24 research outputs found

    Purification of functional F-ATP synthase from blue native PAGE

    No full text
    In the presence of Ca2+, F-ATP synthase preparations eluted from Blue Native gels generate electrophysiological currents that are typical of an inner mitochondrial membrane mega-channel, the permeability transition pore. Here we describe an experimental protocol for purification of F-ATP synthase that allows to maintain the enzyme assembly and activity that are essential for catalysis and channel formation

    A new target for an old DUB: UCH-L1 regulates mitofusin-2 levels, altering mitochondrial morphology, function and calcium uptake

    No full text
    UCH-L1 is a deubiquitinating enzyme (DUB), highly abundant in neurons, with a sub-cellular localization dependent on its farnesylation state. Despite UCH-L1\u2032s association with familial Parkinson's Disease (PD), the effects on mitochondrial bioenergetics and quality control remain unexplored. Here we investigated the role of UCHL-1 in mitochondrial dynamics and bioenergetics. We demonstrate that knock-down (KD) of UCH-L1 in different cell lines reduces the levels of the mitochondrial fusion protein Mitofusin-2, but not Mitofusin-1, resulting in mitochondrial enlargement and disruption of the tubular network. This was associated with lower tethering between mitochondria and the endoplasmic reticulum, consequently altering mitochondrial calcium uptake. Respiratory function was also altered, as UCH-L1 KD cells displayed higher proton leak and maximum respiratory capacity. Conversely, overexpression of UCH-L1 increased Mfn2 levels, an effect dramatically enhanced by the mutation of the farnesylation site (C220S), which drives UCH-L1 binding to membranes. These data indicate that the soluble cytosolic form of UCH-L1 regulates Mitofusin-2 levels and mitochondrial function. These effects are biologically conserved, since knock-down of the corresponding UCH-L1 ortholog in D. melanogaster reduces levels of the mitofusin ortholog Marf and also increases mitochondrial respiratory capacity. We thus show that Mfn-2 levels are directly affected by UCH-L1, demonstrating that the mitochondrial roles of DUBs go beyond controlling mitophagy rates

    Dimers of mitochondrial ATP synthase form the permeability transition pore

    No full text
    Here we define the molecular nature of the mitochondrial permeability transition pore (PTP), a key effector of cell death. The PTP is regulated by matrix cyclophilin D (CyPD), which also binds the lateral stalkof the F OF1ATP synthase. We show that CyPD binds the oligomycin sensitivity-conferring protein subunit of the enzyme at the same site as the ATP synthase inhibitor benzodiazepine 423 (Bz-423), that Bz-423 sensitizes the PTP to Ca2+ like CyPD itself, and that decreasing oligomycin sensitivity-conferring protein expression by RNAi increases the sensitivity of the PTP to Ca2+. Purified dimers of the ATP synthase, which did not contain voltage-dependent anion channel or adenine nucleotide translocator, were reconstituted into lipid bilayers. In the presence of Ca2+, addition of Bz-423 triggered opening of a channel with currents that were typical of the mitochondrial megachannel, which is the PTP electrophysiological equivalent. Channel openings were inhibited by the ATP synthase inhibitor AMP-PNP (\u3b3-imino ATP,anonhydrolyzable ATP analog) and Mg2+/ADP. These results indicate that the PTP forms from dimers of the ATP synthase

    F-ATPase of drosophila melanogaster forms 53-picosiemen (53-pS) channels responsible for mitochondrial Ca2+-induced Ca2+ release

    No full text
    Background: The Ca2+-induced Ca2+ release channel (mCrC) of Drosophila mitochondria is similar to the permeability transition pore (PTP). Results: mCrC is modulated by PTP effectors and Drosophila F-ATPase forms 53-pS channels. Conclusion: F-ATPase mediates Ca2+-induced Ca2+ release in Drosophila mitochondria. Significance: Channel formation by F-ATPases has been conserved in evolution, but species-specific features exist that may underscore different roles in different organisms
    corecore