the fact that, in the decomposition of the 
space of polynomial functions on the sphere under the action of H , multiplicities 
greater than l appear. In fact these multiplicities are exactly t he sizes of the 
corresponding matrices. From (1) and (2) we derive an SDP whose solution gives 
an upper bound for A(n,B). 

Our approach adapts the method proposed by A. Schrijver in [22] to the unit 
sphere whereas he obtains new upper bounds for binary codes from an SDP. His 
work can also be interpreted in group theoretic terms, involving the isometry group 
of the Hamming space lF;' and the subgroup stabilizing (0, . . . , 0) which is t he group 
of permutations of the n positions. I t is very likely that many other spaces of 
interest in coding theory can be treated likewise. The case of non-binary codes was 
considered by D.C. Gijswijt, A. Schrijver and H. Tanaka in [11]. 

T he paper is organized as follows: Section 2 reviews on the LP method. Section 
3 il1troduces and calculates the semidefinite zonal matrices associated to the action 
of H and leading to the matrices sr. Section 4 defines the semidefinite program 
and its dual that establishes the desired bound. Section 5 discusses computational 
results. 
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2. REVIEW OF THE LP METHOD ON THE UNIT SPHERE 

We int.roduce the following notation. The standard inner product. of the Eu
clidean space !Rn is denoted by x · y. The unit. sphere 

sn-1 := {x E IR": x · x = l} 

is homogeneous under the act.ion of the ort.hogona.l group O(JRn) = { 0 E JRn><n : 

0 10 =In}, where In denotes t.he identity matrix. It is moreover two-point homo
geneous, meaning that. t,he orbits of O(IRn) on pairs of points are charact.erized by 
the value of their inner product. 'l'hc spo.cc of rco.l polynomial functions of degree 

at most. d on s11
-

1 is denoted by Pol$d(s11
-

1 ). It is endowed with the induced 
act.ion of O(IR") and equipped with the standard O(R." )-invariant inner product 

(f,g) = ..!.__ r J(x)g(x)dwn(x), 
w,.. ls· -• 

where Wn = F(~/2
2

> is the surface area of sn-I for the standard measure dwn. It is 

a well-known fact. (see e.g. [24, Ch. 9.2)) that under the action of O(IR") 

(3) 

where H'J: is isomorphic to the O(lRn }-irreducible space 

n EJ2 
Harm~ = { f e 1Rlxi. ... , Xn) : f homogeneous, deg f = k, L liX2 f = 0} 

i=l 1 

of harmonic polynomials in n variables which are homogeneous and have degree k. 
We set h'k := dim(Harmi:) = ('"~:7 1 ) - (n;:73). 

A certain family of orthogonal polynomia.ls is associated to the unit sphere. 
They will be denoted by P'f:, with the convention that PJ: has degree k and is 
normalized by PJ:(l) = l. For n ;::: 3 these polynomials are up to multiplicative 
constants Gegenbauer polynomials et with parameter .A = n/2 - 1. So they are 

given by PJ:(t) = e;t2
-

1(t)/e;t2
-

1(1), and the Gegenbauer polynomials e£ can 
be inductively defined by CG'(t) = 1, eNt) = 2.At, a.nd 

ket(t) = 2(k +.A - l)tCt_ 1 (t) - (k + 2.>. - 2)e£_2 (t}, fork;::: 2. 

They are orthogonal wit.h respect to the weight function (l-t2)~- 1 12 on the interval 
(-1, 1). For n = 2 the polynomials P;: coincide wit.h the Chebyshev polynomials of 
the first kind 'Ji, which can be inductively defined by 1o(l) = 1, 1'1 (t) = l, and 

1J,(t) = 2t'JJ,_1(t) - '.Lk-2(l), fork;::: 2, 

and they are orthogonal with respect to t.he weight function (1 - t2 )-112 on the 
interval l-1, lj. 

The polynomials P'f:(l) are related to the decomposition (3) by the so-called 
addition formula (see e.g. (1, Ch. 9.6]): for any orthonormal basis (ei, ... , eh;:) of 
H'f and for any pair of points x, y E sn- l we have 

(4) 
h" 1 k 

P'f:(x · y) = hn L e.(x)e;(y). 
k i=<I 
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From the addition formula (4), the positivity property (1) becomes obvious: 

1 h~ 
L Pi;(c · c') = L hn L ei(c)e;{c') 

(c,c')EC2 (c,c')EC' k i=l 

1 h~ 1 h~ ( ) 2 
= hn L L ei(c)e;(c') = hn L L e;(c) ;::: O. 

k i=I (c,c')EC' k i=1 cEC 

Now we introduce the unknowns of the LP to be considered. For a spherical 
Mrle C we define the two-poinl distance di~tribution 

x(u) := car~(C) card{(c,c') E C 2
: c·d =u}, 

where u E (-1, l] . Clearly, only a finite number of x(u)'s are not equal to zero, and 
the positivity property can be rewritten as a linear inequality in the x(u)'s: 

(5) L x(u)PJ:(u) 2 0. 
uEl-1,1) 

Moreover, the number of elements of C is given by card(C) = Luel- l,J) x(u). 
Noticing the obvious conditions x(l) = 1, x(u);::: 0, and x(u) = 0 for cos6 < u < 1 
if the minimal angular distance of C is 8, we are led to consider the following linear 
program: For any d 2 1, the optimal solution of the linear program 

max{ 1 + L x(u) 
uE [-1,cos 8) 

(6) x(u) = 0 for all but finitely many u E [-l,cos8], 

x(u);::: 0 for all u E [- 1,cos8], 

1 + Lue(-l,cos8) x(u)PJ:(u) 2: 0 for all k = 1, ... , d} 

gives an upper bound for A(n, 8). The dual linear problem is 

d 

min{ l+ :Lfk 
k=l 

fk 2 0 for all k = 1, ... , d, 
(7) 

L~=I fkPJ:(u)::; - 1 for all u E (-1 ,cosel}. 

By the duality theorem (cf. [10]) any feasible solution of (7) gives an upper bound 
for the optimal solution of (6). The dual linear program can be restated in the 
following way involving polynomials: 

Theorem 2.1 (See e.g. [9, Th. 4.3], [12), [16), [7, Ch. 9)). Let F(t) = I::t=o fkP°f:(t) 
be a polynomial of degree at most din IR[t]. If 

(a) fk 2 0 for all k 2 1 and lo> 0 and 
{b) F(u) ::; 0 for all u E [-1, cos8]1 

then 

A(n, 8) 5 FJ:). 
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3. SEMIDEFI NITE ZONA!, MATRI CES 

Now we fix a point e E sn-I and let H := Stab(O(JRn), e) be the stabilizer of 
e in O(IR"). Obviously, H ::::: O(!Rn- 1 ) since O(JRn- 1 ) can be identified with the 
orthogonal group of the orthogonal complement of !Re. 

It is a classical result (see e.g. [24, Ch. 9.2]) that for the restricted action to H 
the decomposition of Harm/,'. into H-irreducible subspaces is given by 

k 

Harm/,'.::::: ffi Hann:•-!. 
i=O 

Hence, each of the H'f: in (3) decomposes likewise: 

(8) H n Hn-1 1 Hn-1 1 1 Hn-1 
k = O,k _.... 1,k _.... · • • _.... k,k > 

where H~i; 1 ::::: Harmr 1 . We give an explicit description of this decomposition in 
t he proof of Theorem 3.2. 

We summarize the situation in the following picture: 

Pol::;d(sn- 1) H~ j_ Hr .l .l Hn 
d 

= Hn-1 j_ Hn-1 _l _l E-1 o.o 0,1 O,d 
j_ Hn-1 _l .l Jr.-1 

1,1 l ,d 
.................. 

1 Hn- 1 
_.... d,d . 

The isotypic components of the H -decomposition of Pol::;d(sn -I ) are 

(9) Ik := H~.k: 1 .l ... .l H'f:,'d 1
::::: (d- k + 1) Harm~-1 , fork= 0, ... ,d. 

Now we show how to associate to each Ik a "zonal matrix" in view of an analogue 
of the addition formula ( 4). 

Theorem 3.1. Let I= Ro .l R1 1- ... .l Rm::::: (m+ l)R be an isotypic component 
of Pokd(sn-I) under the action of H, with Ran H-irreducible space of dimension 
h. Let (eo,1, ... ,eo,h) be an orthonormal basis of Ro and let <fa; : Ro ~ .R; be H
isomorphisms preserving the inner product on Pol5d(sn- 1). Let e;,; = <fa;;(eo,j), so 
that (e1,1, ... , e;,h) is an orthonormal basis of R;. Define 

(

eo 1(x) 
1 l . 

E(x) := ( r.:-ei,J(x))o$i$m = r.:- : 
vh l<J<h vh ( ) 

- - em,! x 

and 
Z(x, y) := E(x)E(y)t E JR(m+l)x(m+l). 

Then the fallowing properties hold for the matrix Z: 
(a) Z(x,y) does not depend on the choice of the orthonormal basis of R 0 • 

(b) The change of </>1 to -<P; for some i or the choice of another decomposition of 
I as a sum ofm+ 1 orthogonal H-submodules changes Z(x,y) to some OZ(x,y)Ot 
with 0 E O(JR""+1 ). 

(c) For all g E H, Z(g(x),g(y)) = Z(x, y). 
(d) (Matrix-type positivity property) 

(10) For all finite cc sn-1, L Z(c, c1
) t: 0. 

{c,c')EC2 
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Proof. (a) If (Eo.1, ... ,Eo,h) is another orthonormal basis of R.o. then t here is an 
orthogonal h x h matrix 0 wit h (!0,1,. .. ,<:o,h) = (eo,1,. .. ,eo,h)O. In this case the 
matrix E(x) is changed t.o E(x)O and, since 001 = lh, the matrix Z(x, y) stays 
unchanged. 

(b) By Schur's Lemma and by the irreducibili ty of R, there are only two possible 
choices for <f>t, namely </J1 and -<{>;,once the subspaces R; are fixed. 

Let I = So J. ... J. Sm be another decomposition of I, together with H
isomorphisms •t/J; : R; -+ S; preserving the inner product on Pokd(sn- 1 ). Then 
'l/J = ('I/Jo, ... , 1/Jm) defines an H-endomorphism of I. Again by Schur's Lemma, for 
a suitable choice of basis in 14 and by permuting rows and columns, the matrix 
of 'l/J is block diagonal with h blocks of size (m + 1) x (m + 1) and with t.he same 
(m + 1) x (m + 1) matrix 0 E O (ntm+l) as blocks. This means t hat E(x) changes 
to OE(x) and so Z(x,y) becomes OZ(x,y)01• 

(c) Since 
e;,;(g- 1{x)) = (ge;J)(x), 

the computation of Z(g- 1 (x),g- 1(y)) amounts to replacing thee;,; by gei,j in the 
definition of Z(x, y). Since Ri is H-stable, e;,j := ge;.;, with j = 1, . .. , h, is another 
orthonormal basis of R;, and 

<{>;(!1,;) = </>;(ge1,;) = g<f>;(e1,;) = ge;,; = e;,; . 

Hence from (a) we conclude Z (g- 1(x), g- 1(y)) = Z(x,y). 

(d) We have L Z(c,c') = (L E(c))( L E(c)) 1 
!:::0. 

(c,c')EC2 cEC cEC 

0 

The orbits of H on pairs of points on the unit sphere x, y E sn-1 are character
ized by the values of the three inner products e·x, e·y, and x·y. By defh1ition the co
efficients Z;,;(x, y) of Z(x, y) are polynomials in the variables x1,. .. , Xn, y 1 , ... , Yn· 
Then, property (c) of Theorem 3.1 implies that they can be expressed as polyno
mials in the three variables tt = e · x, v = e · y, and t = x · y. 

By ZJ;, for 0 ~ k ~ d, let us denote the matrix associated to Ik as defined 
above and more precisely to the decomposi tion (9) of Ik· Now we shall calculate 
the matrix Yp (u, v, t ) with 

(11) zr (x , y) = Y,;' (e · x, e · y, x · y ). 

T heorem 3.2. With the above notation, we have, for all 0 ~ i,j $ d - k, 

(12) (Ykn};,;(u,v,t) = .A;,;Pp+2 k(u)Pj+2k(v)Qk- 1(u,v, t ). 

where 

Q~- 1 (u v t) := ((l _ u2)(l _ v2))k/2 pn-1 ( t - uv ) 
k I t k v(l - u2)(1 - 112) 

and 
A;,;= Wn Wn+2k-I (hf+2khj+2k)lf2. 

Wn-1 Wn+2k 

Proof. We explicitly use an orthonormal basis of Hf.i;~; to calculate Yt (u, 11, t). 
Such a basis is constructed in (1, Ch. 9.8). Let us recall the construction. For 
x E 3n-1 , let 
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\\IWrt' u :r . ( 1\1\d ( hdouy;. lo t lw 111111 ... phC'rf' S" 2 of (Rt') l \\'it h I E ur I c 
Pol<. k(S" 1) we• B.."b0ci11tt• .,.·(/) ~ Pol , i.(.'i" 1) <lt>fined hy 

.,:(/)(:r) · ( I u1 ) 4 11 /((). 

Nott• th111 1 lw multiplication b)• (I - 11 2 ) 4 11 forn~ .;(/) to be a polynomi11l function 
i11 lh<• wonli1111l('S of :r. Ck•arly .p t·o11111111t<.,, with l he act ion of II. I h•11t'I' <;'(11; - 1

) 

ii> n s11hi;pnc<• of l'ol9(S"- 1) which i..; il.c1111orphi<" lo llnrm~- 1 • ~Ion• gi•111>rnlly, the 
set {<t'(/)l'(u) : f E Harm; - 1.deg /' < i} ii; a suhspac:e of l'ol -; Ha(S" - 1) whid1 
is i:;o111orphic to t + I <·opies of I limn~ 1

• lly induction on k- 1111d .; thrre t•xi.<;t 
poly11m11i11ls P,(u) of d('j(l't't' 1 such 1hnt .,.· (//;.' 1)P, (u) = H~.I.~ .. Noll' llml ihii:: 
co1u;trm·tion could IX' used Lo deri\'I' d<'<~>1111xi;,it ion (8) t>xplicitly. 

\\'t• t'l\n ('xploit the foct that the i:.ul..1>11<Th 114.11 are pairw~ orthogonal to pro\'C' 
an orthogonality rt'lation betw~·n thr polynomials P,. Th(•n lhi.., orthogonality 
relation will en11ble u::. to identify the polynomials P, as multiples of Gegenbaurr 
polynomial .... Let us recall that the 111<.'l\Mlr('S on sn- I and on .c,on - 'l llrl' related by 

d..vn(:r) = (I - t1 1 )(n - ~)/'ldudwn- 1((}. 

Wlwncver i =/: j, we ha\'e for all f E If;: - 1 

O = ...:._ f "'(/)P,(u)._,,(/)/>1(11)dw,.(:r) 
Wn Js,.. i 

= ...:._ f /(()2(1 - u 2 )" P,(u)P1 (u)ci.v,.(.r) 
"'"ls .. -• 

= ...:._ ( /(()2d..J,._ 1(( ) 1
1 

(I - u2)1:+<n-3lllp1 (u)Pi(u)du, 
Wn lsM - 2 - I 

from which Ytt> derive that 

JI (1 - u 2 )k+(n- :S)/2 P,(u)P,(u)du = 0; 
-I 

hence the µolynomia.ls P,(u) are proportional to P,n+'.lk(u). We obtaiu nn orthonor
mal basis of Hk'.i;!, from an orthonormal basis (/1, .. .,/11) of H'i:- 1 by taking 
e,,, = >.,.p(f,)P

1
"+2"' (u} for a suitabl<' normalizing factor >.,. We compute >., in a 

similar way as abo\'e: 

I = ...:._ ( (>.,-,,(/1 )P."+21:(u))2 d...l,.(.r) 
....,n Js .. 1 

= ...:._ f (/i(0)2ci.vn-1(()11 >.?Cl - u2)1:+tn - 3Jt2(P,"+21<(u))2du 
w./n J $M - 2 - I 

= ""n-1 11 

>.~(I_ u2)k+(n- 3Jf'l(P,"+2k(u))2du. 
Wn -I 

From the addition formula (4) applied to (P;"+2 "(u))2 one easily shows thal 

JI (1 - u2)k+(n-:S)/2(p:•+2k(u))2du = Wn+2knHk' 
-I Wn+'.lk-th, 

so we obtain 
>.? = ~ Wn+'lk-1 h~+2k. 

W..-1 Wn+21: 
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Now we are in t.he situation of Theorem 3.1 wit.h 

o _ H"-1 R 11n-I R H"- 1 
HQ = k,k > 1 = k,k+ I> 0 0 0 I d-k = k,d 

and their orthonormal basis (eo,1 1 ••• , eo,h), .. ., (ed-k,i. .. . , ed-k,h). The isomor
phisms r/>; are the multiplications by (>.i/>.1)Pi"+2k(u). 

Then, the coefficient (i,j), with 0 5 i,j :5 d - k, of Zf is given by 

(zr) . . (x,y) 

"' 1 h 
h L c,,8 (x)e1 ,8 (y) 

•=I 
h * L >.;(1 - u2)k/2 fs (()Pi"+2k(u)>.,(1 - v2)k/2 fs({)P;+2k (v) 

•=I 
h 

>.1>.;Pt+2k(u)Pj+2k(v)((l - u2)(1 - v2))k/
2 ~ L fs(()f,(0 

s=I 

= >.;>.;Pr+2k(u)Pj+2k(v)(( l - ti2)(1 - v2))k/2 p;:-1((. {), 

where we have written y = ve+ ~{ and where we applied the addition formula 
( 4) to get. the last equality. Now we define >.1,; = >.1>.; and since 

( · { = (t - uv)/ J(l - u2)(1 - v2), 

we have completed the proof. 0 

Remark 3.3. We would like to point out that the role of the number d is only to 
cut Yt to a matrix of finite size. Indeed, d does not enter into the expression of 
(Yt);)u, v, l). It is better to view the mat.rices Yt as matrices of infinite size with 
all finite principal minors having the matrix-type positivity property. 

Remark 3.4. For the semidefinite programming bounds in Section 4 we only use the 
matrix-type positivity property of the matrices Yk'. This property is preserved if 
one replaces Yk" by AYk"A1 with an invertible matrix A. So, e.g., one could replace 
the expression of (Ykn);,;(u, v, t ) in (12) by the simpler u1v'Q~- I (u, v, t). 

Due to the specific choice of the unit vector e defining the subgroup H , t he 
coefficients of Yk" are not symmetric polynomials. We introduce the symmetrization 
Sf of ykn and state the announced property (2). 

Corollary 3.5. For all d ~ 0, for all k ~ 0, let Yk" be the matrix in 1'heorem 3.2 
and let s;: be defined by 

(13) s;: = ~ L o-Yk" • 
" 

where O"' runs through the group of all permutations of the variables u , v, t which acts 
on matrix coefficients in the obviov.s way. 'l'hen the matrices Si; are symmetric and 
have symmetric polynomials as coefficients. We have that 

(14) for all finite CC sn-1
, L Yt(e · c, e · c', c · c') ~ 0, 

(c,c')EC2 
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and 

(15) for all finite C c gn- •, sr (c. c'' c. c"' c' . c") t: 0. 
(c,c' ,c" )EC' 

Proof. Note that. {Yt);)u,v,t) = {Yt);)v,ti,l) which gives the desired proper
ties of SJ:. Property (10) rephrases Lo (14) and property (15) is obtained from (14) 
by taking e = d' EC and summing over all d' EC. 0 

To end this section, we show that t.he positivity property (1) is actually a con
sequence of the matrix-type positivity propert.y (2). A!> !>hmvn in the following 
proposition, one can express the polynomials PJ: as a linear combination of diago
nal elements of t.he matrices Yt with non-negative coefficients. 

Proposition 3.6. We have the following expression for the polynomials PJ:(t) in 
terms of matrix coefficients of ykn(u,v,t): 

k hn-1 
(16) P;;'(t) = L hn {Y8n)k-s.k-•(u,v,t). 

s=O k 

Consequently, property (14) or property (2) implies (1). 

Proof. The addition formula ( 4) holds for any orthonormal basis of H:. We take 
an orthonormal basis of HJ: obtained by concatenation of the orthormal basis of the 
spaces ~o -k 

1
, Hn1 k-

1
, ••. , H~-k 1• If ( e~ 1, e! 2 , ... , e" h" _, ) denotes an orthonormal 

• ~ ~, ' t "· " 

basis of Fr;,/; 1 , we have from Theorem 3.1 

h" - 1 

(Y,") k-•,k-s(e · x, e · y, x · y) = h,.1_ 1 t e~.;(x)e~,i (y). 
6 i==I 

By the addition formula (4) 

k hu-1 

P:(x · y) = :n L :t e~,;(x)e~.1 (y) 
k s=O i== I 

k hn-1 
- ~-8-(Yn) (e·x e·y X·y) - D hn " k-•.k-• • • • . .. a k 

and hence 
k hn-1 

Pl:(t) = L hn (Y.") k-s.k-•(u, v, t). 
s=O k 

Since the coefficients h:- 1 / h~ are non-negative, and since the diagonal elements 
of a semidefinite matrix are non-negative, (1) is a consequence of (14). 

With the action of the permutation group of the variables u, v, t 

l k hn-1 
3 (Pk'(u) + Pk'(v) + Pk' (t)) = L ~n {S;') k-a,k- 8 (u, v, t). 

a=O k 

Replacing u = c · d, v = c · c'', t = d · c'' and summing over (c, c', c'') E C 3 for a 
code C, we obtain (1) from (2). 0 
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4 . T HE SEMIDEF!NITE PROGRAMMING BOUND 

In this section we set up an SDP whose optimum gives an upper !bound for 
A(n, 0) which is at least as good as the LP method. 

For a spherical code C we define the three-points distance distribution 

( ) 1 d {( I //) cS I JI I II } xu, v ,t := card(C)car c,c,c E :c-c =u,c-c =v,c - c =t, 

where ·u, v, t E [- 1, l] and the matrix 

(~ ~ ~) . 
v t 1 

being the Gram matrix of three vectors on a unit sphere, is posit ive semidefinite. 
The last condition together with the first is equivalent to the fact that the de

terminant of t he Gram matrix is non-negative; hence 

(17) 1 + 2uvt - u2 
- v2 - t 2 2: 0. 

The two-point distance distribution x(u) as defined in Section 2 and the three-point 
distance distribution x(u,v,t) are related by x(u,u,1) = x(u). The three-point 
distance distribution satisfies the following obvious properties: 

x(u, v, t) 2: 0, 

x(l , l, l) = 1, 

x(u(u), u(v), u(t)) = x(u, v, t) for all permutations u, 

L x(u,v, t) = card(C)2
, 

u,v,t. 

L x(u,u, 1) = card(C). 

Furthermore, from the posit ivity properties (5) and (15), we have for any d 2: 0 

'2::.:: x(u,u, l)Pk"(u) 2: 0 fork= 1, ... ,d, 
u 

L x(u., v, t)SJ:(u, v , t) C: 0 fork = 0,, . ., d, 
u,v,t 

where the matrix S1J has size (d - k + 1) x (d - k + 1). If the minimal angular 
distance of C is 0, we have moreover 

x(u.,v,t) = 0 whenever u.,v,t </; [- 1,cos8) U {l}. 

To factor out the action of the permutations of the variables u, v, t, we introduce 
t he domains 

D = {(u.,v,t) : - 1 $ u S v St S cos8 and 1+2u.vt - u.2 -v2 - t 2 2: O}, 

Do= {(u,u , 1) : -1 $ u $ cos8}, I= (-l,cos8), 

and m(u, v , t) with 

{ 

6 if u =I= v =I= t, 
m(u,v,t)= 3 ifu=v=j:toru.=f=v=toru=t=/=v, 

l if u = v = t . 



NEW UPPER BOUNDS F'OR KISSING NU:\1BERS 919 

From the discussion above, a solution to the following semidefinite program in the 
variables x'(u,v,t) = m(u,v,t)x(ti,v,l) is an upper bound for A(n,£1): 

l+ ma,x {~ 'L:X'(u ,u, 1): 
uE/ 

x'(u,v,t) = 0 for all but finitely many (u,v,t) EDU D0 , 

x ' (u, v, l} ~ 0 for all (·u, v, l} E D U Do, 

(l,8)+~ I:x'(u,u,l)(Yl)+ L x'(u,v. t)(8YH:O, 
uE/ (u,v,t)ED 

3 + L x'(u, u, l )Pk' (u.) ~ 0 fork= 1, .. .,d, 
uE/ 

SJ:(l,1,1)+ L x'(u,v,t)S~(u,v,t)~O fork=O, .. .,d}. 
(u,v,t)EDUDo 

The third constraint deserves some further explanation. We have already noticed 
that 

card(C}2 = 1 + L x'(u,v,t)= (1+ I: x{u,u,1))2, 
(-u,v,t)E DUD11 uE/ 

which implies 

L x'(u ,v, t ) + ~ I: x'(u,u, 1)- G I:x'(u,u, 1))2 ~ 0, 
(u,v,t) ED uE/ uE/ 

and this is equivalent to the semidefini~e condition 

uE/ >- Q. 
~ L x'(u,.u, 1) ) 

L x'(u,v,t)+~ l:x'(u,u,l) -
(u,u,t)E D ueI 

Remark 4.1. We want to point out that, despite of the fact that (2) implies (1), as 
is proved in Proposition 3.6, the inequalities 3 +Lue! x'(u, u, l )Pk'(u.) ;::: 0 should 
not be removed from our SDP. Indeed, the last inequalities do not imply them for 
an arbitrary set of numbers x'(u, v, t ), unless these numbers satisfy the additional 
equalities 

I>c-u, v, t ) = ( L x(u, u, l ))x(t, t, 1) for all t. 
u,u u 

These equalities do hold for codes, but they are not semidefinite conditions. It can 
be noticed that the third constraint in the maximization problem above is a weaker 
consequence of them. 

Just as in the LP method, the main problem with the above SDIP is that the 
unknowns x(u, v, t) are indexed by a continuous domain of R3 • We cannot exploit 
the information that only a finite number of them are not equal to zero, because 
we don't know to which values of (u., v, t) they correspond. We solve this problem 
by applying duality theory. 

Before we derive the SDP dual to the above one, we recall the principle of weak 
duality. We use the standard notation for the inner product of symmetric matrices: 
(A, B) = Trace(AB}. Let J be a (possible infinite) set of indices, Jet S; E Rmxm 
be symmetric matrices with j E J , let C E !Rmxm be a symmetric matrix, and 
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let Cj E IR be real numbers. Suppose that Lhe real numbers Xj E IR are a feasible 
solution of the primal problem, i.e. x; = 0 for all but finitely many j E J and 
C - L:JeJ x;SJ?:::: 0. F\.irthermore, suppose that the symmetric matrix FE !Rmxm 

is a feasible solut ion of the dual problem, i.e. (F,Sj) = c1 for all j E J and F?:::: 0. 
Then, we have L':;eJ CjXj = ('L,;eJ XjSj, F)::; (C, F). 

In our case this specializes as follows: The set of indices is J = Do U D. The 
matrices S (u,u,t) a.re block matrices with four blocks of different type. We get one 
block for each positivity constraint in the above SDP. So F is also a block matrix 
with four blocks of different type. In this case it can be simplified to three blocks. 
1'he first block of F consists of the matrix ( ~:! ~!~). The second block of F is 
the diagonal matrix with coefficients a 1 , • . • , ad. T he third block of F is again a 
block matrix with blocks Fo, ... , Fd which have the same size as the matrices Sf. 
The matrix C is a block matrix as well. The first block of C contains the matrix 
( b 8 ). The first entry of the second block is 3; the other entries in this block are 
zero. T he third block of C consists of the matrices sr(1, 1, 1). The real numbers 
C(u,v,t) are zero if (u,v,t) ED and t hey a.re equal to 1/3 if (u,v,t) E Do. In the 
following theorem we give the SDP dual to the above one. F\.irthermore we apply 
the simplification Sf (1, 1, 1) = 0 fork 2: l. 

Theore m 4.2. Any feasible solution of the following semidefinite problem gives an 
upper bound on A ( n, 8): 

d 

l + min { L ak + b11 + (Fo, sg(1, 1, 1)) : 
k=I 
( b11 b12) >- 0 

b12 bn - ' 
ak 2: 0 for k = l, ... , d, 
Fk ?:::: 0 fork = 0, . . . , d, 

d d 

L akPk'(u) + 2b12 + ~2 + 3 L (F1c, Sf(u,u, 1))::; - 1, 
k=I k=O 

d 

b22 + L (Fk,Sf(u,v,t))::; o} , 
k=O 

where the last inequality holds for all (u, v, t) E D and the second to last inequality 
holds for all u E I . 

Note that if the last inequality holds for a.II (u, v, t) E D, then it also holds for 
the larger domain 

D' := {(u,v,t) : -1 ::; u,v,t::; cosO and 1+2uvt -u2 - v2 - t 2 ~ O}, 

because the coefficients in sr are symmetric polynomials. 

5. COMPUTATIONAL RESULTS 

In this section, we describe one possible strategy to derive explicit upper bounds 
for Tn from T heorem 4.2. Thereby we make use of techniques from polynomial 
optimization introduced e.g. in [13) and [17] which we shall briefly recall here. 
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We consider the polynomials 

p(u) = - (u + 1/4)2 + 9/16, 

P1 (u, v, t) = p(u), pz(u, v, t) = p(v), p3(u, v, t) = p(t), 

p4(u,v,t) = 1+2uvt-u2 -v2 - t2
, 

and we obviously have 

I {u E IR: p(u) 2 O}, 
D' {(u,v, t)EIR3 :p;(u,v,t)2::0, i=l, ... ,4}. 
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We say that a polynomial f E IR[x1, . .. , Xn] is a sum of squares if it can be written 
as f = L~=l g[, for k E N and g; E IR[x1,. . .,xn]· A polynomial p(x1,. .. , Xn) 

of degree 2m is a sum of squares if and only if there is a positive semidefinite 
matrix Q so that p(x1 , ... ,xn) = ztQz where z is the vector of monomials z = 
(1, x1, .. . , Xn, X1X2, . .. , Xn-1Xn, ... , x~). So assuring that a polynomial is a sum 
of squares is a semidefinite condition. 

It is easy to see that the last two conditions of the semidefinite program in 
Theorem 4.2 are satisfied if the following two equalities hold: 

d d 

-1 - L akPJ:(u) - 2b12 - bz2 - 3L(Fk,S~(u,u, 1)) = q(u) + p(u)q1(u), 
k=l k=O 

d 4 

- b22 - L(Fk, Sk'(u, v, t)) = r(u, v, l ) + LP;(u, v, t)ri(u, v, t) 
k=O i= I 

where q, Q1 and r, r 1 , ... , r4 are sums of squares. 
It is not a priori clear that the relaxation of using this specific sum of squares 

representation is strong enough. The following theorem of M . Putinax justifies our 
approach. 

Theorem 5.1 ([20]). Let K = {x E JRn: p 1 (x) 2:: 0, . . . ,p.(x) 2 O} be a compact 
semialgebraic set. Suppose that there is a polynomial P of the form P = q + p 1 q1 + 
· · -+p.q., where q and all q; 's are sums of squares, so that the set {x E 11tn: P(x) 2 
O} is compact. Then, every polynomial p which is positive on K can be written as 
p = r + p1r1 + · · · + p.r., where r and all r; 's are sums of squares. 

Now we use these considerations to formulate a finite-dimensional semidefinite 
program which gives an upper bound on the kissing number Tn: We fix d and 
restrict the polynomials q, Qli r, r1, ... , r4 to polynomials having degree at most N, 
with N 2 d. Then we can use the computer to find a feasible solution of this 
finite-dimensional semidefinite program. A feasible solution of it is at the time a 
feasible solution of the SDP in Theorem 4.2. So it gives an upper bound on the 
kissing number Tn· 

We implemented this approach and give our results in Table 5.1. 
The values of the last column were found by solving the above semidefinite 

program for the values d = 10 and N = 10. The values of the third column were 
obtained by Odlyzko and Sloane by Theorem 2.1 using the valued = 30. They 
pointed out that even d = 11 would suffice for n ~ 10. Our calculations were 
performed by the program csdp (Version 5.0) of B. Borchers ([2]) which is available 
on the Internet (http://infohost.nmt.edu;-borchers/csdp.html). After solving the 
SDP with csdp, we checked independently whether the solution satisfies the desired 
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TABLB 5.1. Bounds on rn. 

best lower best upper bound LP SDP 
n bound known previously known method method 
3 12 12 (Schutte, v.d. Waerden (23]) 13 12 
4 24 24 (Musin [15]) 25 24 
5 40 46 ( Odlyzko, Sloane [16)) 46 45 
6 72 82 (0., s. [16)) 82 78 
7 126 140 (0., S. [16]) 140 135 
8 240 240 (0., S. [16), Levenshtein (14]) 240 240 
9 306 379 (Rzhevskii, Vsemirnov (21)) 380 366 
10 500 594 (Pfender (18]) 595 567 

constraints. This can be done using rational arithmetic only. So our computations 
give rigorous proofs of the stated upper bounds. Due to numerical instabilities we 
were not able to perform this calculation for larger n and/or larger d, N. The 
smallest values of d and N which solve the kissing number problem in dimension 3 
is d = N = 5. 'l'hen, we obtain by the SDP method 73 $ 12.8721. For the kissing 
number problem in dimension 4 it is d = N = 7, and the SDP method gives 
7"4 $ 24.5797. 

For the lower bounds in the first column we refer to the Catalogue o!f Lattices of 
G. Nebe and N.J.A. Sloane (http://www.research.att.com;-njas/lattices/kiss.html). 

Using the polynomial p(u) = - (u + 1/3)2 + 4/9, we computed upper bounds for 
A(n, cos- 1 1/3). Hereby we improved several entries of Table 9.2 of [7) where all 
best upper bounds previously known were obtained by the LP method. We give 
our results in Table 5.2. Again we used the values d = 10 and N = 10 to obtain 
the last column. 

TABLE 5.2. Bounds on A(n, cos- 1 1/3}. 

best lower best upper bound SDP 
n bound known previously known method 
3 9 9 9 
4 14 15 15 
5 20 24 23 
6 32 37 35 
7 56 56 56 
8 64 78 74 
9 96 107 99 
10 146 135 

We were also able to improve the best known upper bounds for the so-called 
Tammes problem with N spheres: What is the largest minimal angle B(N) that 
can be obtained by a spherical code of S 2 with cardinality N. Let us recall that 
the answer is only known for N $ 12 and for N = 24 (see [7, Ch. lj). For 
N = 13, the best known lower bound is 0.997223593 ~ 57.1367031° whereas the 
best known upper bound is 1.02746114 ~ 58.8691870° due to K. Boroczky and 
L. Szabo (4). We obtained A(3, cos-1 (0.5225}) $ 12.99 using d = N = 10, giving 
the new upper bound of 1.02101593 ~ 58.4999037°. Other values are collected 
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in Table 5.3; the lower bounds are ta.ken from the homepage of N.J.A. Sloane 
(http://www.research.e.tt.com;-njas/packings/). The upper bounds for N :;::: 14 
where established in [5). 

TABLE 5.3. Bounds on B(N) (given in degrees). 

best lower best upper bound SDP 
N bound known previously known method 
13 57.13 58.87 58.50 
14 55.67 58.00 56.58 
15 53.65 55.84 55.03 
16 52.24 53.92 53.27 
17 51.09 52.11 51.69 
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