1 research outputs found

    Investigations of Optical Coherence Properties in an Erbium-doped Silicate Fiber for Quantum State Storage

    Full text link
    We studied optical coherence properties of the 1.53 μ\mum telecommunication transition in an Er3+^{3+}-doped silicate optical fiber through spectral holeburning and photon echoes. We find decoherence times of up to 3.8 μ\mus at a magnetic field of 2.2 Tesla and a temperature of 150 mK. A strong magnetic-field dependent optical dephasing was observed and is believed to arise from an interaction between the electronic Er3+^{3+} spin and the magnetic moment of tunneling modes in the glass. Furthermore, we observed fine-structure in the Erbium holeburning spectrum originating from superhyperfine interaction with 27^{27}Al host nuclei. Our results show that Er3+^{3+}-doped silicate fibers are promising material candidates for quantum state storage
    corecore