107 research outputs found

    Phase transitions in three-dimensional topological lattice models with surface anyons

    Full text link
    We study the phase diagrams of a family of 3D "Walker-Wang" type lattice models, which are not topologically ordered but have deconfined anyonic excitations confined to their surfaces. We add a perturbation (analogous to that which drives the confining transition in Z_p lattice gauge theories) to the Walker-Wang Hamiltonians, driving a transition in which all or some of the variables associated with the loop gas or string-net ground states of these models become confined. We show that in many cases the location and nature of the phase transitions involved is exactly that of a generalized Z_p lattice gauge theory, and use this to deduce the basic structure of the phase diagram. We further show that the relationship between the phases on opposite sides of the transition is fundamentally different than in conventional gauge theories: in the Walker-Wang case, the number of species of excitations that are deconfined in the bulk can increase across a transition that confines only some of the species of loops or string-nets. The analogue of the confining transition in the Walker-Wang models can therefore lead to bulk deconfinement and topological order

    Three-dimensional topological lattice models with surface anyons

    Full text link
    We study a class of three dimensional exactly solvable models of topological matter first put forward by Walker and Wang [arXiv:1104.2632v2]. While these are not models of interacting fermions, they may well capture the topological behavior of some strongly correlated systems. In this work we give a full pedagogical treatment of a special simple case of these models, which we call the 3D semion model: We calculate its ground state degeneracies for a variety of boundary conditions, and classify its low-lying excitations. While point defects in the bulk are confined in pairs connected by energetic strings, the surface excitations are more interesting: the model has deconfined point defects pinned to the boundary of the lattice, and these exhibit semionic braiding statistics. The surface physics is reminiscent of a ν=1/2\nu=1/2 bosonic fractional quantum Hall effect in its topological limit, and these considerations help motivate an effective field theoretic description for the lattice models as variants of bFbF theories. Our special example of the 3D semion model captures much of the behavior of more general `confined Walker-Wang models'. We contrast the 3D semion model with the closely related 3D version of the toric code (a lattice gauge theory) which has deconfined point excitations in the bulk and we discuss how more general models may have some confined and some deconfined excitations. Having seen that there exist lattice models whose surfaces have the same topological order as a bosonic fractional quantum Hall effect on a confining bulk, we construct a lattice model whose surface has similar topological order to a fermionic quantum hall effect. We find that in these models a fermion is always deconfined in the three dimensional bulk

    Адаптация персонала организации на примере сети кафе «Пельмени Project»

    Get PDF
    Объектом исследования является–система адаптации персонала в кафе «Пельмени Project» и разработка путей ее совершенствования. Предметом исследования является – система адаптации персонала. Цель работы– оценка системы адаптации и разработка методов ее совершенствования в кафе «Пельмени Project». В процессе исследования проводился комплексный опрос. В результате исследования были разработаны рекомендации по улучшению системы адаптации персоналом в кафе «Пельмени Project». Степень внедрения:система адаптации молодых сотрудников в кафе «Пельмени Project» находится на хорошем уровне, проводятся различные мероприятия для благоприятной адаптации на работе, несмотря на это, все равно существует ряд недоработок в этой области, подтверждением тому является текучка кадров и неудовлетворенность новых сотрудников.The object of this study is to adapt the system-staff in the cafe "Dumplings Project» and to develop ways to improve it. The subject issledovaniyayavlyaetsya - personnel system adaptation. The purpose work- evaluation system to adapt and develop methods to improve it in the cafe "Dumplings Project». The study conducted a comprehensive survey. The study developed recommendations to improve the personnel system to adapt to the cafe "Dumplings Project». Degree of implementation: adapting the system of young staff in the cafe "Dumplings Project» is at a good level, hosts a variety of supportive measures for adaptation to work, in spite of this, all still there are some shortcomings in this area, confirming that is staff turnover and dissatisfaction with the new employees

    Observation of discrete time-crystalline order in a disordered dipolar many-body system

    Full text link
    Understanding quantum dynamics away from equilibrium is an outstanding challenge in the modern physical sciences. It is well known that out-of-equilibrium systems can display a rich array of phenomena, ranging from self-organized synchronization to dynamical phase transitions. More recently, advances in the controlled manipulation of isolated many-body systems have enabled detailed studies of non-equilibrium phases in strongly interacting quantum matter. As a particularly striking example, the interplay of periodic driving, disorder, and strong interactions has recently been predicted to result in exotic "time-crystalline" phases, which spontaneously break the discrete time-translation symmetry of the underlying drive. Here, we report the experimental observation of such discrete time-crystalline order in a driven, disordered ensemble of 106\sim 10^6 dipolar spin impurities in diamond at room-temperature. We observe long-lived temporal correlations at integer multiples of the fundamental driving period, experimentally identify the phase boundary and find that the temporal order is protected by strong interactions; this order is remarkably stable against perturbations, even in the presence of slow thermalization. Our work opens the door to exploring dynamical phases of matter and controlling interacting, disordered many-body systems.Comment: 6 + 3 pages, 4 figure

    Distribution and consequences of VKORC1 polymorphisms in Germany

    Get PDF
    Runge, M., Von Keyserlingk, M., Braune, S., Freise, J., Eiler, T., Plenge-Bönig, A., Becker, D., Pelz, H.-J., Esther, A., Rost, S., Müller, C.R

    Periodically driving a many-body localized quantum system

    Get PDF
    We experimentally study a periodically driven many-body localized system realized by interacting fermions in a one-dimensional quasi-disordered optical lattice. By preparing the system in a far-from-equilibrium state and monitoring the remains of an imprinted density pattern, we identify a localized phase at high drive frequencies and an ergodic phase at low ones. These two distinct phases are separated by a dynamical phase transition which depends on both the drive frequency and the drive strength. Our observations are quantitatively supported by numerical simulations and are directly connected to the change in the statistical properties of the effective Floquet Hamiltonian.We acknowledge support from Technical University of Munich - Institute for Advanced Study, funded by the German Excellence Initiative and the European Union FP7 under grant agreement 291763, from the DFG grant no. KN 1254/1-1, the European Commission (UQUAM, AQuS) and the Nanosystems Initiative Munich (NIM)

    Repulsive polarons and itinerant ferromagnetism in strongly polarized Fermi gases

    Full text link
    We analyze the properties of a single impurity immersed in a Fermi sea. At positive energy and scattering lengths, we show that the system possesses a well-defined but metastable excitation, the repulsive polaron, and we calculate its energy, quasiparticle residue and effective mass. From a thermodynamic argument we obtain the number of particles in the dressing cloud, illustrating the repulsive character of the polaron. Identifying the important 2- and 3-body decay channels, we furthermore calculate the lifetime of the repulsive polaron. The stability conditions for the formation of fully spin polarized (ferromagnetic) domains are then examined for a binary mixture of atoms with a general mass ratio. Our results indicate that mass imbalance lowers the critical interaction strength for phase-separation, but that very short quasiparticle decay times will complicate the experimental observation of itinerant ferromagnetism. Finally, we present the spectral function of the impurity for various coupling strengths and momenta.Comment: Substantial improvements to the section describing quasiparticle decays (included a discussion of two-body and three-body processes), and to the criteria for the stability of the itinerant ferromagnetic phas

    R\ue9nyi entropies of generic thermodynamic macrostates in integrable systems

    Get PDF
    We study the behaviour of R\ue9nyi entropies in a generic thermodynamic macrostate of an integrable model. In the standard quench action approach to quench dynamics, the R\ue9nyi entropies may be derived from the overlaps of the initial state with Bethe eigenstates. These overlaps fix the driving term in the thermodynamic Bethe ansatz (TBA) formalism. We show that this driving term can be also reconstructed starting from the macrostate's particle densities. We then compute explicitly the stationary R\ue9nyi entropies after the quench from the dimer and the tilted N\ue9el state in XXZ spin chains. For the former state we employ the overlap TBA approach, while for the latter we reconstruct the driving terms from the macrostate. We discuss in full detail the limits that can be analytically handled and we use numerical simulations to check our results against the large time limit of the entanglement entropies
    corecore