87 research outputs found

    Patient-specific anisotropic model of human trunk based on MR data

    Get PDF
    There are many ways to generate geometrical models for numerical simulation, and most of them start with a segmentation step to extract the boundaries of the regions of interest. This paper presents an algorithm to generate a patient-specific three-dimensional geometric model, based on a tetrahedral mesh, without an initial extraction of contours from the volumetric data. Using the information directly available in the data, such as gray levels, we built a metric to drive a mesh adaptation process. The metric is used to specify the size and orientation of the tetrahedral elements everywhere in the mesh. Our method, which produces anisotropic meshes, gives good results with synthetic and real MRI data. The resulting model quality has been evaluated qualitatively and quantitatively by comparing it with an analytical solution and with a segmentation made by an expert. Results show that our method gives, in 90% of the cases, as good or better meshes as a similar isotropic method, based on the accuracy of the volume reconstruction for a given mesh size. Moreover, a comparison of the Hausdorff distances between adapted meshes of both methods and ground-truth volumes shows that our method decreases reconstruction errors faster. Copyright © 2015 John Wiley & Sons, Ltd.Natural Sciences and Engineering Research Council (NSERC) of Canada and the MEDITIS training program (´Ecole Polytechnique de Montreal and NSERC)

    Radiogenomic Mapping of Edema/Cellular Invasion MRI-Phenotypes in Glioblastoma Multiforme

    Get PDF
    Despite recent discoveries of new molecular targets and pathways, the search for an effective therapy for Glioblastoma Multiforme (GBM) continues. A newly emerged field, radiogenomics, links gene expression profiles with MRI phenotypes. MRI-FLAIR is a noninvasive diagnostic modality and was previously found to correlate with cellular invasion in GBM. Thus, our radiogenomic screen has the potential to reveal novel molecular determinants of invasion. Here, we present the first comprehensive radiogenomic analysis using quantitative MRI volumetrics and large-scale gene- and microRNA expression profiling in GBM.Based on The Cancer Genome Atlas (TCGA), discovery and validation sets with gene, microRNA, and quantitative MR-imaging data were created. Top concordant genes and microRNAs correlated with high FLAIR volumes from both sets were further characterized by Kaplan Meier survival statistics, microRNA-gene correlation analyses, and GBM molecular subtype-specific distribution.The top upregulated gene in both the discovery (4 fold) and validation (11 fold) sets was PERIOSTIN (POSTN). The top downregulated microRNA in both sets was miR-219, which is predicted to bind to POSTN. Kaplan Meier analysis demonstrated that above median expression of POSTN resulted in significantly decreased survival and shorter time to disease progression (P<0.001). High POSTN and low miR-219 expression were significantly associated with the mesenchymal GBM subtype (P<0.0001).Here, we propose a novel diagnostic method to screen for molecular cancer subtypes and genomic correlates of cellular invasion. Our findings also have potential therapeutic significance since successful molecular inhibition of invasion will improve therapy and patient survival in GBM

    Experimental Cyber Attack Detection Framework

    No full text
    Digital security plays an ever-increasing, crucial role in today’s information-based society. The variety of threats and attack patterns has dramatically increased with the advent of digital transformation in our lives. Researchers in both public and private sectors have tried to identify new means to counteract these threats, seeking out-of-the-box ideas and novel approaches. Amongst these, data analytics and artificial intelligence/machine learning tools seem to gain new ground in digital defence. However, such instruments are used mainly offline with the purpose of auditing existing IDS/IDPS solutions. We submit a novel concept for integrating machine learning and analytical tools into a live intrusion detection and prevention solution. This approach is named the Experimental Cyber Attack Detection Framework (ECAD). The purpose of this framework is to facilitate research of on-the-fly security applications. By integrating offline results in real-time traffic analysis, we could determine the type of network access as a legitimate or attack pattern, and discard/drop the latter. The results are promising and show the benefits of such a tool in the early prevention stages of both known and unknown cyber-attack patterns
    • …
    corecore