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SUMMARY

There are many ways to generate geometrical models for meahsimulation and most of them start with
a segmentation step to extract the boundaries of the regidngerest. This paper presents an algorithm to
generate a patient specific 3D geometric model, based oraaeelral mesh, without an initial extraction of
contours from the volumetric data. Using the informatioredily available in the data, such as grey levels,
a metric is built to drive a mesh adaptation process. Theienistused to specify the size and orientation
of the tetrahedral elements everywhere in the mesh. Ouradgtthich produces anisotropic meshes, gives
good results with synthetic and real MRI data. The resultraglel quality has been evaluated qualitatively
and quantitatively by comparing it with an analytical s@atand with a segmentation made by an expert.
Results show that our method gives, in 90% of the cases, ab @obetter meshes as a similar isotropic
method, based on the accuracy of the volume reconstruaiamdiven mesh size. Moreover, a comparison
of Hausdorff distances between adapted meshes of both dse#tmul ground-truth volumes shows that our
method decreases reconstruction errors faster. Copyfdg?®14 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical simulations are becoming an important part oéaesh in the biomedical field. Many
kinds of simulations can be performed to understand bdiginhpact of a surgery or a medical
treatment, in fields such as neurd],[hepatic R] or orthopedic surgery3d. In particular, some
simulators focus on the planning of spine deformity treatte@nd on understanding the deformity
progression over time using bone-based modg[$]. The goal is to correct spinal deformation
and to stop its progression, but there is also an aesthgtécaef the postoperative result that has
an important psychological impaci][ Therefore the treatment must also focus on improving the
external trunk of the patient, such as reducing the back hilimperform accurate simulations, it
is necessary to construct a model that integrates infoomaibt only from bones, but also muscles
and soft tissue of the internal trunk. Dionekal artificially generated a regular mesh between the
external surface of the trunk and the surface of the undegligone structures. This model was used
to predict the impact of a treatment on the external surfdd¢baeotrunk B], but this model is not
patient-specific and required a lot of manual tuning. A goagd vo acquire information on the soft
tissues of the trunk, without danger for the patient, is ®M& data, and Harmouclet aldescribed
a way to register them with a 3D model of the spifE [

There are many techniques to build 3D models from medicas#ds using either structured
or unstructured meshes. Structured meshes can be usedducprbigh quality models but it
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2 O. COURCHESNEET AL

has been shown that unstructured meshes can be used tonpadanerical simulation with an
equivalent convergence threshold and accuracy, whilgydsimer elementsi0][ 11]. Unstructured
meshing techniques can be divided into two groups: thodeudesegmented data and those that
use unsegmented data.

In the first category, Sullivaet al have developed 3D models of different anatomic structures
based on segmented surfaces from the Visible Human Prajétt Zhang et al presented a
method to generate adapted tetrahedral and hexahedrakeséshthe volume between two
isosurfaces extracted from CT-scan and MRI dataseds More recently, they used an octree-
based tetrahedral meshing method combined with surfachinge®or high-fidelity fluid-structure
interaction simulations14]. Si and Girtner proposed a Delaunay tetrahedralisation that can be
constrained to respect the closed geometry of any objettumtsre. They also tuned many methods
to ensure the high quality level of the resulting meshj [Archip et alused a sequence of segmented
images to get a cloud of points in 3D. Then, they computed tineex envelope of the cloud using
a Delaunay tetrahedralisation which was refined to obtaim@oth result. This method was used
successfully to rebuild bones of the skull and pel\i§][ Saloet al performed mesh morphing on
tetrahedral meshes to obtain patient-specific finite elémmeels. Those meshes were obtained
using surfaces manually segmented from pelvic CT scais Fenget al performed surface
extraction from Cryo-EM volumetric data using a marchingestrategy. After smoothing the
surface based on the curvature, they performed a Delautrafi¢elralisation to fill the volumég].
Marchandiseet al developed an automatic anisotropic meshing method forlanlsegmented
geometries. Resulting meshes rely on a metric and a size I8h\lthough anisotropic smoothing
approaches were proposed to improve surface quality bgenerating the 3D modeR{][21],
automatic segmentation of MRI is still a challenging taskdded, MR data typically does not
present high contrast or clear edges due to high gray levigbility, blurry areas caused by blood
flow and partial volume effectp].

Few techniques belong to the second category. Adetraused anisotropic meshes to reduce a
dataset while keeping valuable informatidt8][ 24]. Brankov et al used a content-adaptive mesh
model for non-uniform sampling of medical datasets to redhe amount of data to proce&5].
Even fewer methods can generate 3D models using completsadst Hungt al developed a new
technique to simulate deformations of a complete datasiiowi any segmentation. They used
an intermediary anisotropic mesh, called Virtual Proxy ME® deform the whole dataset. That
mesh was produced using curvature information within thasi P6][27]. Goksel and Salcudean
developed a very interesting mesh adaptation techniqu2Daand 3D datasets calladriational
Image MeshingVIM) [ 28]. This technique is based on a cost function that uses iityerariation
and element shape quality measures to place mesh vertites lboundaries of visible regions while
retaining a highly isotropic mesh. It does not either reflmeresh or use geometrical information
about structures inside the dataset. It only moves mesteeeitb reduce intensity variability within
each element while enforcing regular element shapes.

The method presented in this paper shares similar goalsthigHast technique such as using
image datasets directly without prior extraction of comgoef the regions of interest to avoid loss of
data. The segmentation step is postponed after the adaptdtwever, our method uses anisotropic
meshes instead of isotropic. While isotropic mesh focusemular elements, anisotropic mesh
elements shape, size and orientation are defined by a temsiwolcfunction. This control function
can be computed by extracting information from an imagenisitg field, such as the second order
partial derivatives. Adapted elements will be stretchefdiow interesting features within the data.
Using an image-based function also allows the implementatf an iterative process. Anisotropic
meshes built this way produce interpolation results theeguivalent to those obtained on isotropic
meshes while using fewer elemergj

The modeling process that will be used in this paper iteghtivnodifies a mesh. It uses an
anisotropic mesh adaptation tool call@bject Oriented Remeshing ToolKOORT)[30]. The
capacity of this tool to adapt a mesh to satisfy a tensor obfinction has been demonstrated in
[31]. The mesh adaptation process has been recalibrated ta t@dikerete intensity field extracted
from medical images as an input. Even if anisotropic meshe$r@quently used in computational
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fluid dynamics to capture physical phenomena near edgesumdadoies 32], they are rarely used

in biomedical applications. However, this approach offemportant advantages; in particular, it
can significantly reduce the size of mesh models without comjsing the results of humerical
simulations.

The goal of this paper is to present a way to build a completegmirunk representation including
soft tissues to simulate orthopaedic treatments such asae lor surgery or even to simulate
deformities progression. This representation will be aepatspecific high quality 3D geometric
model, based on tetrahedral elements and using MR data. llmprary study of the proposed
method, performed only on 2D images, has been presentad][3{]]. With the goal of constructing
meshes targeted toward the simulation of physical defaomsibf the trunk, we propose to use 3D
MR acquisition sequences for the reconstruction of thereliec3D trunk model. The rest of this
paper is structured as follows: Section Il describes thehodlogy of our proposed approach;
Section 1l presents and analyzes our experimental redtitglly, Section IV summarizes this
study and addresses future avenues of research.

2. METHODOLOGY

This section presents the steps to produce valid adaptdiembased on MR data. As these meshes
will be used for numerical simulation, the adaptation mdtlsobased on finite element principles.
The method distributes the interpolation error acrossalihesh elements. Céas lemrg][states
that the approximation error is bounded by the interpotegior, which can be defined as:

[|F = Fl| 1)

where F' is the continuous function andj, is its discrete representation. With MR data, the
function represents the grey level intensity profile. Toimize the global interpolation error, each
element must have the same interpolation error and acaptdi.abbéet al [36] this leads to
an optimal mesh. Using linear interpolation functions, ititerpolation error is driven by the first
neglected terms in the Taylor expansion, which are the skooder partial derivatives (Hessian
matrix) multiplied by the square value of the size of eacimelet. This means that minimizing the
interpolation error leads to reduced element size whersdbhend order partial derivatives are high
and increased element size elsewhere.

The proposed adaptation method, which minimizes the gliol@dpolation error, consists of the
following steps. First, in an initialization step, a regui@esh is build and, based on the MR data, the
Hessian matrix is computed at each mesh vertex. From theatasstrix, a tensor control function
(called metric tensor) is deduced. Second, in an adaptatem the initial mesh is modified to
respect the specific metric. Third, the metric is interpadadn the resulting mesh; the second and
third steps can be repeated. These steps will be descrided based on 2D data in order to
illustrate them more easily.

2.1. Initialization Step

First, a dual mesh is constructed based on the MR image itiengd his initial mesh is constructed
as a regular grid of triangles with one vertex placed at tikereof each pixel of the image. A scalar
function F}, is defined over this mesh using the constant grey level of paa and this value
is assigned at the corresponding vertex of the dual mesk. défines a continuous function that
can be linearly interpolated over the mesh. FigluiBustrates the construction of a first mesh of
guadrangle and its scalar function on an MR section throdgimaan arm with different resolutions.
The triangular mesh has the same vertices but each quadiastjpped in half. The scalar function
is then used to build a Hessian matrix for each vertex of thehmla 2D, the Hessian matrix is given
by the following:

?F,  9%F,
922 Oxd
H=1 25 o'n @)
Oyox oy?
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4 O. COURCHESNEET AL

Figure 1. From original image to regular mesh. (a) Originage of size 80x80 pixels. (b) Original image
downsampled to 16x16 pixels. (c-d) Regular meshes usingevel values as z coordinates for both images.

In order to fill this matrix, a local reconstruction of secoatter partial derivatives must be
computed. Many reconstruction methods can be used to ddfinéléssian matrix. Joubarre
al showed that the quadratic fitting (QF) method is the mostabédi 32][37]. To reconstruct
the Hessian of the intensity function at a given vertex, QEecte a number of sampling points
in a neighbourhood of one or two levels of elements surrcupdie given vertex. A quadratic
approximation passing through the sampling vertices isnsttucted. This approximation is then
differentiated to yield constant derivatives over the pafthis means that the quadratic function:

Fh(may) :Zalgl(x7y)' (3)
=1
where
S € {1,m,y,x2,azy,y2}, (4)
is computed to deduce the second order partial derivatives:

(f;d_x} Z?:l alq(w, y) = 20’47

By 2= st (z,y) = 23, 5)
% ?:1 asi(x,y) = 2ag.

A Riemannian metric M, is then constructed based on the Hessian matrix by decongpiis
along its eigenvectors, processing its eigenvalues anhmeasing it. Since the Hessian matrix
H is symmetric, it can be orthogonally diagonalized as:

H = RDRT (6)

with R the matrix of eigenvectors antl the diagonal matrix of eigenvalues,: = 1,,n. For a
given vertex, eigenvalues act as the inverse of the targetred length in the direction given by
their respective eigenvectors. Each eigenvalue is thendexibelow and above as follows:

Xy = min(maz(B|Ail, Amin ), Amaz)- @)
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Figure 2. Some metric tensors represented as ellipses cumpée mesh.

In this process, each eigenvalue is made positive and rtiettipy a user-defined scaling coefficient
3 called target edge length in the metric. The user can alstifgpainimum and maximum edge
lengths. Those 3 parameters are defined in the scale of thient&dge length is also controlled
by a fourth parameter, namely the maximum stretching, thptesents the anisotropy factor of
the metric. All these parameters are used to define a boundiag/al [\,in, Ama.] fOr each
eigenvalue. The processed eigenvalues are then used toosenapdiagonal matriXD". The
eigenvalues are non-zero, positive and bounded. Thatmafinally used to recompose the metric
tensor by multiplying\ = RD'RT. M is therefore symmetric positive definite by construction.

To apply user constraints, the distance between two pointt be computed in the metric space.
The metric distance between the poifitsandps is given by:

lag™ = / VW - 5" M (3) (5 — )t ®)
0

wherep; = pa +t (p5 — pa).

The resulting constraint metric will limit the size and shayf the mesh elements. It will also
align their edges along the directions of variation in thalacfield. Thus, element density will be
larger in areas of high field variation and smaller in areasrlthe field is constant.

For visualization and manipulation purposes, a metricdeaan also be represented as an ellipse
for which the main axes are the eigenvectors and the targetirsieach direction is given by the
inverse square root of the corresponding eigenvalue. Egghows some metric tensors expressed
as ellipses over a simple mesh. It can be seen that the matriprecisely describe the size and
shape of a mesh element.

2.2. Adaptation Step

A 2D adaptive mesh is obtained by moving vertices (Figiifa)), swapping edges (Figug(b))
and refining or decimating edges (Figu¢c) and (d)). Similar operators are available in 3D. The
goal of the vertex-moving technique is to regularize or sthabe mesh. Each vertex is moved to
the centroid of its neighbors, with distances between sestevaluated using the metric ().
Movements are allowed as long as the topology of the mesh imadified. For instance, if a vertex

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@014)
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6 0. COURCHESNEET AL

belongs to a topological edge it will be moved towards theroés but will remain on this edge.
This technique is combined with the edge swapping and faepging (in the 3D case) techniques
to achieve geometric and topological smoothing. The goahigsys to improve the quality of the
elements in the metric space. The edge refinement and coagdechniques are used to modify
the mesh elements’ density. The metric defines the elemegsttsize everywhere in the mesh. If
more elements are required to respect the metric with poegian edge will be divided to increase
the number of elements. On the other hand, if the metric doesgamy significantly in a region, the
edge coarsening technique will be used to reduce the nunileéroents.

The adaptation process combines all these techniquestithigal shows the order in which they
are applied. This order was determined experimentally avetide range of cases, so that each
iteration improves the global mesh quality. At each itenatbf the main loop, a statistical analysis
is performed on the mesh edge lengths. If the adaptatiorepsdtas perfectly converged, each edge
length in the scale of the metric will be of size one. In prestithis will not happen, but edge
lengths will be within an acceptable range from this targstspecified by the user via a threshold.
Assuming a Gaussian distribution, a realistic thresholdased on the standard deviation of the
edge lengths in the metric. A small value ensures that thétieg Gaussian distribution is narrow,
with a lower dispersion. As this value cannot always be redch maximum number of iterations
is also specified.

The main loop is divided into three phases. The first one ipaltgical and geometric smoothing
phase. It involves edge swapping and vertex moving teclesiglihe vertex moving is performed
iteratively until either a stopping criterion or a maximuranmber of iterations is reached. The
stopping criterion is a threshold on the mean displacemernhé metric space. The user can
control the movement speed by specifying a relaxation fad determine which elements will
be swapped, each element is analyzed to compute its levelfofrdation. Instead of sorting the
elements by their shape deformation, a statistical prozedke element shape measure, evaluated
using the metric, is performed and returns the average astéimdard deviation of the deformation.
Still assuming a Gaussian distribution, all the elementsala threshold are treated. This threshold
corresponds to a number of times the standard deviationatdhb most stretched elements will
undergo diagonal swapping.

The second and third phases respectively start with edgeeneéint and edge coarsening and
both end with smoothing. A similar statistical process sglerformed in those phases to evaluate
the length of the edges according to the metric. The samshbl@ used for diagonal swapping
applies for mesh refinement and decimation, to determinerhany elements will be considered.
Each of these elements will be considered in the inner loopefifiement and decimation. The
mesh refinement loop has its own threshold that determines\wah edge is too long. Here, too
long means that an edge evaluated in the metric space hagth tgeater than one. The closer to
one this parameter is set, the more time it will take to coraphé refinement. For this reason, a
maximum number of iterations is again specified for this ph@be edges that are too long are cut
in two. The same principles apply to the mesh decimation.lbothat case, edges that are too short
are removed.

The global mesh quality of an anisotropic adapted mesh ieasy to assess. Classic quality
measures cannot be applied directly because carefullpedigr stretched elements, which can
be a good choice in the anisotropic case, will be penalizeduapy measures. Quality measures
can alternatively be computed in the Riemannian space ita& account anisotropic meshes. A
comparison of quality measures in the Euclidian and Rienasarspaces can be found iag].

Another way to verify the quality is to compute how well thesheespects the target metric. To
do so, it is possible to compute the non-conformity coeffic{89]. At any step of the adaptation
process, it is possible to define, for an element, a mattje that transforms it from a control space
where it is perfectly equilateral, into the Euclidian spdtés also possible to define a target metric
M that transforms the element from the Euclidian space irgartbtric space. The non-conformity
coefficiente is defined as the matrix norm of the average difference betweecurrent metric of
an elemeniM ¢ and the targeted metriets. More formally, it is expressed as:

ex = [|[Ms Mg+ M *Ms —21||. (9)

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@014)
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Algorithm 1 Adaptation cycle

while (lconvergence)do {//Global adaptation cycle}
while (lconvergence)do {//Topological and geometric smoothing}
Edge swapping
Vertex moving
end while
while (lconvergence)do {//Refinement phase and smoothing}
Edge refinement
Edge swapping
Vertex moving
end while
while (lconvergence)do {//Coarsening phase and smoothning}
Edge coarsening
Edge swapping
Vertex moving
end while
end while

\/

(b) edge swapping

/ N 9 3
y / - ///7
. < \ /
(c) edge refinement (d) edge coarsening

Figure 3. Adaptation techniques (resulting edges andoesrtare in red).

Labbéet al [36] showed that the proposed method converges and yieldsetlaqshes with low
non-conformity coefficient values. Note that this coefiities similar to the quality measure used
by Marchandiset al[19].

2.3. Interpolation Step

When the adaptation step is completed, the intensity fielthtisrpolated over the mesh for
visualization purposes and to allow an iterative procehs.first iteration can be used to refine the
initial intensity field and obtain a fine mesh with a more reguhetric. Other adaptation steps can be
performed, using the previous mesh as the initial mesh, t@mimb coarser mesh that still reflects the
inner field variations. The resulting mesh’s validity carelvaluated qualitatively by superimposing
it to the actual edges that the mesh must fit, and quantitatiyecomputing different statistics such
as element aspect ratio to ensure that it fits the numeribadrsoguality constraints.

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@014)
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Table I. Adaptation Step Parameters Values

Operator Convergence criteria Maximum number of iterations
Global loop 0.12 12

Vertex moving | 0.1 10

Edge swapping | 2 20

Edge refinement 1.3 1

Edge coarsening 0.7 10

3. EXPERIMENTAL RESULTS AND ANALYSIS

To validate the mesh generation process, various datasetswged. This section first shows the
parameter values used by the adaptation step of our methenl,presents results obtained with
two different datasets using those values. First, a syictdataset consisting of a sphere centered
inside a cube will be presented. Then, the results of usingmathod on real MRI datasets will be
presented. All the datasets were processed with the digoptesented in this paper and compared
with those produced by the method proposed by Gaisall[ 28] calledVariational Image Meshing

or VIM. Comparisons are based on the accuracy of the voluifitbe gtructures of interest extracted
from the adapted meshes, with respect to the ground-trutimes of the same structures, obtained
either analytically (for the synthetic data) or by semieamatic segmentation by an expert (for
the clinical data). Complementary comparisons using thesHarff distance between the surfaces
extracted from the adapted meshes and their ground-truthtegarts will also be presented to
evaluate errors between surfacég]|

3.1. Calibration

The content of Tablé shows the parameter values used to control the mesh adepsétip. The
relaxation factor used in this study was kept at its defaalt® of one. For a description of the
different parameters, see subsectodin the previous section.

3.2. Sphere test case

This dataset represents a sphere of radius 1 centered ineanétibedges of length 3. The initial
mesh is a grid of resolution 100x100x100 filled with tetrafaéelements. The initial mesh has
therefore 1 million vertices and 4.85 million tetrahedraneents. The initial solution for the scalar
field is a binary mask of value 0 outside the sphere and 1 inSide iterative process described in
the previous section is then performed to generate the eveetd adapt the mesh.

Comparison with VIM method

To compare the accuracy of our method to the VIM method, nwesiiesarious resolutions
were adapted and then segmented to keep only elements ¢elyjpheluded within the analytical
definition of the sphere. By summing the volumes of all theaoted elements, an approximation of
the segmented sphere volume is computed. Of course, thexam@tion cannot be more accurate
than the resolution of the initial solution for which the coated volume is 3.97. This is slightly
lower than the volume of a perfect sphere, whicl7g3 or around 4.19. The graph in Figuda
shows that our method quickly converges to the volume obtlby segmenting the initial volume
of 100x100x100 nodes. Moreover, it shows that the VIM methedds a mesh of over 150 000
elements to obtain a segmented mesh volume that conver@&84mf the experimental volume.
Our method thus provides more accurate meshes with fewsreelts. Indeed, with only 10 000
elements, our methods segmented mesh represents 97% sptdra@ental volume.

Another way to compare both methods is to compute the Hafistlstance between the outer
surfaces of each segmented mesh and the perfect sphere amraasimator. To compute this
distance, 20,000 points were projected from the perfectrepto the segmented meshes. For each
evaluation, we considered the maximum and the mean Hadislistdnces. To obtain a ratio, the

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@014)
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Total segmented sphere volume Sphere Hausdorf Distance ratio
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Figure 4. Sphere test case. (a)Total segmented sphere ei¢h)ausdorff distances of segmented meshes
from the sphere

distance is divided by the diagonal of the bounding box ofittgere. The graph in Figude shows
that our method (represented by the light grey curves) preslmeshes with lower maximum and
mean Hausdorff distances for the same number of verticesttigaVIM method.

Quialitative evaluation

For the purposes of visualization and qualitative evatumtit is possible to perform a quick
segmentation by using a simple thresholding technique @midssh produced with our method. By
superimposing a perfect sphere over the resulting segehargeh, it can be seen to what degree the
elements follow the spheres surface. Fighistows different views of the adapted mesh segmented
with a simple threshold set to 10% of the maximum intensitly@&o remove the dark background.
As can be seen, the resulting mesh doesnt perfectly fit thergpimdeed, some elements cross the
spheres surface. Several cutting planes are also applidge: tmesh in these views to assess the
mesh elements size distribution. An interesting obsesudt that the mesh is finer near the surface
boundary and much coarser where the scalar field is congtrity most of the volume inside and
outside the sphere.

The main parameter that can influence the global shape of ésé s thearget edge length in
the metric(TELM). Figure 6 shows the effect of varying this parameter. In all casesnetgs are
coarser where the scalar field is constant and finer near teeadhe sphere where the scalar field
varies. Increasing the TELM reduces the number of elemehikewying to preserve significant
features. In this case, the only interesting feature isphees edge. Even with only 200 vertices in
total, this boundary can still be modeled adequately. TThezethe choice of the TELM should be
based on the desired precision around the edges. For thigpéxaa TELM of 5 is enough to have
good precision around the edge of the sphere while greatlyciag the mesh size (from 1 million
down to 5,832 vertices).

The sphere example also informs us about the impact of theanmeitial resolution. Figure7
shows adapted meshes that were all computed using the saoh Vidtue of 5. It illustrates that
when the metric precision increases, more mesh elemenpéeaned closer to the sphere’s edge and
so the edge precision also increases. Therefore, the jpreofkthe initial dataset is also important.

3.3. Trunk test case

The algorithm presented in this paper was applied to MR dateechuman trunk, and the resulting
meshes were compared to 3D segmentations of the same d&anmt by an expert and to
meshes obtained using the VIM method proposed by Goéseall [28]. In collaboration with
Sainte-Justine University Hospital Centre in Montrealn&#a, MRI datasets of the trunk of 20
patients were obtained. These data were taken in the cooftexistudy on the impact of spine
deformity on breast asymmetn]]. The datasets were acquired from adolescent girls withespi
deformity. All acquisitions were performed using a clidite&bT MRI system (Achieva XR, Philips
Healthcare, Best, The Netherlands) using a dedicated l6neh&reast coil. The patients were
in prone position with their arms resting overhead and lisehanging under free breathing. A

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@014)
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(b)

(d)

Figure 5. Views of adapted mesh with simple threshold agpdied cutting planes. (a) Segmented adapted

mesh. (b) Segmented adapted mesh with surrounding elemede&r a cutting plane. (c) Segmented

adapted mesh opened by oblique cutting plane. (d) Perféetrsparound the segmented adapted mesh.
(e) Combination of c) and b). (f) Combination of c) and d).

(b)

@) (h)

Figure 6. Result of mesh adaptation for differéaiget edge lengths in the metftELM). Each column
shows the same mesh. Colormap is interpolated from red ®dsscalar value decrease.
(a) & (e) show a mesh with TELM of 2, 35600 vertices and 20178énents.
(b) & (f) show a mesh with TELM of 5, 5832 vertices and 32959 wdats.
(c) & (g) show a mesh with TELM of 10, 1109 vertices and 6054redats.
(d) & (h) show a mesh with TELM of 20, 200 vertices and 938 eletse

3D gradient-echo also called FFE sequence without fat sggmm was used (TR/TE = 7.6/4.6,
flip angle: 12 degrees, FoV: 340 x 340 x 220 mm, NSA: 1, Scantidura3m40s). This sequence
minimized BO inhomogeneitys by using an automated imagedahimming procedure. Also
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|

(d) ®

Figure 7. Impact of initial metric precision for mesh with 04 of 5. The initial metric precision decreases
from left to right along with the adapted mesh vertex loclian accuracy. Colormap is interpolated from
red to blue as scalar value decrease.

(a) & (d) initial precision ofL003, adapted mesh of 5832 vertices and 32959 elements.
(b) & (e) initial precision of75, adapted mesh of 4426 vertices and 25075 elements.
(c) & () initial precision of45%, adapted mesh of 2453 vertices and 13913 elements.

the patient position combined with a specialized acquoisiantenna lead to negligible breathing
artifacts 2. The data reconstructions used by the expert were 352x3&b2ixels with a resolution
of Immx1mmx3mm.

Comparison with VIM method

To compare the meshes produced using the VIM method witketbbtained using our proposed
method, we ran both methods on the datasets. We aimed towob&shes with a similar number
of vertices. Results for the VIM method were produced usirajldb code provided by the authors
(VIMesh 1.1). Samples of both meshes are shown in Figutbey respectively have 25,725 and
22,543 vertices. As expected, VIM produced a highly isatrapesh, while our method produced
an anisotropic mesh. Another important difference betwlenwo methods lies in the intensity
field interpolation. VIM defines a constant value within eacbsh element, whereas our method
defines a value at each vertex.

The expert used ITKSNAP 2.4.0 #3] to perform semi-automatic 3D active contour segmentation
of the breasts, followed by rigorous pixel by pixel manudidetion to obtain an accurate breast
volume segmentation. This result was first used to confirtmtieshes produced using the proposed
method have elements aligned with significant anatomi@lfes such as organ boundaries. The
experts segmentations also serve to measure the accuracgiwén reconstructed volume. Each
dataset was used without any modification to enhance cantmureduce its resolution. Figuge
shows the breasts segmentations made by the expert forcsufife and 20 in the study and the
resulting adapted meshes segmented with a simple thresébtd 10% of the maximum intensity
value in order to extract the outer chest surfaces. The seiguhsurfaces obtained from the adapted
meshes (center images) are not smooth but give a good idedatf sould be obtained with a
more advanced segmentation method. The segmentationperdoemed using the threshold filter
function in the scientific visualization tool ParaVied/].

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engn@014)
Prepared usingnmauth.cls DOI: 10.1002/cnm



12 O. COURCHESNEET AL

Figure 8. Mesh comparison between VIM method (left colunmj proposed method (right column) for
subject 15. Colormap is interpolated from red to blue assscallue decrease.

Figure1l0shows an axial slice through the resulting mesh with theg@sed method. Two regions
containing boundaries between internal organs and at ther dwnk surface were selected to
assess the elements’ orientations. Enlarged views of tberégions are also displayed. It can
be seen that the elements naturally follow intrinsic bouiedawithin the dataset. This important
feature will be useful when we need to characterize meshegiewith biomechanical constraints.
In order to compare tetrahedral positioning precision almvaquantitative comparisons, the
expert segmentations were used to extract subsets ofshfeoen the meshes obtained using the
two methods. Specifically, only elements completely inditie expert-segmented volume were
extracted. Segmentations of the right and left breasts w@nsidered separately for each subject
in the study. Multiple meshes were produced with differezsiotutions. For the VIM method, the
number of voxels per tetrahedral element was tested witlhegadf 1, 2, 5, 10, 15, 25, 55, 75 and
100. This was the only parameter for VIM that varied in outde&or the proposed method, the
TELM parameter was tested with values of 3*, 5*, 5, 6, 10 and2@ first two cases (marked with
asterisks in the previous list) used a regular mesh as tti@ imiesh, while the remaining cases used
the mesh with TELM of 3 as the initial mesh.

For both methods, the higher the value of the given paraptbtecoarser is the resulting adapted
mesh. Volume ratios were computed between each segmergptbddnesh and the corresponding
expert segmentation of the (left or right) breast. The vauatio is computed as the sum of the
volumes of the extracted tetrahedral elements over thenelof the expert-segmented breast. The
graphs in Figuréd.1 show the volume ratios computed for subject 15 in the studyn be seen that
our method systematically places elements inside thetateiof interest with more precision than
VIM. For a mesh of 50 000 elements, our method is 4%-5% morerate with this dataset.

For comparison purposes, we then considered meshes oftdiz8ak and 50k elements among
all those produced from the patient trunk datasets. We folacbur method produces meshes with
as good or better placement accuracy than those from the \@kthaal. As can be seen in Table
which shows the results for 5 cases, our method generaties belume approximations in 90% of
the cases (winner of each comparison marked with asterisk).
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Figure 9. Breasts segmentation for subjects 15 and 20. T@mem are the experts segmentations.
Center images are the threshold-segmented meshes usimgethwd. Bottom images show both meshes
superimposed.

Furthermore, we considered the Hausdorff distance as aleomeptary comparison measure, and
computed it between the adapted meshes from both methodbk@gdound-truth breast volumes.
Distances between extracted meshes and expert segmesatagoe normalized by the diagonal of
the bounding box of the expert segmentation to facilitategarisons. Considering subject 15, the
graphs in Figurd 2 shows that the mean Hausdorff distances for both methodsateeat a similar
rate, but our method always produces a lower mean value. Bxémm Hausdorff distances are
similar for both methods, but the VIM method yields in gehetaghtly lower maximum values.
Similar results were obtained for all cases. Talbleand TablelV show the maximum and mean
values for the same five cases as in Tdbknd for different numbers of vertices. It can be seen that
maximum Hausdorff distances are similar (equal in 60% ofctee) but as the number of vertices
increase the VIM method is usually slightly better. AlsoblEaV shows that our method always
produces meshes with equal or lower mean Hausdorff distzaioes.

4. CONCLUSION AND FUTURE WORK

The method proposed in this paper successfully produces &ingtric patient-specific mesh
models of the human trunk without any segmentation or pegssing steps.

The adapted mesh is anisotropic. The generation procekds lauimetric based on the second
order derivatives of the gray levels. The elements shape, &id orientation are determined by
this metric. Using an anisotropic mesh allows us to compilessiataset or reduce the mesh size
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Figure 10. Adapted mesh for subject 15. Top image shows &l sbice through the adapted mesh with

grey level interpolation. The two square regions enclassit boundaries. Center and bottom images show

enlarged views of the left and right square regions respsgtiClose ups are in wireframe with and without
grey level interpolation.

without compromising its quality. As the type of model to heélbfor our context must span the
whole trunk, reducing the size of the model is not only usbfulnecessary to perform numerical
simulations in a reasonable delay. Another way to reducartbéel size is to produce a coarser
mesh, which can be achieved quite simply with our method loyeimsing the TELM parameter.
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Figure 11. Segmented Breast Volume Ratio for VIM and progaeethods (subject 15)
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Figure 12. Hausdorff distance between segmented breasnesl for VIM and proposed methods (subject
15)

Table II. Extracted Volume Ratios for VIM and Proposed Metho

10,000 elements 30,000 elements 50,000 elements
OORT | VIM OORT | VIM OORT | VIM

15Right| 0.79* | 0.72 | 0.87* | 0.81 | 0.90* | 0.85
15Left | 0.82* | 0.76 | 0.89* | 0.83 | 0.90* | 0.86
16 Right| 0.77* | 0.75 0.83 0.83 0.86 0.86
16 Left | 0.77* | 0.76 0.83 0.83 0.86 0.86
17 Right| 0.76* | 0.75 | 0.84* | 0.83 | 0.88* | 0.86
17 Left | 0.77 0.77 082 | 0.84* | 0.86 | 0.87*
18 Right| 0.76* | 0.74 | 0.84* | 0.82 | 0.88* | 0.85
18 Left | 0.72 | 0.77* | 0.87* | 0.84 | 0.89* | 0.87
20 Right| 0.80* | 0.75 | 0.84* | 0.82 | 0.87* | 0.86
20 Left | 0.79* | 0.77 | 0.85* | 0.83 | 0.87* | 0.86

Table Ill. Maximum Hausdorff Distance Ratios for VIM and posed Methods

250 vertices | 1000 vertices | 2500 vertices
OORT | VIM | OORT | VIM | OORT | VIM
15Right| 0.05 | 0.05| 0.04 | 0.04 | 0.03 | 0.02*

15 Left 0.04 | 0.04] 0.04 | 0.04 | 0.03 | 0.02*
16 Right| 0.04 | 0.04 | 0.03* | 0.04 | 0.02 | 0.02

16 Left 0.05 | 0.05| 0.04 | 0.03*| 0.02 | 0.02
17 Right| 0.04 | 0.04| 0.04 | 0.04 | 0.04 | 0.02*
17 Left | 0.04* | 0.05| 0.04 | 0.03*| 0.04 | 0.02*
18 Right| 0.05 | 0.05| 0.04 | 0.03*| 0.02 | 0.02
18 Left 0.04 | 0.04] 0.04 | 0.03*| 0.03 | 0.02*
20 Right| 0.05 | 0.05| 0.04 | 0.04 | 0.03 | 0.02
20 Left | 0.04* | 0.05| 0.04 | 0.04 | 0.03 | 0.02
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Table IV. Mean Hausdorff Distance Ratios for VIM and ProgbMethods

250 vertices | 1000 vertices| 2500 vertices
OORT | VIM | OORT | VIM | OORT | VIM
15Right| 0.02 | 0.03| 0.01 | 0.01| 0.01 | 0.01

15Left | 0.02 | 0.03] 0.01 | 0.02] 0.01 | 0.01
16 Right| 0.02 | 0.03| 0.01 | 0.01| 0.01 | 0.01

16Left | 0.02 | 0.03| 0.01 | 0.01] 0.01 | 0.01
17 Right| 0.02 | 0.03| 0.01 | 0.02| 0.01 | 0.01

17 Left | 0.02 | 0.03| 0.01 | 0.01] 0.01 | 0.01
18 Right| 0.02 | 0.03| 0.01 | 0.01| 0.01 | 0.01

18 Left | 0.02 | 0.02] 0.01 | 0.01] 0.01 | 0.01
20 Right| 0.02 | 0.03| 0.01 | 0.01| 0.01 | 0.01
20 Left | 0.02 | 0.03] 0.01 | 0.01| 0.01 | 0.01

Increasing this parameter also causes the mesh to becoredsatopic. So if isotropy is desired,
our method can also produce meshes with low anisotropy. e mesh resolution, anisotropy
can also be controlled by the parameter maximum stretchittgei metric, which indirectly controls
the aspect ratio. This parameter is very useful becauseciteptable level of anisotropy varies
from one numerical solver to another. Solvers are also higgahsitive to the elements’ orientations,
especially when they are anisotropic. On the other hantdeifiumber of elements is not an issue,
our method can exploit anisotropy and even produce mestibsub-pixel resolution.

Our method yields good results with both artificial and ekpental datasets. In each case, the
resulting mesh respects the inner geometry of the datasehdfmore, results show that elements
within the mesh are aligned with organ boundaries even thdbgse have not been explicitly
defined a priori. Results show that our method gives as gobétter meshes as a similar isotropic
method (VIM), based on the accuracy of the volume reconstnudor a given mesh size and
the mean Hausdorff distance comparison. However, VIM netlestex positioning seems slightly
better according to max Hausdorff distance comparison.

The proposed method is robust in many respects. First, td the metric of a specific vertex,
the method uses a neighbourhood around that vertex, whikesrtée method less sensitive to
noise in the dataset by performing an implicit smoothingrdkie grey level values. Because noise
cannot be avoided when dealing with MRI data, this featutienigortant for our overall project.
Second, all the meshes generated from clinical data pexsémthis paper were computed using
the same set of parameters. This means that, even if the cheihes a ot of control to the user, it
is possible to define a single set of parameters that can lokwitie all the datasets from a given
acquisition protocolA possible drawback is, however, that many parameter s might need to be
changed when dealing with new datasets. Third, our method is completely automatic and easy to
use. Finally, our results show that increasing the numbeteshents improves the precision of the
volume reconstruction. This means that the method conse¢ogen optimal solution according to the
precision of the dataset and that the end user has the dbilitglance the competing requirements
of computation time and mesh precision.

The method we propose offers control over the resulting eeshorder to respect given criteria
based on element shape and size. However, some aspectsestllito be improved, especially
vertex positioning and computation time. First, althougbsimelements follow boundaries within
the dataset, mesh vertices could be placed more accuratbl/lzoundaries themselves. To improve
this aspect, gradient information could be used when mglthe metric that drives the adaptation
processlinformation from different acquisition protocol or imaging modalities could also be
mapped with our data to obtain a more robust metric. Moreover, when building the metric, an
approximation is made to consider the intensity field as &iicoaus field. A vertex of the dual mesh
is placed at the center of each pixel or voxel of the datases.dauses the field to be shifted by half a
pixel on average. If the pixel resolution is low, this fachqeartly explain why mesh vertices are not
perfectly placed on the boundaries present in the inititdskt. Lastly, even thought our adaptation
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process is automatic and works with large datasets, cotigaitame is still an issu¢hat can limit
the applicability of the method to very large datasets. This aspect should be assessed in future
work by exploiting parallelization in the initializatiomd adaptation steps of the method.

In relation with numerical simulation, future work will fas on segmenting the geometric model
to characterize the different layers of soft tissue in thean trunk. As the adapted model respects
the inner boundaries present in the image data, it shoufltbedegment the bone, muscle and fat
layers, which are the main anatomical structures of intémesur application.
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