Periodically Driving a Many-Body Localized Quantum System
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Quantum many-body systems far from equi-
librium arise naturally in a variety of disciplines,
ranging from condensed matter to cosmology. In
recent years, there has been an intense focus on
understanding the dynamical evolution of quan-
tum many-body systems that are well isolated
from their environment [1, 2]. Particularly, in pe-
riodically driven systems exotic phenomena can
emerge that are absent in their undriven coun-
terparts. For example, topologically non-trivial
band structures can be realized by driving topo-
logically trivial systems [3—9] and ergodic phases
can be created by driving non-ergodic quantum
systems [10-16]. In undriven systems, a ro-
bust non-ergodic phase can be realized by adding
strong disorder to an interacting many-body sys-
tem, leading to the phenomenon of many-body lo-
calization (MBL) [17—-25]. In an ideal MBL phase,
global transport and thermalization are absent,
and some memory of the initial conditions per-
sists locally for arbitrarily long times even at fi-
nite energy densities [19, 20], as underlined in ex-
periments [22—25]. Recent theoretical works have
further proposed that combining MBL and pe-
riodic driving can lead to novel symmetry pro-
tected topological phases with no direct equilib-
rium analogues [26—32]. It is therefore highly per-
tinent to experimentally study the interplay of
disorder and periodic driving in interacting quan-
tum systems.

In this work, we experimentally study a periodically
modulated, disordered many-body system by employ-
ing an interacting Fermi gas in a one-dimensional quasi-
random optical lattice. The undriven system exhibits a
phase transition from an ergodic to an MBL phase as
the disorder strength is increased [22]. In presence of
a strong drive, we observe a stable MBL phase at high
drive frequencies, characterized by a persisting memory
on the initial state for long times. In contrast, below a
critical frequency, the system delocalizes and completely
obliviates the initially imprinted density modulation, see
Fig. 1. These phases are separated by a dynamical phase
transition that depends on both the drive amplitude and
the frequency. Our observations are supported by nu-

merical simulations based on matrix product states and
exact diagonalization and can be understood as emergent
properties of an effective Floquet Hamiltonian.

Ezxperiment.— Our experimental setup consists of
a degenerate “°K Fermi gas prepared in an equal spin
mixture of its lowest two hyperfine states, denoted as
{1,4}. We load the gas into the lowest band of a deep
three-dimensional optical lattice with at most one atom
per site. In the z-direction, we employ a superlattice [22]
to imprint a density modulation with atoms occupying
only even sites of the primary lattice, Fig. 1 (a). We ini-
tiate the quantum dynamics by lowering the depth of
the longitudinal lattice, so that quantum tunneling be-
comes appreciable along one direction and the density
pattern coherently evolves in a one-dimensional quasi-
random disorder potential. This quasi-random poten-
tial is generated by superimposing a primary lattice
beam of wavelength Ay = 532.0nm with a second laser,
the disorder lattice laser, of incommensurate wavelength
Ad¢ = 738.2nm. During the time evolution, we continu-
ously modulate all on-site potentials A; synchronously by
modulating the disorder lattice intensity with frequency
v, Fig.1(b). After a variable evolution time, we sud-
denly freeze the system by increasing the depth of the
primary lattice and thereby suppressing tunneling. Sub-
sequently, we employ a bandmapping procedure to mea-
sure the particle number on even N, and odd N, sites
in time-of-flight images [22] and calculate the imbalance
Z = (N. — N,)/(N. + N,), which effectively provides a
measure for the ergodicity of the quantum system: Un-
der ergodic evolution it rapidly approaches zero while a
persistent imbalance indicates non-ergodic dynamics.

Model.— Our system can be described theoretically
by the one-dimensional Aubry-André model with on-site
interactions [33] and a time periodic quasi-random disor-
der potential:

H=—7> (el ,eio+he)+UD iigniy

+[A + Asin(2mvt)] Y cos(2mBi + @i, (1)

Here, J =~ h x 550Hz is the tunneling matrix element
between neighboring sites and h is the Planck’s constant.
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FIG. 1. Schematic of the experiment and the dynamical phase diagram. (a) A density-wave pattern of spinful
fermionic atoms occupying only the even sites of a disordered optical lattice evolves under (b) a periodic modulation of the
on-site disorder potentials A; with frequency v and amplitude A. (c) The phase diagram for the strongly driven system
(A= A) as a function of inverse frequency 1/v and characteristic disorder strength A: In the infinite-frequency limit (z-axis),
the disorder-induced phase transition from an ergodic phase to a many-body localized phase is recovered at a critical disorder
strength A, (black point). While at high but finite drive frequencies the system remains localized for strong disorder, it
delocalizes at low drive frequencies. These phases are separated by a drive-induced transition (blue line).
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FIG. 2. Evolution of the imbalance under periodic

modulation. The initially imprinted density-wave pattern,
in which atoms occupy only even sites, evolves in a quasi-
random disorder potential that is periodically modulated in
time. After variable evolution times, we measure the imbal-
ance between the even and odd sites. Fixing the disorder
A = 7.5J and interaction strength U = 4 J, experimental
data (symbols) and numerical simulations (lines) are shown
for different values of the drive frequency v (legend), for the
strongly driven case with A = A. Experimental and numeri-
cal data are normalized by their respective asymptotic values
in the undriven system Zo ~ 0.6. The experimental data is
averaged over six different disorder realizations and the error-
of-the-mean (e.0.m) is smaller than the symbol size. The light
gray area indicates the time window considered to determine
the asymptotic imbalance. Theoretical data to longer times
is shown in the Supplementary Material.

The fermion creation (annihilation) operator in the spin
state o € {f,]} on site ¢ are denoted by é;r’o (¢i,0) and
the particle number operator is 7; , = ¢; ,Ci,o. The on-
site interaction strength between the two spin species is
given by U. The disorder is characterized by the disorder
strength A, the incommensurate wavelength ratio 8 =
As/Ad, and the relative phase ¢.

The disorder is modulated in time with frequency v
and amplitude A € [0, A], Fig. 1 (b). The total Hamilto-
nian is thus periodic in time H(t) = H(t+7') with period
T =1/v. For A = 0 the model has been experimentally
shown to exhibit an MBL phase above a critical disorder
strength A, for a wide range of interactions and energy
densities [22].

Dynamic Response.— First, we concentrate on
fixed disorder A = 7.5J and interactions U = 4 J. For
these parameters, the undriven system (A = 0) is deep
in the localized phase and an initial density-wave pat-
tern approaches a stationary state with large residual
imbalance Zy ~ 0.6 (see Supplementary Material). The
time evolution of the normalized imbalance Z/Z for the
strongly driven system A = A is shown in Fig. 2 for two
different drive frequencies. All times are given in units of
tunneling time, 7 = h/(2xJ). At high drive frequency
v = 2A/h the system remains localized (Z/Zg ~ 1),
implying that the system is transparent to the drive in
this regime. In this case, its dynamics is effectively gov-
erned by the time averaged non-ergodic Hamiltonian. By
contrast, at low drive frequency v = 0.4 A/h, the drive
enables a redistribution of atoms leading to a vanish-
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FIG. 3. Dynamical phase diagram. Asymptotic imbalance, Z, as a function of the disorder strength A/J and inverse
frequency A/v for strong drive A = A and interactions U = 4J. (a) The interpolated experimental measurements (data
taken at the gray dots), are compared to (b) numerical simulations based on matrix product states. We find a drive-induced
delocalization transition (white dashed line, guide to the eye) from the many-body localized phase with high imbalance (blue)
to an ergodic phase with vanishing imbalance (gray) when lowering the drive frequency. Using exact diagonalization, the drive
induced delocalization transition is also supported by the quasienergy level statistics of the Floquet Hamiltonian, insets to the
right. The distribution P(r) of the level statistics parameter r (see main text) follows the circular orthogonal ensemble (COE)
in the ergodic phase (gray curve, (D) and Poisson statistics in the localized phase (blue curve, 2)). In both insets, the dashed
black lines indicate the Poisson and COE distribution functions, respectively.

ingly small imbalance (Z/Zy ~ 0). Thus, the dynam-
ics is consistent with ergodic behavior, even though the
time-averaged Hamiltonian is not. The theoretical data
(solid lines), obtained by numerical simulations based
on matrix product states, agrees with the experimental
measurements (symbols), Fig. 2, and provides strong sup-
port for the observed behavior. Furthermore, the good
agreement indicates that the system is minimally affected
from any external couplings on the experimental time
scales [24, 34].

Phase Diagram.— To investigate the dynamical
phases, we systematically study the long-time asymp-
totics of the imbalance in the strongly driven system. We
measure the asymptotic imbalance Z as the time average
between ~ 407 — 507, as marked by the light-gray area
in Fig. 2. The experimentally measured and theoretically
calculated mean imbalance for strong drive A = A and
interactions U = 4 J is shown in Fig.3 as a function of
drive frequency and disorder strength. We note that in
this regime, the system is far away from the weak driv-
ing considered in linear response. The x-axis marks the
limit of infinite drive frequency A/(hv) — 0, where the
imbalance reduces to the one of the undriven system and
connects to the phase diagram measured in Ref. [22].

We observe a stable MBL phase at high but finite fre-
quencies, which is illustrated by the blue area in Fig. 3.
When lowering the drive frequency at fixed disorder
strength and drive amplitude the system undergoes a de-
localization transition to the ergodic phase (@ to @,
black arrow). We emphasize that, due to the sinusoidal

drive, the fraction of time spent by the system in the
delocalized regime is independent of the drive frequency.
Yet, the nature of the effective dynamics changes com-
pletely with its frequency. This arises because at high
drive frequencies the atoms only respond to the time-
averaged on-site potential, while at low frequencies they
can delocalize via the intermediate extended states. The
two phases are separated by a drive induced delocaliza-
tion transition. This phase boundary is indicated by the
white dashed line (guide to the eye) in Fig.3 (a), which
follows the contour line connecting to the approximate
critical disorder strength A. =~ 3J in the infinite fre-
quency limit (z-axis in Fig. 3 (c)) [22].

For the theoretical interpretation of the observed drive-
induced phase transition, it is useful to introduce the
Floquet Hamiltonian Hp as

67% HpT _ T(ii% TH(t)dt (2)

which describes the unitary evolution over one period of
the drive. Here, 7 is the time ordering operator and A
is the reduced Planck’s constant. The Floquet Hamilto-
nian governs the stroboscopic dynamics of the system and
its statistical properties determine whether the quantum
dynamics is ergodic or not [35]. This can be exempli-
fied by studying the level statistics of the quasienergies
€, obtained from diagonalizing Hp. Due to the peri-
odic drive, the quasienergies €, are only defined modulo
h/T. The distribution P(r) of the level statistics param-
eter ro = min[gt—te, 22=te=t] enables one to identify

the nature of the phases [19]. While an ergodic system
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FIG. 4. Frequency and amplitude dependence of the
asymptotic imbalance. We choose disorder A = 7.5 J and
interaction U = 3 J for which the undriven system is strongly
localized. (a) The measured (symbols) and numerical (gray
shaded area) data of the asymptotic normalized imbalance
T/Ty is shown as a function of inverse drive frequency A/(hv)
for strong drive amplitude A = A. (b) Asymptotic imbalance
as a function of drive amplitude A/A for comparatively low
drive frequency hv = A/7.5. The system appears to remain
exceedingly stable at low amplitudes but promptly delocalizes
for larger amplitudes. E.o.m. over six disorder realizations is
smaller than the symbol size. Thickness of the theoretical
lines denote one standard deviation of the data for different
disorder configurations.

is expected to follow the circular orthogonal ensemble,
a Poisson distribution is expected in the localized phase
due to the absence of level repulsion [19, 35]. Typical
plots for the distribution P(r) are shown in the insets in
Fig. 3 and agree with these expectations. To keep the nu-
merical computation of the level statistics tractable, we
have approximated the monochromatic drive by a two-
step function (see Supplementary Material for further de-
tails).

Quantitative Analysis of Frequency and Ampli-
tude Dependence.— In order to quantitatively study
the frequency dependence of the imbalance for a strong
amplitude drive A = A, we choose disorder A = 7.5.J
and interactions U = 3J and illustrate in Fig.4 (a) the
transition from the localized phase at high frequencies to
the ergodic phase at low ones. The imbalance decreases
continuously with decreasing frequency except for a small
peak around A/(hv) = 1, a fact which is also discernible
in theoretical contours in Fig.3 and stems from the en-
ergy level distribution of the quasi-periodic disorder po-

4

tential (see Supplementary Material for further details).
At low frequencies with A/(hv) 2 2, we measure close to
vanishing imbalances consistent with ergodic dynamics.
In this regime, small residual imbalance in the theoreti-
cal simulations follows a slow power law relaxation (see
Supplementary Material). Due to the finite lifetime in
the experiment, the theoretically evaluated imbalance is
typically slightly larger than the experimental one [24].

The response of the system as a function of the drive
amplitude at low drive frequency hv = A/7.5 is shown
in Fig.4(b). The normalized imbalance decreases as a
function of the drive amplitude and for strong drives
(A =~ A), the system delocalizes with vanishing steady
state imbalance. Crucially, despite the comparatively low
drive frequency, the system remains exceedingly stable for
drive amplitudes that are small compared to the disor-
der strength. The stability of the MBL phase at such low
frequencies is a consequence of the drive modulating all
on-site energies synchronously, i.e., modulating the over-
all disorder strength itself. This is in contrast to previous
theoretical studies in which a linear-field gradient drive
was used. For such a drive, similar parameters would al-
ready result in delocalization through a series of Landau-
Zener transitions [13, 16]. For our case, we cannot rule
out delocalization at even longer times or lower drive fre-
quencies. In particular, the critical drive frequency below
which the system might delocalize could get reduced to
extremely small values. Analyzing these extreme limits
remains a challenging task for future work.

Nonetheless, we find an exceptionally stable driven
phase even at low drive frequencies that can provide novel
avenues for engineering exotic phases of matter [26-32].
In the Supplementary Material, we also present the dy-
namical phase diagram as a function of the amplitude
and frequency.

Conclusions and Owutlook.— By periodically
driving a many-body localized system, we have created
and observed non-ergodic and ergodic phases that emerge
from an effective Floquet Hamiltonian and are separated
by a drive-induced delocalization transition. Our results
directly show dynamics beyond the time-averaged Hamil-
tonian. Periodic modulation paves the way for measur-
ing the frequency resolved response of many-body sys-
tems, with the particular prospect of exploring the criti-
cal point of the MBL transition [36-39] and the response
in higher dimensions [25]. Furthermore, our observations
demonstrate that disorder can be used to protect inter-
acting and periodically driven systems from heating to
infinite temperature and hence sets the basis for realiz-
ing novel symmetry protected topological phases [26-32].
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