291 research outputs found

    Derivation of exact flow equations from the self-consistent parquet relations

    Get PDF
    We exploit the parquet formalism to derive exact flow equations for the two-particle-reducible four-point vertices, the self-energy, and typical response functions, circumventing the reliance on higher-point vertices. This includes a concise, algebraic derivation of the multiloop flow equations, which have previously been obtained by diagrammatic considerations. Integrating the multiloop flow for a given input of the totally irreducible vertex is equivalent to solving the parquet equations with that input. Hence, one can tune systems from solvable limits to complicated situations by variation of one-particle parameters, staying at the fully self-consistent solution of the parquet equations throughout the flow. Furthermore, we use the resulting differential form of the Schwinger-Dyson equation for the self-energy to demonstrate one-particle conservation of the parquet approximation and to construct a conserving two-particle vertex via functional differentiation of the parquet self-energy. Our analysis gives a unified picture of the various many-body relations and exact renormalization group equations

    Mesoscopic Spin-Boson Models of Trapped Ions

    Get PDF
    Trapped ions arranged in Coulomb crystals provide us with the elements to study the physics of a single spin coupled to a boson bath. In this work we show that optical forces allow us to realize a variety of spin-boson models, depending on the crystal geometry and the laser configuration. We study in detail the Ohmic case, which can be implemented by illuminating a single ion with a travelling wave. The mesoscopic character of the phonon bath in trapped ions induces new effects like the appearance of quantum revivals in the spin evolution.Comment: 4.4 pages, 5 figure

    Variational matrix product state approach to quantum impurity models

    Get PDF
    We present a unified framework for renormalization group methods, including Wilson's numerical renormalization group (NRG) and White's density-matrix renormalization group (DMRG), within the language of matrix product states. This allows improvements over Wilson's NRG for quantum impurity models, as we illustrate for the one-channel Kondo model. Moreover, we use a variational method for evaluating Green's functions. The proposed method is more flexible in its description of spectral properties at finite frequencies, opening the way to time-dependent, out-of-equilibrium impurity problems. It also substantially improves computational efficiency for one-channel impurity problems, suggesting potentially \emph{linear} scaling of complexity for nn-channel problems.Comment: revised version with application to Kondo model at large magnetic field (5 pages, 2 figures

    Dimensional Crossover of the Dephasing Time in Disordered Mesoscopic Rings: From Diffusive through Ergodic to 0D Behavior

    Full text link
    We analyze dephasing by electron interactions in a small disordered quasi-one dimensional (1D) ring weakly coupled to leads, where we recently predicted a crossover for the dephasing time \tPh(T) from diffusive or ergodic 1D (\tPh^{-1} \propto T^{2/3}, T^{1}) to 0D0D behavior (\tPh^{-1} \propto T^{2}) as TT drops below the Thouless energy \ETh. We provide a detailed derivation of our results, based on an influence functional for quantum Nyquist noise, and calculate all leading and subleading terms of the dephasing time in the three regimes. Explicitly taking into account the Pauli blocking of the Fermi sea in the metal allows us to describe the 0D0D regime on equal footing as the others. The crossover to 0D0D, predicted by Sivan, Imry and Aronov for 3D systems, has so far eluded experimental observation. We will show that for T \ll \ETh, 0D0D dephasing governs not only the TT-dependence for the smooth part of the magnetoconductivity but also for the amplitude of the Altshuler-Aronov-Spivak oscillations, which result only from electron paths winding around the ring. This observation can be exploited to filter out and eliminate contributions to dephasing from trajectories which do not wind around the ring, which may tend to mask the T2T^{2} behavior. Thus, the ring geometry holds promise of finally observing the crossover to 0D0D experimentally.Comment: in "Perspectives of Mesoscopic Physics - Dedicated to Yoseph Imry's 70th Birthday", edited by Amnon Aharony and Ora Entin-Wohlman (World Scientific, 2010), chap. 20, p. 371-396, ISBN-13 978-981-4299-43-

    Exploiting environmental resonances to enhance qubit quality factors

    Full text link
    We discuss dephasing times for a two-level system (including bias) coupled to a damped harmonic oscillator. This system is realized in measurements on solid-state Josephson qubits. It can be mapped to a spin-boson model with a spectral function with an approximately Lorentzian resonance. We diagonalize the model by means of infinitesimal unitary transformations (flow equations), and calculate correlation functions, dephasing rates, and qubit quality factors. We find that these depend strongly on the environmental resonance frequency Ω\Omega; in particular, quality factors can be enhanced significantly by tuning Ω\Omega to lie below the qubit frequency Δ\Delta.Comment: 5 psges, 5 figure

    Exact Study of the Effect of Level Statistics in Ultrasmall Superconducting Grains

    Get PDF
    The reduced BCS model that is commonly used for ultrasmall superconducting grains has an exact solution worked out long ago by Richardson in the context of nuclear physics. We use it to check the quality of previous treatments of this model, and to investigate the effect of level statistics on pairing correlations. We find that the ground state energies are on average somewhat lower for systems with non-uniform than uniform level spacings, but both have an equally smooth crossover from the bulk to the few-electron regime. In the latter, statistical fluctuations in ground state energies strongly depend on the grain's electron number parity.Comment: 4 pages, 3 eps figs, RevTe

    Fixed-N Superconductivity: The Crossover from the Bulk to the Few-Electron Limit

    Full text link
    We present a truly canonical theory of superconductivity in ultrasmall metallic grains by variationally optimizing fixed-N projected BCS wave-functions, which yields the first full description of the entire crossover from the bulk BCS regime (mean level spacing d≪d \ll bulk gap Δ~\tilde\Delta) to the ``fluctuation-dominated'' few-electron regime (d≫Δ~d\gg\tilde\Delta). A wave-function analysis shows in detail how the BCS limit is recovered for d≪Δ~d\ll \tilde \Delta, and how for d≫Δ~d \gg \tilde \Delta pairing correlations become delocalized in energy space. An earlier grand-canonical prediction for an observable parity effect in the spectral gaps is found to survive the fixed-N projection.Comment: 4 pages, 3 figures, RevTeX, V2: minor charges to mach final printed versio

    Investigating validity and reliability of visual inspection of lateral cephalometric radiography (lcr) evaluation in determining dento-skeletal characteristics

    Get PDF
    Over the past two decades, orthodontists have performed many studies on facial profiles and the results of these studies have emphasized the use of profile view to detect orthodontic malocclusions. Some studies consider lateral cephalometric radiography (LCR) as the best method to examine the profile view. It is about a century that lateral cephalometry was introduced and then used as a standard instrument for diagnosis and treatment of orthodontic treatment. Today, it is also necessary to use it in the orthodontic treatment. Cephalometric tracing or template method is used as the standard lateral cephalometric assessment method. Tracing is done because it reduces the amount of information on the film to a considerable extent and prepares cephalograms for subsequent analyzes. Despite the fact that LCR is already prescribed prior to orthodontic treatments in many European countries, very few orthodontic treatments are based on data from cephalometric analysis.The purpose of this study was to determine the validity and reliability of visual inspection of the LCR in determining dento- skeletal characteristics
    • …
    corecore