3,869 research outputs found

    Visualization of spectral images

    Get PDF
    Spectral image sensors provide images with a large number of contiguous spectral channels per pixel. Visualization of these huge data sets is not a straightforward issue. There are three principal ways in which spectral data can be presented; as spectra, as image and in feature space. This paper describes several visualization methods and their suitability in the different steps in the research cycle. Combinations of the three presentation methods and dynamic interaction between them, adds significant to the usability. Examples of some software implementations are given. Also the application of volume visualization methods to display spectral images is shown to be valuabl

    Equilibria of elastic cable knots and links

    Get PDF
    We present a theory for equilibria of geometrically exact braids made of two thin, uniform, homogeneous, isotropic, initially-straight, inextensible and unshear- able elastic rods of circular cross-section. We formulate a second-order variational problem for an action functional whose Euler–Lagrange equations, partly in Euler– Poincaré form, yield a compact system of ODEs for which we define boundary-value problems for braids closed into knots or links. The purpose of the chapter is to present a pathway of deformations leading to braids with a knotted axis, thereby offering a way to systematically compute elastic cable knots and links. A representative bifurca- tion diagram and selected numerical solutions illustrate our approach

    Forceless folding of thin annular strips

    Get PDF
    Thin strips or sheets with in-plane curvature have a natural tendency to adopt highly symmetric shapes when forced into closed structures and to spontaneously fold into compact multi-covered configurations under feed-in of more length or change of intrinsic curvature. This disposition is exploited in nature as well as in the design of everyday items such as foldable containers. We formulate boundary-value problems (for an ODE) for symmetric equilibrium solutions of unstretchable circular annular strips and present sequences of numerical solutions that mimic different folding modes. Because of the high-order symmetry, closed solutions cannot have an internal force, i.e., the strips are forceless. We consider both wide and narrow (strictly zero-width) strips. Narrow strips cannot have inflections, but wide strips can be either inflectional or non-inflectional. Inflectional solutions are found to feature stress localisations, with divergent strain energy density, on the edge of the strip at inflections of the surface. ‘Regular’ folding gives these singularities on the inside of the annulus, while ‘inverted’ folding gives them predominantly on the outside of the annulus. No new inflections are created in the folding process as more length is inserted. We end with a discussion of an intriguing apparent connection with a deep result on the topology of curves on surfaces

    A macroscopic model for sessile droplet evaporation on a flat surface

    Get PDF
    The evaporation of sessile droplets on a flat surface involves a complex interplay between phase change, diffusion, advection and surface forces. In an attempt to significantly reduce the complexity of the problem and to make it manageable, we propose a simple model hinged on a surface free energy-based relaxation dynamics of the droplet shape, a diffusive evaporation model and a contact line pinning mechanism governed by a yield stress. Our model reproduces the known dynamics of droplet shape relaxation and of droplet evaporation, both in the absence and in the presence of contact line pinning. We show that shape relaxation during evaporation significantly affects the lifetime of a drop. We find that the dependence of the evaporation time on the initial contact angle is a function of the competition between the shape relaxation and evaporation, and is strongly affected by any contact line pinning.Comment: 13 pages, 8 figure

    Spectral image analysis for measuring ripeness of tomatoes

    Get PDF
    In this study, spectral images of five ripeness stages of tomatoes have been recorded and analyzed. The electromagnetic spectrum between 396 and 736 nm was recorded in 257 bands (every 1.3 nm). Results show that spectral images offer more discriminating power than standard RGB images for measuring ripeness stages of tomatoes. The classification error of individual pixels was reduced from 51% to 19%. Using a gray reference, the reflectance can be made invariant to the light source and even object geometry, which makes it possible to have comparable classification results over a large range of illumination conditions. Experimental results show that, although the error rate increases from 19% to 35% when using different light sources, it is still considerably below the 51% for RGB under a single light sourc

    Biased statistical ensembles for developable ribbons

    Get PDF
    Letter to the edito
    corecore