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The reduced BCS model that is commonly used for ultrasmall superconducting grains has an exact solution

worked out long ago by Richardson in the context of nuclear physics. We use it to check the quality of previous

treatments of this model, and to investigate the effect of level statistics on pairing correlations. We find that the

ground-state energies are on average somewhat lower for systems with nonuniform than uniform level spac-

ings, but both have an equally smooth crossover from the bulk to the few-electron regime. In the latter,

statistical fluctuations in ground-state energies strongly depend on the grain’s electron number parity.

Recent experiments by Ralph, Black, and Tinkham, in-

volving the observation of a spectroscopic gap indicative of
pairing correlations in ultrasmall Al grains,1 have inspired a
number of theoretical2–11 studies of how superconducting
pairing correlations in such grains are affected by reducing
the grains’ size, or equivalently by increasing its mean level
spacing d}Vol21 until it exceeds the bulk gap D . In the
earliest of these, a grand-canonical ~g.c.! BCS approach2–4

was applied to a reduced BCS Hamiltonian for uniformly
spaced, spin-degenerate levels; it suggested that pairing cor-
relations, as measured by the condensation energy EC, van-
ish abruptly once d exceeds a critical level spacing dc that
depends on the parity ~0 or 1! of the number of electrons on

the grain, being smaller for odd grains (d1
c.0.89D) than

even grains (d0
c.3.6D). A series of more sophisticated ca-

nonical approaches ~summarized below! confirmed the parity
dependence of pairing correlations, but established6–11 that
the abrupt vanishing of pairing correlations at dc is an arti-
fact of g.c. treatments: pairing correlations do persist, in the
form of so-called fluctuations, to arbitrarily large level spac-
ings, and the crossover between the bulk superconducting
~SC! regime (d!D) and the fluctuation-dominated ~FD! re-
gime (d@D) is completely smooth.10 Nevertheless, these
two regimes are qualitatively very different:9,10 the conden-
sation energy, e.g., is an extensive function of volume in the
former and almost intensive in the latter, and pairing corre-
lations are quite strongly localized around the Fermi energy
«F , or more spread out in energy, respectively.

After the appearance of all these works, we became aware
that the reduced BCS Hamiltonian on which they are based
actually has an exact solution. It was published by Richard-
son in the context of nuclear physics ~where it is known as
the ‘‘picket-fence model’’!, in a series of papers between
1963 and 1977 ~Refs. 12 and 13! which seem to have com-
pletely escaped the attention of the condensed-matter com-

munity. The beauty of this solution, besides its mathematical
elegance,14 is that it also works for the case of randomly
spaced levels. It thus presents us with two rare opportunities
that are the subject of this paper: ~i! to compare the results of
various previously used approximations against the bench-
mark set by the exact solution, in order to gauge their reli-
ability for related problems for which no exact solutions ex-
ist; and very interestingly, ~ii! to study the interplay of
randomness and interactions in a nontrivial model exactly, by
examining the effect of level statistics on the SC/FD cross-
over.

There is a previous study of the latter question by Smith
and Ambegaokar ~SA! using the g.c. mean-field BCS
approach,5 who concluded, interestingly, that randomness
enhances pairing correlations: compared to the case of uni-
form spacings,2 they found that a random spacing of levels
~distributed according to the gaussian orthogonal ensemble!
on average lowers the condensation energy EC to more nega-
tive values and increases the critical level spacings at which
EC vanishes abruptly, but these still are parity dependent
(^d1

c&51.8D , ^d0
c&.14D). However, the abrupt vanishing of

EC found by SA can be suspected to be an artifact of their
g.c. mean-field treatment, as was the case in.2–4 Indeed, our
exact results for random levels show ~1! that the SC/FD
crossover is as smooth as for the case of uniformly spaced
levels; this means, remarkably, that ~2! even in the presence
of randomness pairing correlations never vanish, no matter
how large d/D becomes; quite the opposite, ~3! the
randomness-induced lowering of EC is strongest in the FD
regime; in the latter, moreover, ~4! the statistical fluctuations
in EC depend quite strongly on parity.

Exact solution. Ultrasmall superconducting grains are
commonly described2–11 by a reduced BCS model,

H5 (
j ,s56

« jsc js
† c js2ld(

j j8

c j1
† c j2

† c j82c j81 , ~1!

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 1 MAY 2000-IIVOLUME 61, NUMBER 18

PRB 610163-1829/2000/61~18!/11890~4!/$15.00 R11 890 ©2000 The American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36157123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


for a set of pairs of time-reversed states u j ,6& with energies
« j , mean level spacing d and dimensionless coupling con-
stant l . Unbeknownst to the authors of Refs. 2–11, Richard-
son had long ago solved this model exactly, for an arbitrary
set of levels « j ~not necessarily all distinct!: Since singly

occupied levels do not participate in and remain
‘‘blocked’’15 to the pairscattering described by H, the labels
of such levels are good quantum numbers. Let un ,B& denote
an eigenstate with N52n1b electrons, b of which sit in a
set B of singly occupied, blocked levels, thus contributing
EB5( iPB« i to the total energy. The dynamics of the remain-
ing n pairs is then governed by

HB5 (
j¹B

2« jb j
†b j2l d (

j , j8¹B

b j
†b j8

, ~2!

where the pair operators b j5c j2c j1 satisfy the ‘‘hard-core

boson’’ relations b j
2
50 and @b j ,b

j8

†
#5d j j8

(122b j
†b j), and

the sums are over all unblocked levels. Richardson showed
that the lowest-lying of the eigenstates un ,B& has the ~unnor-
malized! form ~Ref. 14 gives a simple proof!

un ,B&G5)
iPB

c is
† )

n51

n S (
j¹B

b j
†

2« j2en
D uVac&, ~3!

where the n parameters en (n51, . . . ,n) are that particular
solution of the n coupled algebraic equations

1

ld
1 (

m51(Þn)

n
2

em2en
5 (

j¹B

1

2« j2en
~4!

that yields the lowest value for the ‘‘pair energy’’ E(n)

5(n51
n en . Moreover, un ,B&G has total energy E(n)1EB .

The lowest-lying of all eigenstates with n pairs and b

blocked levels, say un ,b&G with energy E b
G(n), is that un ,B&G

for which the blocked levels in B are all as close as possible
to «F , the Fermi energy of the uncorrelated N-electron Fermi
sea uFN&.

In this paper we shall always take all the « j to be nonde-
generate. The en then coincide at l50 with the lowest n

energies 2« j ( j51, . . . ,n), and smoothly evolve toward
lower values as l is turned on. With increasing l , the roots
turn complex two at a time @becoming a complex conjugate
pair, thus E(n) remains real#. Denote roots destined to be-
come conjugates by (e2a21 ,e2a) @with l50 values
(2« j2a21

,2« j2a
), say#, with a51, . . . ,n/2 for even n, with

one further purely real root, say e0, for odd n. Writing
e2a215ja2iha , e2a5ja1iha , they can be conveniently
parametrized using the real variables xa5ja2«2a212«2a

and ya52ha
2/@(«2a2«2a21)2

2xa
2# . When rewritten in

terms of these, Eq. ~4! becomes less singular @see Eq. ~2.10!
of Ref. 13 for details# and can easily be solved numerically
by increasing l from 0, using the set R

5$(« j2a21
,« j2a

),« j0
% as ‘‘initial solution.’’17

Uniformly spaced levels. Our first application of the exact
solution is to check the quality of results previously obtained
by various other methods. Most previous works2–4,6–10 stud-
ied a half-filled band with fixed width 2vD of uniformly-
spaced levels ~i.e., « j5 j d), containing N52n1b electrons.
Then the level spacing is d52vD /N and in the limit d→0

the bulk gap is D5vDsinh(1/l)21. Following Ref. 9, we
take l50.224 throughout this paper. To study the SC/FD
crossover, two types of quantities were typically calculated
as functions of increasing d/D , which mimics decreasing
grain size: the even and odd (b50,1) condensation energies

Eb
C~n !5E b

G~n !2^FNuHuFN& ~5!

and a parity parameter introduced by Matveev and Larkin6

~ML! to characterize the even-odd ground-state energy dif-
ference,

DML~n !5E 1
G~n !2@E 0

G~n !1E 0
G~n11 !#/2. ~6!

Following the initial g.c. studies2–6, the canonical study of
Mastellone, Falci, and Fazio,7 ~MFF! used Lanczos exact
diagonalization ~with n<12) and a scaling argument to
probe the crossover regime. Berger and Halperin8 ~BH!
showed that essentially the same results could be achieved
with n<6 by first reducing the bandwidth and renormalizing
l , thus significantly reducing the calculational effort in-
volved. To access larger systems and fully recover the bulk
limit, fixed-n projected variational BCS wave functions
~PBCS! were used in Ref. 9 ~for n<600); significant im-
provements over the latter results, in particular in the cross-
over regime, were subsequently achieved in Ref. 10 using
the density-matrix renormalization group ~DMRG! ~with n

<400). Finally, Dukelsky and Schuck11 showed that a self-
consistent random-phase approximation ~RPA! approach,
that in principle can be extended to finite temperatures, de-
scribes the FD regime rather well ~though not as well as the
DMRG!.

To check the quality of the above methods, we16 com-

puted Eb
C(n) and DML(n) using Richardson’s solution ~Fig.

1!. The exact results ~a! quantitatively agree, for d→0, with

the leading 2D2/2d behavior for Eb
C(n) obtained in the g.c.

BCS approach,2–4 which in this sense is exact in the bulk
limit, corrections being of order d0; ~b! confirm that a com-
pletely smooth10 crossover occurs around the scale d.D at
which the g.c. BCS approach breaks down; ~c! show that the
PBCS crossover9 is qualitatively correct, but not quantita-
tively, being somewhat too abrupt; ~d! are reproduced re-
markably well by the approaches of MFF ~Ref. 7! and BH;8

~e! are fully reproduced by the DMRG of Ref. 10 with a
relative error of ,1024 for n<400; our figures do not show
DMRG curves, since they are indistinghuishable from the
exact ones and are discussed in detail in Ref. 10.

The main conclusion we can draw from these compari-
sons is that the two approaches based on renormalization-
group ideas work very well: the DMRG is essentially exact
for this model, but the bandwidth rescaling method of BH
also gives remarkably ~though not quite as! good results with
rather less effort. In contrast, the PBCS approach is rather
unreliable in the crossover region.

Randomly spaced levels. The remainder of this paper ad-
dresses the question of how randomness of the levels « j af-
fects pairing correlations. We studied half-filled bands of N

52n1b nonuniformly spaced but nondegenerate levels ~for
N<260), with b50,1. The energy levels in small metallic
grains with time reversal symmetry follow the Gaussian or-
thogonal ensemble distribution.18 We generated sets of levels
« i (i51, . . . ,N) by diagonalizing 2N32N random matri-
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ces, taking N adjacent values from the central part of the
eigenspectrum ~to avoid boundary effects! and performing

the rescaling5 «→(1/2p)@4N sin21(«/A4N)1«A4N2«2# ,
to ensure an average level spacing of one in units of d. In
Fig. 2 we show four such sets of randomly generated levels
for N528, together with the equally spaced set.

For each such set of 2n1b levels, we calculated the exact

ground-state energy E b
G(n), the condensation energy Eb

C(n),

and the spectroscopic gap4

Eb
S~n !5E b12

G ~n21 !2E b
G~n !, ~7!

which gives the energies needed to break a single pair in the
~even or odd! ground state. Subsequently we calculated the

ensemble average ^Eb
C(n)& and variance dEb

C(n)

5@^(Eb
C)2&2^Eb

C&2#1/2 ~and analogously ^Eb
S& and dEb

S)

over many realizations of random matrices. The ensemble
size was 1000 for 24<N<40, and varied between 700 and
150 for 40<N<260. Figure 3 presents our results for these
ensemble averages ~solid lines; fluctuation bars indicate vari-
ances! together with those for the uniformly spaced ~u.s.! set
discussed above ~dashed lines!. It shows a number of inter-
esting features.

Firstly, the two main conclusions of SA ~Ref. 5! are con-
firmed, namely ~a! that pairing correlations are on average
stronger for randomly than for uniformly spaced ~u.s.! lev-

els, ^Eb
C&,Eb

C(u.s.); and ~b! that the parity effect persits in

the presence of randomness, ^E0
C&,^E1

C& . In SA’s g.c. cal-

culation these facts could be understood5 from a condition,
derived from the BCS gap equation, for having nonvanishing

pairing correlations, namely 2/l,( j¹B1/u«̄ j2m̄u. Here «̄ j

and the g.c. chemical potential m̄ are in units of d, and the
number of terms in the sum is of order 2vD /d . As d in-
creases, this number decreases, until the inequality ceases to

hold at a critical spacing db
c . Since statistical fluctuations to

smaller values of u«̄ j2m̄u carry more weight than those to

larger values, fluctuations on average tend to increase db
c ,

which explains ~a!; moreover, since the blocking of levels

close to m̄ reduces the number of terms in the sum, it reduces

db
c , which explains ~b!.

Since the equation on which SA’s elegant argument is
based breaks down in the FD regime, let us attempt another
way of interpreting ~a! and ~b!: pairing correlations involve a
nonzero amplitude to find pair states with « j.«F doubly
occupied and ones with « j,«F empty. Such correlations be-
tween states below and above «F , called ‘‘pair-mixing
across «F’’ in Ref. 2, gain interaction energy but cost some
kinetic energy. The latter cost is the smaller, the closer the

FIG. 1. ~a! The even and odd (b50,1) condensation energies

Eb
C of Eq. ~5!, calculated with BCS, PBCS, and exact wave func-

tions, as functions of d/D52 sinh(1/l)/(2n1b), for l50.224. For

comparison the dotted line gives the ‘‘bulk’’ result E0
bulk

5

2D2/(2d). ~b! Comparison of the parity parameters DML ~Ref. 6!

of Eq. ~6! obtained by various authors mentioned in the text. ML’s

analytical result is D(12d/2D) for d!D , and d/2 log(ad/D) for d

@D , with a51.35 adjusted to give asymptotic agreement with the

exact result; for the grand-canonical BCS approach ~dash-dotted

line!, the naive perturbative result
1
2 ld is continued to the origin.

FIG. 2. Sets of energy levels with N528. Set c has equally

spaced levels, with spectroscopic gap @Eq. ~7!# E0
S/d51.54. Sets

a ,b ~or c ,d) are randomly spaced; among all sets with N528 we

studied, the ones shown have the smallest ~largest! values for E0
S/d ,

namely, 0.886, 0.891 (3.30,3.37), due to the small ~large! spacing

between the two levels closest to «F , illustrating how random level

fluctuations affect energy gaps.

FIG. 3. Exact even and odd condensation energies Eb
C for

equally spaced levels ~dashed line!, and the ensemble average ^Eb
C&

for randomly spaced levels ~solid line!. The height of the fluctuation

bars gives the variances dEb
C . The inset shows the corresponding

spectroscopic gaps Eb
S and variances dEb

S .
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states involved in pair-mixing across «F lie together ~which
is why the bulk limit d→0 is so strongly correlated!. Statis-
tical fluctuations in level positions that yield more-closely or
less-closely spaced levels around «F than for the uniform
case, would thus cause a respectively lower or higher kinetic-
energy cost for pairmixing across «F ; according to ~a!, the
former on average outweighs the latter, just as SA had con-
cluded in Ref. 5. Furthermore, in odd grains the blocked
level at «F always causes the spacing between pair levels
below and above «F , and hence the kinetic energy cost for
pair mixing across «F , to be somewhat larger than in even
grains, which explains ~b!.

Now, the ability of the exact solution to correctly treat the
FD regime enables us to uncover several further facts that are
beyond the reach of SA’s g.c. mean-field approach: ~c! The
SC/FD crossover is as smooth for randomly as for uniformly
spaced levels, confirming that the abrupt vanishing of pairing
correlations at some critical level spacing found by SA is an
artifact of their g.c. mean-field treatment, just as in Refs. 2
and 4. ~d! Even in the presence of randomness, pairing cor-
relations never vanish, no matter how large d/D . Quite the
opposite, ~e! the randomness-induced lowering in condensa-

tion energy to more negative values, ^Eb
C&2Eb

C(u.s.), is

strongest in the FD regime; this perhaps somewhat counter-
intuitive result illustrates that the smaller the number of lev-
els is that lie ‘‘close to’’ ~i.e., within D of! «F , the stronger
is the effect of fluctuations in their positions on the kinetic-
energy cost for pair mixing; conversely, this randomness-

induced lowering of Eb
C decreases in the crossover regime

and becomes negligible in the SC regime, in which very

many levels lie within D of «F . ~f! The variances dEb
C are

essentially d independent in the range 24<N<260, implying

that the relative statistical fluctuations of Eb
C should be neg-

ligible in the bulk limit, as expected.

Remarkably, we can also discern ~g! three ‘‘parity-

dependent fluctuation effects,’’ in that the following three

quantities are larger for even than for odd grains: ~g1! the

variances dEb
C ~with dE0

C.2 dE1
C.D/2); and the

randomness-induced changes in ~g2! condensation

energies u^Eb
C&2Eb

C(u.s.)u and ~g3! spectroscopic gaps

u^Eb
G&2Eb

G(u.s.)u ~inset of Fig. 3!. All three of these effects

have the same origin as the more familiar parity effect ~b!,

namely blocking: the more levels around «F are blocked, the

larger the effective spacing between states involved in pair

mixing across «F , and hence the smaller the sensitivity of

the total energy to statistical fluctuations in level positions.

In conclusion, using Richardson’s exact solution we have

found that level randomness does not modify the smooth

nature of the SC/FD crossover. It just enhances pairing cor-

relations somewhat compared to those of uniformly spaced

levels, having the strongest effect in the FD regime. In the

latter we found that statistical fluctuations become strongly

parity dependent.
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