88 research outputs found

    Bleeding complications of thromboprophylaxis with dabigatran, nadroparin or rivaroxaban for 6 weeks after total knee arthroplasty surgery:a randomised pilot study

    Get PDF
    OBJECTIVES: For the non-vitamin-K oral anticoagulants, data on bleeding when used for 42 days as thromboprophylaxis after total knee arthroplasty (TKA) are scarce. This pilot study assessed feasibility of a multicentre randomised clinical trial to evaluate major and clinically relevant non-major bleeding during 42-day use of dabigatran, nadroparin and rivaroxaban after TKA. PATIENTS AND METHODS: In 70 weeks, between July 2012 and November 2013, 198 TKA patients were screened for eligibility in the Martini Hospital (Groningen, the Netherlands). Patients were randomly assigned to dabigatran (n=45), nadroparin (n=45) or rivaroxaban (n=48). The primary outcome was the combined endpoint of major bleeding and clinically relevant non-major bleeding. Secondary endpoints of this study were the occurrence of clinical venous thromboembolism (VTE) (pulmonary embolism or deep venous thrombosis), compliance, duration of hospital stay, rehospitalisation, adverse events and Knee Injury and Osteoarthritis Outcome Score (KOOS). RESULTS: The primary outcome was observed in 33.3% (95% CI 20.0% to 49.0%), 24.4% (95% CI 12.9% to 39.5%) and 27.1% (95% CI 15.3% to 41.8%) of patients who received dabigatran, nadroparin or rivaroxaban, respectively (p=0.67). Major bleeding was found in two patients who received nadroparin (p=0.21). Clinically relevant non-major bleeding was observed in 33.3% (95% CI 20.0% to 49.0%), 22.2% (95% CI 11.2% to 37.1%) and 27.1% (95% CI 15.3% to 41.8%) for dabigatran, nadroparin and rivaroxaban, respectively (p=0.51). Wound haematoma was the most observed bleeding event. VTE was found in one patient who received dabigatran (p=0.65). The presurgery and postsurgery KOOS qQuestionnaires were available for 32 (71%), 35 (77%) and 35 (73%) patients for dabigatran, nadroparin and rivaroxaban, respectively. KOOS was highly variable, and no significant difference between treatment groups in mean improvement was observed. CONCLUSIONS: A multicentre clinical trial may be feasible. However, investments will be substantial. No differences in major and clinically relevant non-major bleeding events were found between dabigatran, nadroparin and rivaroxaban during 42 days after TKA. KOOS may not be suitable to detect functional loss due to bleeding. TRIAL REGISTRATION NUMBER: NCT01431456

    Isotopic characterization of methane: insights from clumped isotope (13CDH3 and CD2H2) measurements

    Get PDF
    Atmospheric methane is an important greenhouse gas, and various methods are used to identify and quantify its sources. The measurement of bulk isotopic composition (δ13C and δD) is a widely used characterization technique, but due to the overlap of source signatures, it is often difficult to distinguish between thermogenic, microbial, and other sources. With the advancement of high-resolution mass spectrometry, it is now possible to measure the rare clumped isotopologues of methane 13CDH3 and CD2H2. This novel method can give additional information to help constrain methane sources and processes. The clumping anomaly is temperature-dependent and can thus be used to calculate the formation or equilibration temperature when methane is in thermodynamic equilibrium. In case of thermodynamic disequilibrium, the clumped signatures can be exploited to identify various kinetic gas formation and fractionation (mixing, diffusion, etc.) processes. We have developed a technique to extract pure methane from air and water samples and to measure the clumped isotope signatures (Δ13CDH3 and ΔCD2H2) with high precision and reproducibility, using the Thermo Ultra mass spectrometer. We will present the current capabilities of this setup, and the results of the first sets of samples measured from different natural environments

    Stable carbon isotopic composition of biomass burning emissions - implications for estimating the contribution of C-3 and C-4 plants

    Get PDF
    Landscape fires are a significant contributor to atmospheric burdens of greenhouse gases and aerosols. Although many studies have looked at biomass burning products and their fate in the atmosphere, estimating and tracing atmospheric pollution from landscape fires based on atmospheric measurements are challenging due to the large variability in fuel composition and burning conditions. Stable carbon isotopes in biomass burning (BB) emissions can be used to trace the contribution of C-3 plants (e.g. trees or shrubs) and C-4 plants (e.g. savanna grasses) to various combustion products. However, there are still many uncertainties regarding changes in isotopic composition (also known as fractionation) of the emitted carbon compared to the burnt fuel during the pyrolysis and combustion processes. To study BB isotope fractionation, we performed a series of laboratory fire experiments in which we burned pure C-3 and C-4 plants as well as mixtures of the two. Using isotope ratio mass spectrometry (IRMS), we measured stable carbon isotope signatures in the pre-fire fuels and post-fire residual char, as well as in the CO2, CO, CH4, organic carbon (OC), and elemental carbon (EC) emissions, which together constitute over 98 % of the post-fire carbon. Our laboratory tests indicated substantial isotopic fractionation in combustion products compared to the fuel, which varied between the measured fire products. CO2, EC, and residual char were the most reliable tracers of the fuel C-13 signature. CO in particular showed a distinct dependence on burning conditions; flaming emissions were enriched in C-13 compared to smouldering combustion emissions. For CH4 and( )OC, the fractionation was the other way round for C3 emissions (C-13-enriched) and C-4 emissions (C-13-depleted). This indicates that while it is possible to distinguish between fires that were dominated by either C-3 or C-4 fuels using these tracers, it is more complicated to quantify their relative contribution to a mixed-fuel fire based on the delta C-13 signature of emissions. Besides laboratory experiments, we sampled gases and carbonaceous aerosols from prescribed fires in the Niassa Special Reserve (NSR) in Mozambique, using an unmanned aerial system (UAS)-mounted sampling set-up. We also provided a range of C-3:C-4 contributions to the fuel and measured the fuel isotopic signatures. While both OC and EC were useful tracers of the C-3-to-C-4 fuel ratio in mixed fires in the lab, we found particularly OC to be depleted compared to the calculated fuel signal in the field experiments. This suggests that either our fuel measurements were incomprehensive and underestimated the C-3:C-4 ratio in the field or other processes caused this depletion. Although additional field measurements are needed, our results indicate that C-3-vs.-C-4 source ratio estimation is possible with most BB products, albeit with varying uncertainty ranges

    Development and evaluation of a suite of isotope reference gases for methane in air

    Get PDF
    Measurements from multiple laboratories have to be related to unifying and traceable reference material in order to be comparable. However, such fundamental reference materials are not available for isotope ratios in atmospheric methane, which led to misinterpretations of combined data sets in the past. We developed a method to produce a suite of synthetic CH4-in-air standard gases that can be used to unify methane isotope ratio measurements of laboratories in the atmospheric monitoring community. Therefore, we calibrated a suite of pure methane gases of different methanogenic origin against international referencing materials that define the VSMOW (Vienna Standard Mean Ocean Water) and VPDB (Vienna Pee Dee Belemnite) isotope scales. The isotope ratios of our pure methane gases range between -320 and +40% for delta H-2-CH4 and between -70 and -40% for delta C-13-CH4, enveloping the isotope ratios of tropospheric methane (about -85 and -47% for delta H-2-CH4 and delta C-13-CH4 respectively). Estimated uncertainties, including the full traceability chain, are</p

    Sources and sinks of methane in sea ice: Insights from stable isotopes

    Get PDF
    We report on methane (CH4) stable isotope (d13C and d2 H) measurements from landfast sea ice collected near Barrow (Utqiagvik, Alaska) and Cape Evans (Antarctica) over the winter-to-spring transition. These measurements provide novel insights into pathways of CH4 production and consumption in sea ice. We found substantial differences between the two sites. Sea ice overlying the shallow shelf of Barrow was supersaturated in CH4 with a clear microbial origin, most likely from methanogenesis in the sediments. We estimated that in situ CH4 oxidation consumed a substantial fraction of the CH4 being supplied to the sea ice, partly explaining the large range of isotopic values observed (d13C between –68.5 and –48.5 ‰ and d2 H between –246 and –104 ‰). Sea ice at Cape Evans was also supersaturated in CH4 but with surprisingly high d13C values (between –46.9 and –13.0 ‰), whereas d2 H values (between –313 and –113 ‰) were in the range of those observed at Barrow.These are the first measurements of CH4 isotopic composition in Antarctic sea ice. Our data set suggests a potential combination of a hydrothermal source, in the vicinity of the Mount Erebus, with aerobic CH4 formation in sea ice, although the metabolic pathway for the latter still needs to be elucidated. Our observations show that sea ice needs to be considered as an active biogeochemical interface, contributing to CH4 production and consumption, which disputes the standing paradigm that sea ice is an inert barrier passively accumulating CH4 at the ocean-atmosphere boundary

    Quantification of methane emissions in Hamburg using a network of FTIR spectrometers and an inverse modeling approach

    Get PDF
    Methane (CH4) is a potent greenhouse gas, and anthropogenic CH4 emissions contribute significantly to global warming. In this study, the CH4 emissions of the second most populated city in Germany, Hamburg, were quantified with measurements from four solar-viewing Fourier transform infrared (FTIR) spectrometers, mobile in situ measurements, and an inversion framework. For source type attribution, an isotope ratio mass spectrometer was deployed in the city. The urban district hosts an extensive industrial and port area in the south as well as a large conglomerate of residential areas north of the Elbe River. For emission modeling, the TNO GHGco (Netherlands Organisation for Applied Scientific Research greenhouse gas and co-emitted species emission database) inventory was used as a prior for the inversion. In order to improve the inventory, two approaches were followed: (1) the addition of a large natural CH4 source, the Elbe River, which was previously not included in the inventory, and (2) mobile measurements were carried out to update the spatial distribution of emissions in the TNO GHGco gridded inventory and derive two updated versions of the inventory. The addition of the river emissions improved model performance, whereas the correction of the spatial distribution with mobile measurements did not have a significant effect on the total emission estimates for the campaign period. A comparison of the updated inventories with emission estimates from a Gaussian plume model (GPM) showed that the updated versions of the inventory match the GPM emissions estimates well in several cases, revealing the potential of mobile measurements to update the spatial distribution of emission inventories. The mobile measurement survey also revealed a large and, at the time of the study, unknown point source of thermogenic origin with a magnitude of 7.9 ± 5.3 kg h-1 located in a refinery. The isotopic measurements show strong indications that there is a large biogenic CH4 source in Hamburg that produced repeated enhancements of over 1 ppm which correlated with the rising tide of the river estuary. The CH4 emissions (anthropogenic and natural) of the city of Hamburg were quantified as 1600 ± 920 kg h-1, 900 ± 510 kg h-1 of which is of anthropogenic origin. This study reveals that mobile street-level measurements may miss the majority of total methane emissions, potentially due to sources located within buildings, including stoves and boilers operating on natural gas. Similarly, the CH4 enhancements recorded during the mobile survey from large-area sources, such as the Alster lakes, were too small to generate GPM emission estimates with confidence, but they could nevertheless influence the emission estimates based on total column measurements

    Stable carbon isotopic composition of biomass burning emissions – implications for estimating the contribution of C3 and C4 plants

    Get PDF
    Landscape fires are a significant contributor to atmospheric burdens of greenhouse gases and aerosols. Although many studies have looked at biomass burning products and their fate in the atmosphere, estimating and tracing atmospheric pollution from landscape fires based on atmospheric measurements are challenging due to the large variability in fuel composition and burning conditions. Stable carbon isotopes in biomass burning (BB) emissions can be used to trace the contribution of C3 plants (e.g. trees or shrubs) and C4 plants (e.g. savanna grasses) to various combustion products. However, there are still many uncertainties regarding changes in isotopic composition (also known as fractionation) of the emitted carbon compared to the burnt fuel during the pyrolysis and combustion processes. To study BB isotope fractionation, we performed a series of laboratory fire experiments in which we burned pure C3 and C4 plants as well as mixtures of the two. Using isotope ratio mass spectrometry (IRMS), we measured stable carbon isotope signatures in the pre-fire fuels and post-fire residual char, as well as in the CO2, CO, CH4, organic carbon (OC), and elemental carbon (EC) emissions, which together constitute over 98 % of the post-fire carbon. Our laboratory tests indicated substantial isotopic fractionation in combustion products compared to the fuel, which varied between the measured fire products. CO2, EC, and residual char were the most reliable tracers of the fuel 13C signature. CO in particular showed a distinct dependence on burning conditions; flaming emissions were enriched in 13C compared to smouldering combustion emissions. For CH4 and OC, the fractionation was the other way round for C3 emissions (13C-enriched) and C4 emissions (13C-depleted). This indicates that while it is possible to distinguish between fires that were dominated by either C3 or C4 fuels using these tracers, it is more complicated to quantify their relative contribution to a mixed-fuel fire based on the δ13C signature of emissions. Besides laboratory experiments, we sampled gases and carbonaceous aerosols from prescribed fires in the Niassa Special Reserve (NSR) in Mozambique, using an unmanned aerial system (UAS)-mounted sampling set-up. We also provided a range of C3 : C4 contributions to the fuel and measured the fuel isotopic signatures. While both OC and EC were useful tracers of the C3-to-C4 fuel ratio in mixed fires in the lab, we found particularly OC to be depleted compared to the calculated fuel signal in the field experiments. This suggests that either our fuel measurements were incomprehensive and underestimated the C3 : C4 ratio in the field or other processes caused this depletion. Although additional field measurements are needed, our results indicate that C3-vs.-C4 source ratio estimation is possible with most BB products, albeit with varying uncertainty ranges

    Quantification of methane emissions in Hamburg using a network of FTIR spectrometers and an inverse modeling approach

    Get PDF
    Methane (CH4) is a potent greenhouse gas, and anthropogenic CH4 emissions contribute significantly to global warming. In this study, the CH4 emissions of the second most populated city in Germany, Hamburg, were quantified with measurements from four solar-viewing Fourier transform infrared (FTIR) spectrometers, mobile in situ measurements, and an inversion framework. For source type attribution, an isotope ratio mass spectrometer was deployed in the city. The urban district hosts an extensive industrial and port area in the south as well as a large conglomerate of residential areas north of the Elbe River. For emission modeling, the TNO GHGco (Netherlands Organisation for Applied Scientific Research greenhouse gas and co-emitted species emission database) inventory was used as a prior for the inversion. In order to improve the inventory, two approaches were followed: (1) the addition of a large natural CH4 source, the Elbe River, which was previously not included in the inventory, and (2) mobile measurements were carried out to update the spatial distribution of emissions in the TNO GHGco gridded inventory and derive two updated versions of the inventory. The addition of the river emissions improved model performance, whereas the correction of the spatial distribution with mobile measurements did not have a significant effect on the total emission estimates for the campaign period. A comparison of the updated inventories with emission estimates from a Gaussian plume model (GPM) showed that the updated versions of the inventory match the GPM emissions estimates well in several cases, revealing the potential of mobile measurements to update the spatial distribution of emission inventories. The mobile measurement survey also revealed a large and, at the time of the study, unknown point source of thermogenic origin with a magnitude of 7.9 ± 5.3 kg h−1 located in a refinery. The isotopic measurements show strong indications that there is a large biogenic CH4 source in Hamburg that produced repeated enhancements of over 1 ppm which correlated with the rising tide of the river estuary. The CH4 emissions (anthropogenic and natural) of the city of Hamburg were quantified as 1600 ± 920 kg h−1, 900 ± 510 kg h−1 of which is of anthropogenic origin. This study reveals that mobile street-level measurements may miss the majority of total methane emissions, potentially due to sources located within buildings, including stoves and boilers operating on natural gas. Similarly, the CH4 enhancements recorded during the mobile survey from large-area sources, such as the Alster lakes, were too small to generate GPM emission estimates with confidence, but they could nevertheless influence the emission estimates based on total column measurements

    Multi-scale measurements combined with inverse modeling for assessing methane emissions of Hamburg

    Get PDF
    Urban areas are hotspots for greenhouse gas emissions. The short-lived greenhouse gas methane is the second-most prevalent greenhouse gas emitted by human activities, and its reduction will help mitigate climate change effectively. However, the source strengths and locations of methane emitters in the urban areas are highly uncertain. Here we present a multi-scale measurement campaign for assessing methane emissions in Hamburg. Hamburg is the second largest city in Germany with a population of about 1.8 million, and an important international harbor city. It has an interesting mixture of methane sources caused by anthropogenic emitters such as refineries and biogenic emitters such as wetlands associated with the strong tide of the Elbe River. Commissioned by UNEP, we conducted a campaign using remote sensing instruments and mobile surveys to investigate methane emissions of Hamburg. We deployed four automated solar-tracking Fourier transform spectrometer systems (Dietrich et al. 2021), one in the west, south, east and center of Hamburg to capture the total city emissions using a Bayesian inversion framework (Jones et al. 2021). Mobile measurements with a Picarro laser spectrometer in a car and a boat were performed to refine the spatial pattern of the emission inventory that is used as a prior for the inversion. We also deployed a wind LiDAR instrument to measure the 3D wind field that provides constraints to the transport model. In addition, an isotope ratio mass spectrometer was installed on a rooftop in the city center to distinguish anthropogenic and biogenic sources. Using the column measurements and inverse modelling, we are able to determine the total city emissions and have found a major natural source, whose emissions are not yet included in the standard emission inventories. This dominant biogenic source is also indicated by the stationary isotopic measurements of δ13C and δD. Nevertheless, more than half of the city emissions are attributed to anthropogenic emissions, indicating the importance of reducing these emissions. With our study, we show that the combination of mobile measurements and column measurements is a powerful technique to correct for the strength and spatial distribution of urban greenhouse gas emission inventories

    New contributions of measurements in Europe to the global inventory of the stable isotopic composition of methane

    Get PDF
    Recent climate change mitigation strategies rely on the reduction of methane (CH4) emissions. Carbon and hydrogen isotope ratio (δ13CCH4 and δ2HCH4) measurements can be used to distinguish sources and thus to understand the CH4 budget better. The CH4 emission estimates by models are sensitive to the isotopic signatures assigned to each source category, so it is important to provide representative estimates of the different CH4 source isotopic signatures worldwide. We present new measurements of isotope signatures of various, mainly anthropogenic, CH4 sources in Europe, which represent a substantial contribution to the global dataset of source isotopic measurements from the literature, especially for δ2HCH4. They improve the definition of δ13CCH4 from waste sources, and demonstrate the use of δ2HCH4 for fossil fuel source attribution. We combined our new measurements with the last published database of CH4 isotopic signatures and with additional literature, and present a new global database. We found that microbial sources are generally well characterised. The large variability in fossil fuel isotopic compositions requires particular care in the choice of weighting criteria for the calculation of a representative global value. The global dataset could be further improved by measurements from African, South American, and Asian countries, and more measurements from pyrogenic sources. We improved the source characterisation of CH4 emissions using stable isotopes and associated uncertainty, to be used in top-down studies. We emphasise that an appropriate use of the database requires the analysis of specific parameters in relation to source type and the region of interest. The final version of the European CH4 isotope database coupled with a global inventory of fossil and non-fossil δ13CCH4 and δ2HCH4 source signature measurements is available at 10.24416/UU01-YP43IN
    corecore