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SUMMARY

There are many ways to generate geometrical models for numerical simulation and most of them start with
a segmentation step to extract the boundaries of the regionsof interest. This paper presents an algorithm to
generate a patient specific 3D geometric model, based on a tetrahedral mesh, without an initial extraction of
contours from the volumetric data. Using the information directly available in the data, such as grey levels,
a metric is built to drive a mesh adaptation process. The metric is used to specify the size and orientation
of the tetrahedral elements everywhere in the mesh. Our method, which produces anisotropic meshes, gives
good results with synthetic and real MRI data. The resultingmodel quality has been evaluated qualitatively
and quantitatively by comparing it with an analytical solution and with a segmentation made by an expert.
Results show that our method gives, in 90% of the cases, as good or better meshes as a similar isotropic
method, based on the accuracy of the volume reconstruction for a given mesh size. Moreover, a comparison
of Hausdorff distances between adapted meshes of both methods and ground-truth volumes shows that our
method decreases reconstruction errors faster. Copyrightc© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical simulations are becoming an important part of research in the biomedical field. Many
kinds of simulations can be performed to understand better the impact of a surgery or a medical
treatment, in fields such as neuro- [1], hepatic [2] or orthopedic surgery [3]. In particular, some
simulators focus on the planning of spine deformity treatments and on understanding the deformity
progression over time using bone-based models [5][6]. The goal is to correct spinal deformation
and to stop its progression, but there is also an aesthetic aspect of the postoperative result that has
an important psychological impact [7]. Therefore the treatment must also focus on improving the
external trunk of the patient, such as reducing the back hump. To perform accurate simulations, it
is necessary to construct a model that integrates information not only from bones, but also muscles
and soft tissue of the internal trunk. Dionneet al artificially generated a regular mesh between the
external surface of the trunk and the surface of the underlying bone structures. This model was used
to predict the impact of a treatment on the external surface of the trunk [8], but this model is not
patient-specific and required a lot of manual tuning. A good way to acquire information on the soft
tissues of the trunk, without danger for the patient, is to use MR data, and Harmoucheet aldescribed
a way to register them with a 3D model of the spine [9].

There are many techniques to build 3D models from medical datasets using either structured
or unstructured meshes. Structured meshes can be used to produce high quality models but it
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2 O. COURCHESNEET AL

has been shown that unstructured meshes can be used to perform numerical simulation with an
equivalent convergence threshold and accuracy, while using fewer elements [10][11]. Unstructured
meshing techniques can be divided into two groups: those that use segmented data and those that
use unsegmented data.

In the first category, Sullivanet al have developed 3D models of different anatomic structures
based on segmented surfaces from the Visible Human Project [12]. Zhang et al presented a
method to generate adapted tetrahedral and hexahedral meshes for the volume between two
isosurfaces extracted from CT-scan and MRI datasets [13]. More recently, they used an octree-
based tetrahedral meshing method combined with surface meshing for high-fidelity fluid-structure
interaction simulations [14]. Si and G̈artner proposed a Delaunay tetrahedralisation that can be
constrained to respect the closed geometry of any object or structure. They also tuned many methods
to ensure the high quality level of the resulting mesh [15]. Archip et alused a sequence of segmented
images to get a cloud of points in 3D. Then, they computed the convex envelope of the cloud using
a Delaunay tetrahedralisation which was refined to obtain a smooth result. This method was used
successfully to rebuild bones of the skull and pelvis [16]. Saloet al performed mesh morphing on
tetrahedral meshes to obtain patient-specific finite element models. Those meshes were obtained
using surfaces manually segmented from pelvic CT scans [17]. Feng et al performed surface
extraction from Cryo-EM volumetric data using a marching cube strategy. After smoothing the
surface based on the curvature, they performed a Delaunay tetrahedralisation to fill the volume[18].
Marchandiseet al developed an automatic anisotropic meshing method for tubular segmented
geometries. Resulting meshes rely on a metric and a size map [19]. Although anisotropic smoothing
approaches were proposed to improve surface quality beforegenerating the 3D model [20][21],
automatic segmentation of MRI is still a challenging task. Indeed, MR data typically does not
present high contrast or clear edges due to high gray level variability, blurry areas caused by blood
flow and partial volume effects [22].

Few techniques belong to the second category. Adamset al used anisotropic meshes to reduce a
dataset while keeping valuable information [23][24]. Brankovet al used a content-adaptive mesh
model for non-uniform sampling of medical datasets to reduce the amount of data to process [25].
Even fewer methods can generate 3D models using complete datasets. Hunget al developed a new
technique to simulate deformations of a complete dataset without any segmentation. They used
an intermediary anisotropic mesh, called Virtual Proxy MESH, to deform the whole dataset. That
mesh was produced using curvature information within the dataset [26][27]. Goksel and Salcudean
developed a very interesting mesh adaptation technique for2D and 3D datasets calledVariational
Image Meshing(VIM) [ 28]. This technique is based on a cost function that uses intensity variation
and element shape quality measures to place mesh vertices onthe boundaries of visible regions while
retaining a highly isotropic mesh. It does not either refine the mesh or use geometrical information
about structures inside the dataset. It only moves mesh vertices to reduce intensity variability within
each element while enforcing regular element shapes.

The method presented in this paper shares similar goals withthis last technique such as using
image datasets directly without prior extraction of contours of the regions of interest to avoid loss of
data. The segmentation step is postponed after the adaptation. However, our method uses anisotropic
meshes instead of isotropic. While isotropic mesh focus on regular elements, anisotropic mesh
elements shape, size and orientation are defined by a tensor control function. This control function
can be computed by extracting information from an image intensity field, such as the second order
partial derivatives. Adapted elements will be stretched tofollow interesting features within the data.
Using an image-based function also allows the implementation of an iterative process. Anisotropic
meshes built this way produce interpolation results that are equivalent to those obtained on isotropic
meshes while using fewer elements[29].

The modeling process that will be used in this paper iteratively modifies a mesh. It uses an
anisotropic mesh adaptation tool calledObject Oriented Remeshing Toolkit(OORT)[30]. The
capacity of this tool to adapt a mesh to satisfy a tensor control function has been demonstrated in
[31]. The mesh adaptation process has been recalibrated to takea discrete intensity field extracted
from medical images as an input. Even if anisotropic meshes are frequently used in computational

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2014)
Prepared usingcnmauth.cls DOI: 10.1002/cnm



A DEMONSTRATION OF THE INT. J. NUMER. METH. BIOMED. ENGNG. CLASS FILE 3

fluid dynamics to capture physical phenomena near edges or boundaries [32], they are rarely used
in biomedical applications. However, this approach offersimportant advantages; in particular, it
can significantly reduce the size of mesh models without compromising the results of numerical
simulations.

The goal of this paper is to present a way to build a complete human trunk representation including
soft tissues to simulate orthopaedic treatments such as a brace or surgery or even to simulate
deformities progression. This representation will be a patient specific high quality 3D geometric
model, based on tetrahedral elements and using MR data. A preliminary study of the proposed
method, performed only on 2D images, has been presented in [33][34]. With the goal of constructing
meshes targeted toward the simulation of physical deformations of the trunk, we propose to use 3D
MR acquisition sequences for the reconstruction of the discrete 3D trunk model. The rest of this
paper is structured as follows: Section II describes the methodology of our proposed approach;
Section III presents and analyzes our experimental results. Finally, Section IV summarizes this
study and addresses future avenues of research.

2. METHODOLOGY

This section presents the steps to produce valid adapted meshes based on MR data. As these meshes
will be used for numerical simulation, the adaptation method is based on finite element principles.
The method distributes the interpolation error across all the mesh elements. Céas lemma [35] states
that the approximation error is bounded by the interpolation error, which can be defined as:

||F − Fh|| (1)

whereF is the continuous function andFh is its discrete representation. With MR data, the
function represents the grey level intensity profile. To minimize the global interpolation error, each
element must have the same interpolation error and according to Labbéet al [36] this leads to
an optimal mesh. Using linear interpolation functions, theinterpolation error is driven by the first
neglected terms in the Taylor expansion, which are the second order partial derivatives (Hessian
matrix) multiplied by the square value of the size of each element. This means that minimizing the
interpolation error leads to reduced element size where thesecond order partial derivatives are high
and increased element size elsewhere.

The proposed adaptation method, which minimizes the globalinterpolation error, consists of the
following steps. First, in an initialization step, a regular mesh is build and, based on the MR data, the
Hessian matrix is computed at each mesh vertex. From the Hessian matrix, a tensor control function
(called metric tensor) is deduced. Second, in an adaptationstep, the initial mesh is modified to
respect the specific metric. Third, the metric is interpolated on the resulting mesh; the second and
third steps can be repeated. These steps will be described below based on 2D data in order to
illustrate them more easily.

2.1. Initialization Step

First, a dual mesh is constructed based on the MR image intensities. This initial mesh is constructed
as a regular grid of triangles with one vertex placed at the center of each pixel of the image. A scalar
functionFh is defined over this mesh using the constant grey level of eachpixel and this value
is assigned at the corresponding vertex of the dual mesh. This defines a continuous function that
can be linearly interpolated over the mesh. Figure1 illustrates the construction of a first mesh of
quadrangle and its scalar function on an MR section through ahuman arm with different resolutions.
The triangular mesh has the same vertices but each quadrangle is slipped in half. The scalar function
is then used to build a Hessian matrix for each vertex of the mesh. In 2D, the Hessian matrix is given
by the following:

H =

[

∂2Fh

∂x2

∂2Fh

∂x∂y
∂2Fh

∂y∂x
∂2Fh

∂y2

]

(2)
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(a) (b)

(c) (d)

Figure 1. From original image to regular mesh. (a) Original image of size 80x80 pixels. (b) Original image
downsampled to 16x16 pixels. (c-d) Regular meshes using grey level values as z coordinates for both images.

In order to fill this matrix, a local reconstruction of secondorder partial derivatives must be
computed. Many reconstruction methods can be used to define the Hessian matrix. Joubarneet
al showed that the quadratic fitting (QF) method is the most reliable [32][37]. To reconstruct
the Hessian of the intensity function at a given vertex, QF selects a number of sampling points
in a neighbourhood of one or two levels of elements surrounding the given vertex. A quadratic
approximation passing through the sampling vertices is reconstructed. This approximation is then
differentiated to yield constant derivatives over the patch. This means that the quadratic function:

Fh(x, y) =

6
∑

l=1

alςl(x, y). (3)

where
ςl ∈

{

1, x, y, x2, xy, y2
}

, (4)

is computed to deduce the second order partial derivatives:

∂2

∂x2

∑

6

l=1
alςl(x, y) = 2a4,

∂2

∂xy

∑

6

l=1
alςl(x, y) = 2a5,

∂2

∂y2

∑6

l=1
alςl(x, y) = 2a6.

(5)

A Riemannian metric,M, is then constructed based on the Hessian matrix by decomposing it
along its eigenvectors, processing its eigenvalues and recomposing it. Since the Hessian matrix
H is symmetric, it can be orthogonally diagonalized as:

H = RDRT (6)

with R the matrix of eigenvectors andD the diagonal matrix of eigenvaluesλi, i = 1, , n. For a
given vertex, eigenvalues act as the inverse of the target squared length in the direction given by
their respective eigenvectors. Each eigenvalue is then bounded below and above as follows:

λ
′

i = min(max(β|λi|, λmin), λmax). (7)
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Figure 2. Some metric tensors represented as ellipses over asimple mesh.

In this process, each eigenvalue is made positive and multiplied by a user-defined scaling coefficient
β called target edge length in the metric. The user can also specify minimum and maximum edge
lengths. Those 3 parameters are defined in the scale of the metric. Edge length is also controlled
by a fourth parameter, namely the maximum stretching, that represents the anisotropy factor of
the metric. All these parameters are used to define a boundinginterval [λmin, λmax] for each
eigenvalue. The processed eigenvalues are then used to compose a diagonal matrixD

′

. The
eigenvalues are non-zero, positive and bounded. That matrix is finally used to recompose the metric
tensor by multiplyingM = RD

′

RT . M is therefore symmetric positive definite by construction.

To apply user constraints, the distance between two points must be computed in the metric space.
The metric distance between the points~pA and~pB is given by:

lAB
M =

1
∫

0

√

( ~pB − ~pA)
TM (~pt) ( ~pB − ~pA)dt (8)

where~pt = ~pA + t ( ~pB − ~pA).

The resulting constraint metric will limit the size and shape of the mesh elements. It will also
align their edges along the directions of variation in the scalar field. Thus, element density will be
larger in areas of high field variation and smaller in areas where the field is constant.

For visualization and manipulation purposes, a metric tensor can also be represented as an ellipse
for which the main axes are the eigenvectors and the target size in each direction is given by the
inverse square root of the corresponding eigenvalue. Figure2 shows some metric tensors expressed
as ellipses over a simple mesh. It can be seen that the metric can precisely describe the size and
shape of a mesh element.

2.2. Adaptation Step

A 2D adaptive mesh is obtained by moving vertices (Figure3 (a)), swapping edges (Figure3 (b))
and refining or decimating edges (Figure3 (c) and (d)). Similar operators are available in 3D. The
goal of the vertex-moving technique is to regularize or smooth the mesh. Each vertex is moved to
the centroid of its neighbors, with distances between vertices evaluated using the metric (Eq.8).
Movements are allowed as long as the topology of the mesh is not modified. For instance, if a vertex
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belongs to a topological edge it will be moved towards the centroid but will remain on this edge.
This technique is combined with the edge swapping and face swapping (in the 3D case) techniques
to achieve geometric and topological smoothing. The goal isalways to improve the quality of the
elements in the metric space. The edge refinement and coarsening techniques are used to modify
the mesh elements’ density. The metric defines the element target size everywhere in the mesh. If
more elements are required to respect the metric with precision, an edge will be divided to increase
the number of elements. On the other hand, if the metric does not vary significantly in a region, the
edge coarsening technique will be used to reduce the number of elements.

The adaptation process combines all these techniques. Algorithm 1 shows the order in which they
are applied. This order was determined experimentally overa wide range of cases, so that each
iteration improves the global mesh quality. At each iteration of the main loop, a statistical analysis
is performed on the mesh edge lengths. If the adaptation process has perfectly converged, each edge
length in the scale of the metric will be of size one. In practice, this will not happen, but edge
lengths will be within an acceptable range from this target,as specified by the user via a threshold.
Assuming a Gaussian distribution, a realistic threshold isbased on the standard deviation of the
edge lengths in the metric. A small value ensures that the resulting Gaussian distribution is narrow,
with a lower dispersion. As this value cannot always be reached, a maximum number of iterations
is also specified.

The main loop is divided into three phases. The first one is a topological and geometric smoothing
phase. It involves edge swapping and vertex moving techniques. The vertex moving is performed
iteratively until either a stopping criterion or a maximum number of iterations is reached. The
stopping criterion is a threshold on the mean displacement in the metric space. The user can
control the movement speed by specifying a relaxation factor. To determine which elements will
be swapped, each element is analyzed to compute its level of deformation. Instead of sorting the
elements by their shape deformation, a statistical processon the element shape measure, evaluated
using the metric, is performed and returns the average and the standard deviation of the deformation.
Still assuming a Gaussian distribution, all the elements above a threshold are treated. This threshold
corresponds to a number of times the standard deviation so that the most stretched elements will
undergo diagonal swapping.

The second and third phases respectively start with edge refinement and edge coarsening and
both end with smoothing. A similar statistical process is also performed in those phases to evaluate
the length of the edges according to the metric. The same threshold used for diagonal swapping
applies for mesh refinement and decimation, to determine howmany elements will be considered.
Each of these elements will be considered in the inner loop ofrefinement and decimation. The
mesh refinement loop has its own threshold that determines when an edge is too long. Here, too
long means that an edge evaluated in the metric space has a length greater than one. The closer to
one this parameter is set, the more time it will take to compute the refinement. For this reason, a
maximum number of iterations is again specified for this phase. The edges that are too long are cut
in two. The same principles apply to the mesh decimation loop. In that case, edges that are too short
are removed.

The global mesh quality of an anisotropic adapted mesh is noteasy to assess. Classic quality
measures cannot be applied directly because carefully aligned or stretched elements, which can
be a good choice in the anisotropic case, will be penalized bysuch measures. Quality measures
can alternatively be computed in the Riemannian space to take into account anisotropic meshes. A
comparison of quality measures in the Euclidian and Riemannian spaces can be found in [38].

Another way to verify the quality is to compute how well the mesh respects the target metric. To
do so, it is possible to compute the non-conformity coefficient [39]. At any step of the adaptation
process, it is possible to define, for an element, a metricMK that transforms it from a control space
where it is perfectly equilateral, into the Euclidian space. It is also possible to define a target metric
MS that transforms the element from the Euclidian space into the metric space. The non-conformity
coefficientǫK is defined as the matrix norm of the average difference between the current metric of
an elementMK and the targeted metricMS . More formally, it is expressed as:

ǫK = ||MS
−1MK +MK

−1MS − 2I||. (9)
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Algorithm 1 Adaptation cycle

while (!convergence)do {//Global adaptation cycle}
while (!convergence)do {//Topological and geometric smoothing}

Edge swapping
Vertex moving

end while
while (!convergence)do {//Refinement phase and smoothing}

Edge refinement
Edge swapping
Vertex moving

end while
while (!convergence)do {//Coarsening phase and smoothning}

Edge coarsening
Edge swapping
Vertex moving

end while
end while

(a) vertex moving (b) edge swapping

(c) edge refinement (d) edge coarsening

Figure 3. Adaptation techniques (resulting edges and vertices are in red).

Labbéet al [36] showed that the proposed method converges and yields adapted meshes with low
non-conformity coefficient values. Note that this coefficient is similar to the quality measure used
by Marchandiseet al [19].

2.3. Interpolation Step

When the adaptation step is completed, the intensity field isinterpolated over the mesh for
visualization purposes and to allow an iterative process. The first iteration can be used to refine the
initial intensity field and obtain a fine mesh with a more regular metric. Other adaptation steps can be
performed, using the previous mesh as the initial mesh, to obtain a coarser mesh that still reflects the
inner field variations. The resulting mesh’s validity can beevaluated qualitatively by superimposing
it to the actual edges that the mesh must fit, and quantitatively by computing different statistics such
as element aspect ratio to ensure that it fits the numerical solvers quality constraints.

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2014)
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Table I. Adaptation Step Parameters Values

Operator Convergence criteria Maximum number of iterations
Global loop 0.12 12
Vertex moving 0.1 10
Edge swapping 2 20
Edge refinement 1.3 1
Edge coarsening 0.7 10

3. EXPERIMENTAL RESULTS AND ANALYSIS

To validate the mesh generation process, various datasets were used. This section first shows the
parameter values used by the adaptation step of our method, then presents results obtained with
two different datasets using those values. First, a synthetic dataset consisting of a sphere centered
inside a cube will be presented. Then, the results of using our method on real MRI datasets will be
presented. All the datasets were processed with the algorithm presented in this paper and compared
with those produced by the method proposed by Gokselet al [28] calledVariational Image Meshing
or VIM. Comparisons are based on the accuracy of the volumes of the structures of interest extracted
from the adapted meshes, with respect to the ground-truth volumes of the same structures, obtained
either analytically (for the synthetic data) or by semi-automatic segmentation by an expert (for
the clinical data). Complementary comparisons using the Hausdorff distance between the surfaces
extracted from the adapted meshes and their ground-truth counterparts will also be presented to
evaluate errors between surfaces [40].

3.1. Calibration

The content of TableI shows the parameter values used to control the mesh adaptation step. The
relaxation factor used in this study was kept at its default value of one. For a description of the
different parameters, see subsection2.2 in the previous section.

3.2. Sphere test case

This dataset represents a sphere of radius 1 centered in a cube with edges of length 3. The initial
mesh is a grid of resolution 100x100x100 filled with tetrahedral elements. The initial mesh has
therefore 1 million vertices and 4.85 million tetrahedral elements. The initial solution for the scalar
field is a binary mask of value 0 outside the sphere and 1 inside. The iterative process described in
the previous section is then performed to generate the metric and adapt the mesh.

Comparison with VIM method
To compare the accuracy of our method to the VIM method, meshes of various resolutions

were adapted and then segmented to keep only elements completely included within the analytical
definition of the sphere. By summing the volumes of all the extracted elements, an approximation of
the segmented sphere volume is computed. Of course, the approximation cannot be more accurate
than the resolution of the initial solution for which the computed volume is 3.97. This is slightly
lower than the volume of a perfect sphere, which is4π/3 or around 4.19. The graph in Figure4a
shows that our method quickly converges to the volume obtained by segmenting the initial volume
of 100x100x100 nodes. Moreover, it shows that the VIM methodneeds a mesh of over 150 000
elements to obtain a segmented mesh volume that converges to95% of the experimental volume.
Our method thus provides more accurate meshes with fewer elements. Indeed, with only 10 000
elements, our methods segmented mesh represents 97% of the experimental volume.

Another way to compare both methods is to compute the Hausdorff distance between the outer
surfaces of each segmented mesh and the perfect sphere as an error estimator. To compute this
distance, 20,000 points were projected from the perfect sphere to the segmented meshes. For each
evaluation, we considered the maximum and the mean Hausdorff distances. To obtain a ratio, the

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2014)
Prepared usingcnmauth.cls DOI: 10.1002/cnm



A DEMONSTRATION OF THE INT. J. NUMER. METH. BIOMED. ENGNG. CLASS FILE 9

(a) (b)

Figure 4. Sphere test case. (a)Total segmented sphere volume.(b)Hausdorff distances of segmented meshes
from the sphere

distance is divided by the diagonal of the bounding box of thesphere. The graph in Figure4b shows
that our method (represented by the light grey curves) produces meshes with lower maximum and
mean Hausdorff distances for the same number of vertices than the VIM method.
Qualitative evaluation

For the purposes of visualization and qualitative evaluation, it is possible to perform a quick
segmentation by using a simple thresholding technique on the mesh produced with our method. By
superimposing a perfect sphere over the resulting segmented mesh, it can be seen to what degree the
elements follow the spheres surface. Figure5 shows different views of the adapted mesh segmented
with a simple threshold set to 10% of the maximum intensity value to remove the dark background.
As can be seen, the resulting mesh doesnt perfectly fit the sphere; indeed, some elements cross the
spheres surface. Several cutting planes are also applied tothe mesh in these views to assess the
mesh elements size distribution. An interesting observation is that the mesh is finer near the surface
boundary and much coarser where the scalar field is constant,i.e. in most of the volume inside and
outside the sphere.

The main parameter that can influence the global shape of the mesh is thetarget edge length in
the metric(TELM). Figure6 shows the effect of varying this parameter. In all cases, elements are
coarser where the scalar field is constant and finer near the edge of the sphere where the scalar field
varies. Increasing the TELM reduces the number of elements while trying to preserve significant
features. In this case, the only interesting feature is the spheres edge. Even with only 200 vertices in
total, this boundary can still be modeled adequately. Therefore, the choice of the TELM should be
based on the desired precision around the edges. For this example, a TELM of 5 is enough to have
good precision around the edge of the sphere while greatly reducing the mesh size (from 1 million
down to 5,832 vertices).

The sphere example also informs us about the impact of the metric initial resolution. Figure7
shows adapted meshes that were all computed using the same TELM value of 5. It illustrates that
when the metric precision increases, more mesh elements areplaced closer to the sphere’s edge and
so the edge precision also increases. Therefore, the precision of the initial dataset is also important.

3.3. Trunk test case

The algorithm presented in this paper was applied to MR data of the human trunk, and the resulting
meshes were compared to 3D segmentations of the same data performed by an expert and to
meshes obtained using the VIM method proposed by Gokselet al [28]. In collaboration with
Sainte-Justine University Hospital Centre in Montreal, Canada, MRI datasets of the trunk of 20
patients were obtained. These data were taken in the contextof a study on the impact of spine
deformity on breast asymmetry [41]. The datasets were acquired from adolescent girls with spine
deformity. All acquisitions were performed using a clinical 1.5T MRI system (Achieva XR, Philips
Healthcare, Best, The Netherlands) using a dedicated 16 channel breast coil. The patients were
in prone position with their arms resting overhead and breasts hanging under free breathing. A

Copyright c© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng.(2014)
Prepared usingcnmauth.cls DOI: 10.1002/cnm



10 O. COURCHESNEET AL

(a) (b) (c)

(d) (e) (f)

Figure 5. Views of adapted mesh with simple threshold applied and cutting planes. (a) Segmented adapted
mesh. (b) Segmented adapted mesh with surrounding elementsunder a cutting plane. (c) Segmented
adapted mesh opened by oblique cutting plane. (d) Perfect sphere around the segmented adapted mesh.

(e) Combination of c) and b). (f) Combination of c) and d).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Result of mesh adaptation for differenttarget edge lengths in the metric(TELM). Each column
shows the same mesh. Colormap is interpolated from red to blue as scalar value decrease.

(a) & (e) show a mesh with TELM of 2, 35600 vertices and 201780 elements.
(b) & (f) show a mesh with TELM of 5, 5832 vertices and 32959 elements.
(c) & (g) show a mesh with TELM of 10, 1109 vertices and 6054 elements.
(d) & (h) show a mesh with TELM of 20, 200 vertices and 938 elements.

3D gradient-echo also called FFE sequence without fat suppression was used (TR/TE = 7.6/4.6,
flip angle: 12 degrees, FoV: 340 x 340 x 220 mm, NSA: 1, Scan duration: 3m40s). This sequence
minimized BO inhomogeneitys by using an automated image-based shimming procedure. Also
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(a) (b) (c)

(d) (e) (f)

Figure 7. Impact of initial metric precision for mesh with TELM of 5. The initial metric precision decreases
from left to right along with the adapted mesh vertex localization accuracy. Colormap is interpolated from

red to blue as scalar value decrease.
(a) & (d) initial precision of1003, adapted mesh of 5832 vertices and 32959 elements.
(b) & (e) initial precision of753, adapted mesh of 4426 vertices and 25075 elements.
(c) & (f) initial precision of453, adapted mesh of 2453 vertices and 13913 elements.

the patient position combined with a specialized acquisition antenna lead to negligible breathing
artifacts [42]. The data reconstructions used by the expert were 352x352x70 pixels with a resolution
of 1 mm x 1 mm x 3 mm.

Comparison with VIM method
To compare the meshes produced using the VIM method with those obtained using our proposed

method, we ran both methods on the datasets. We aimed to obtain meshes with a similar number
of vertices. Results for the VIM method were produced using Matlab code provided by the authors
(VIMesh 1.1). Samples of both meshes are shown in Figure8; they respectively have 25,725 and
22,543 vertices. As expected, VIM produced a highly isotropic mesh, while our method produced
an anisotropic mesh. Another important difference betweenthe two methods lies in the intensity
field interpolation. VIM defines a constant value within eachmesh element, whereas our method
defines a value at each vertex.

The expert used ITKSNAP 2.4.0 [43] to perform semi-automatic 3D active contour segmentation
of the breasts, followed by rigorous pixel by pixel manual validation to obtain an accurate breast
volume segmentation. This result was first used to confirm that meshes produced using the proposed
method have elements aligned with significant anatomical features such as organ boundaries. The
experts segmentations also serve to measure the accuracy ofa given reconstructed volume. Each
dataset was used without any modification to enhance contours or reduce its resolution. Figure9
shows the breasts segmentations made by the expert for subjects 15 and 20 in the study and the
resulting adapted meshes segmented with a simple thresholdset to 10% of the maximum intensity
value in order to extract the outer chest surfaces. The segmented surfaces obtained from the adapted
meshes (center images) are not smooth but give a good idea of what could be obtained with a
more advanced segmentation method. The segmentations wereperformed using the threshold filter
function in the scientific visualization tool ParaView [44].
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(a) (b)

(c) (d)

Figure 8. Mesh comparison between VIM method (left column) and proposed method (right column) for
subject 15. Colormap is interpolated from red to blue as scalar value decrease.

Figure10shows an axial slice through the resulting mesh with the proposed method. Two regions
containing boundaries between internal organs and at the outer trunk surface were selected to
assess the elements’ orientations. Enlarged views of the two regions are also displayed. It can
be seen that the elements naturally follow intrinsic boundaries within the dataset. This important
feature will be useful when we need to characterize mesh elements with biomechanical constraints.
In order to compare tetrahedral positioning precision and allow quantitative comparisons, the
expert segmentations were used to extract subsets of interest from the meshes obtained using the
two methods. Specifically, only elements completely insidethe expert-segmented volume were
extracted. Segmentations of the right and left breasts wereconsidered separately for each subject
in the study. Multiple meshes were produced with different resolutions. For the VIM method, the
number of voxels per tetrahedral element was tested with values of 1, 2, 5, 10, 15, 25, 55, 75 and
100. This was the only parameter for VIM that varied in our tests. For the proposed method, the
TELM parameter was tested with values of 3*, 5*, 5, 6, 10 and 20. The first two cases (marked with
asterisks in the previous list) used a regular mesh as the initial mesh, while the remaining cases used
the mesh with TELM of 3 as the initial mesh.

For both methods, the higher the value of the given parameter, the coarser is the resulting adapted
mesh. Volume ratios were computed between each segmented adapted mesh and the corresponding
expert segmentation of the (left or right) breast. The volume ratio is computed as the sum of the
volumes of the extracted tetrahedral elements over the volume of the expert-segmented breast. The
graphs in Figure11show the volume ratios computed for subject 15 in the study. It can be seen that
our method systematically places elements inside the structure of interest with more precision than
VIM. For a mesh of 50 000 elements, our method is 4%-5% more accurate with this dataset.

For comparison purposes, we then considered meshes of size 10k, 30k and 50k elements among
all those produced from the patient trunk datasets. We foundthat our method produces meshes with
as good or better placement accuracy than those from the VIM method. As can be seen in TableII ,
which shows the results for 5 cases, our method generates better volume approximations in 90% of
the cases (winner of each comparison marked with asterisk).
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Figure 9. Breasts segmentation for subjects 15 and 20. Top images are the experts segmentations.
Center images are the threshold-segmented meshes using ourmethod. Bottom images show both meshes

superimposed.

Furthermore, we considered the Hausdorff distance as a complementary comparison measure, and
computed it between the adapted meshes from both methods andthe ground-truth breast volumes.
Distances between extracted meshes and expert segmentations were normalized by the diagonal of
the bounding box of the expert segmentation to facilitate comparisons. Considering subject 15, the
graphs in Figure12shows that the mean Hausdorff distances for both methods decrease at a similar
rate, but our method always produces a lower mean value. The maximum Hausdorff distances are
similar for both methods, but the VIM method yields in general slightly lower maximum values.
Similar results were obtained for all cases. TableIII and TableIV show the maximum and mean
values for the same five cases as in TableII and for different numbers of vertices. It can be seen that
maximum Hausdorff distances are similar (equal in 60% of thecase) but as the number of vertices
increase the VIM method is usually slightly better. Also, Table IV shows that our method always
produces meshes with equal or lower mean Hausdorff distancevalues.

4. CONCLUSION AND FUTURE WORK

The method proposed in this paper successfully produces 3D geometric patient-specific mesh
models of the human trunk without any segmentation or preprocessing steps.

The adapted mesh is anisotropic. The generation process builds a metric based on the second
order derivatives of the gray levels. The elements shape, size and orientation are determined by
this metric. Using an anisotropic mesh allows us to compressthe dataset or reduce the mesh size
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Figure 10. Adapted mesh for subject 15. Top image shows an axial slice through the adapted mesh with
grey level interpolation. The two square regions enclose tissue boundaries. Center and bottom images show
enlarged views of the left and right square regions respectively. Close ups are in wireframe with and without

grey level interpolation.

without compromising its quality. As the type of model to be built for our context must span the
whole trunk, reducing the size of the model is not only usefulbut necessary to perform numerical
simulations in a reasonable delay. Another way to reduce themodel size is to produce a coarser
mesh, which can be achieved quite simply with our method by increasing the TELM parameter.
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Figure 11. Segmented Breast Volume Ratio for VIM and proposed methods (subject 15)

Figure 12. Hausdorff distance between segmented breast volumes for VIM and proposed methods (subject
15)

Table II. Extracted Volume Ratios for VIM and Proposed Methods

10,000 elements 30,000 elements 50,000 elements
OORT VIM OORT VIM OORT VIM

15 Right 0.79* 0.72 0.87* 0.81 0.90* 0.85
15 Left 0.82* 0.76 0.89* 0.83 0.90* 0.86

16 Right 0.77* 0.75 0.83 0.83 0.86 0.86
16 Left 0.77* 0.76 0.83 0.83 0.86 0.86

17 Right 0.76* 0.75 0.84* 0.83 0.88* 0.86
17 Left 0.77 0.77 0.82 0.84* 0.86 0.87*

18 Right 0.76* 0.74 0.84* 0.82 0.88* 0.85
18 Left 0.72 0.77* 0.87* 0.84 0.89* 0.87

20 Right 0.80* 0.75 0.84* 0.82 0.87* 0.86
20 Left 0.79* 0.77 0.85* 0.83 0.87* 0.86

Table III. Maximum Hausdorff Distance Ratios for VIM and Proposed Methods

250 vertices 1000 vertices 2500 vertices
OORT VIM OORT VIM OORT VIM

15 Right 0.05 0.05 0.04 0.04 0.03 0.02*
15 Left 0.04 0.04 0.04 0.04 0.03 0.02*

16 Right 0.04 0.04 0.03* 0.04 0.02 0.02
16 Left 0.05 0.05 0.04 0.03* 0.02 0.02

17 Right 0.04 0.04 0.04 0.04 0.04 0.02*
17 Left 0.04* 0.05 0.04 0.03* 0.04 0.02*

18 Right 0.05 0.05 0.04 0.03* 0.02 0.02
18 Left 0.04 0.04 0.04 0.03* 0.03 0.02*

20 Right 0.05 0.05 0.04 0.04 0.03 0.02
20 Left 0.04* 0.05 0.04 0.04 0.03 0.02
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Table IV. Mean Hausdorff Distance Ratios for VIM and Proposed Methods

250 vertices 1000 vertices 2500 vertices
OORT VIM OORT VIM OORT VIM

15 Right 0.02 0.03 0.01 0.01 0.01 0.01
15 Left 0.02 0.03 0.01 0.02 0.01 0.01

16 Right 0.02 0.03 0.01 0.01 0.01 0.01
16 Left 0.02 0.03 0.01 0.01 0.01 0.01

17 Right 0.02 0.03 0.01 0.02 0.01 0.01
17 Left 0.02 0.03 0.01 0.01 0.01 0.01

18 Right 0.02 0.03 0.01 0.01 0.01 0.01
18 Left 0.02 0.02 0.01 0.01 0.01 0.01

20 Right 0.02 0.03 0.01 0.01 0.01 0.01
20 Left 0.02 0.03 0.01 0.01 0.01 0.01

Increasing this parameter also causes the mesh to become more isotropic. So if isotropy is desired,
our method can also produce meshes with low anisotropy. For agiven mesh resolution, anisotropy
can also be controlled by the parameter maximum stretching in the metric, which indirectly controls
the aspect ratio. This parameter is very useful because the acceptable level of anisotropy varies
from one numerical solver to another. Solvers are also highly sensitive to the elements’ orientations,
especially when they are anisotropic. On the other hand, if the number of elements is not an issue,
our method can exploit anisotropy and even produce meshes with sub-pixel resolution.

Our method yields good results with both artificial and experimental datasets. In each case, the
resulting mesh respects the inner geometry of the dataset. Furthermore, results show that elements
within the mesh are aligned with organ boundaries even though these have not been explicitly
defined a priori. Results show that our method gives as good orbetter meshes as a similar isotropic
method (VIM), based on the accuracy of the volume reconstruction for a given mesh size and
the mean Hausdorff distance comparison. However, VIM method vertex positioning seems slightly
better according to max Hausdorff distance comparison.

The proposed method is robust in many respects. First, to build the metric of a specific vertex,
the method uses a neighbourhood around that vertex, which makes the method less sensitive to
noise in the dataset by performing an implicit smoothing over the grey level values. Because noise
cannot be avoided when dealing with MRI data, this feature isimportant for our overall project.
Second, all the meshes generated from clinical data presented in this paper were computed using
the same set of parameters. This means that, even if the method gives a lot of control to the user, it
is possible to define a single set of parameters that can be used with all the datasets from a given
acquisition protocol.A possible drawback is, however, that many parameters might need to be
changed when dealing with new datasets. Third, our method is completely automatic and easy to
use. Finally, our results show that increasing the number ofelements improves the precision of the
volume reconstruction. This means that the method converges to an optimal solution according to the
precision of the dataset and that the end user has the abilityto balance the competing requirements
of computation time and mesh precision.

The method we propose offers control over the resulting meshes in order to respect given criteria
based on element shape and size. However, some aspects stillneed to be improved, especially
vertex positioning and computation time. First, although mesh elements follow boundaries within
the dataset, mesh vertices could be placed more accurately at the boundaries themselves. To improve
this aspect, gradient information could be used when building the metric that drives the adaptation
process.Information from different acquisition protocol or imaging modalities could also be
mapped with our data to obtain a more robust metric. Moreover, when building the metric, an
approximation is made to consider the intensity field as a continuous field. A vertex of the dual mesh
is placed at the center of each pixel or voxel of the dataset. This causes the field to be shifted by half a
pixel on average. If the pixel resolution is low, this fact can partly explain why mesh vertices are not
perfectly placed on the boundaries present in the initial dataset. Lastly, even thought our adaptation
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process is automatic and works with large datasets, computation time is still an issuethat can limit
the applicability of the method to very large datasets. This aspect should be assessed in future
work by exploiting parallelization in the initialization and adaptation steps of the method.

In relation with numerical simulation, future work will focus on segmenting the geometric model
to characterize the different layers of soft tissue in the human trunk. As the adapted model respects
the inner boundaries present in the image data, it should help to segment the bone, muscle and fat
layers, which are the main anatomical structures of interest in our application.
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