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Abstract . In this study, spectral images of five ripeness stages of tomatoes have been recorded and 
analyzed. The electromagnetic spectrum between 396 and 736 nm was recorded in 257 bands (every 1.3 
nm). Results show that spectral images offer more discriminating power than standard RGB images for 
measuring ripeness stages of tomatoes. The classification error of individual pixels was reduced from 
51% to 19%. Using a gray reference, the reflectance can be made invariant to the light source and even 
object geometry, which makes it possible to have comparable classification results over a large range of 
illumination conditions. Experimental results show that, although the error rate increases from 19% to 
35% when using different light sources, it is still considerably below the 51% for RGB under a single 
light source. 
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Tomatoes, with an annual production of 60 million tons, are one of the main horticultural crops in the 
world, with three million hectares planted every year. In the Netherlands, the total area under cultivation 
was 1133 hectares in 2000 with a production of 1040 million kilograms and a mean price of $0.90 per 
kilogram (van Dijk et al., 2001). 

Traditionally, the surface color of tomatoes is a major factor in determining the ripeness of tomato fruits 
(Arias et al., 2000). A color-chart standard has been specifically developed for the purpose of classifying 
tomatoes in 12 ripeness classes (The Greenery, Breda, the Netherlands). For automatic sorting of 
tomatoes, RGB color cameras are used instead of the color chart (Choi et al., 1995). RGB-based 
classification, however, strongly depends on recording conditions. Next to surface and reflection/
absorption characteristics of the tomato itself, the light source (illumination intensity, direction, and 
spectral power distribution), the characteristics of the filters, the settings of the camera (e.g., aperture), 
and the viewing position all influence the final RGB image. Van der Heijden et al. (2000) has shown that 
color information in hyperspectral images can be made invariant to these factors, thus providing a 
powerful alternative to RGB color cameras. In this way, a hyperspectral imaging system and spectral 
analysis would permit the sorting of tomatoes under different lighting conditions. 

In this study, we want to compare hyperspectral images with standard RGB images for classifying 
tomatoes in different ripeness classes using individual pixels. Spectral images have been captured under 
different lighting conditions. By including a gray reference in each image, automatic compensation for 
different light sources has been obtained. 

For comparison and classification, Fisher's linear discriminant analysis (LDA) is used. Van den Broek et 
al. (1997) showed that this technique is very suitable for classification of spectroscopic images. 

The article is organized as follows. First, imaging spectrometry and hyperspectral images are described. 
Next, we show how hyperspectral images can be transformed into images invariant to the light source and 
the object geometry. An experiment that compares the two imaging modalities will then be described and 
the results given. 

Imaging Spectrometry 

While a gray-value image typically reflects the light intensity over a part of the electromagnetic spectrum 
in a single band, and a color image reflects the intensity over the red, green, and blue parts of the 
spectrum in three bands, increasing the number of bands can greatly increase the amount of information in 
an image. Hyperspectral images commonly contain about 100 to 300 bands with a resolution of 1 to 10 
nm. Current techniques offer two basic approaches to spectral imaging. It is implemented by acquiring 
either a sequence of two-dimensional images at different wavelengths or a sequence of line images in 
which a complete spectrum is captured for each pixel on the line. The first approach is implemented by 
employing a rotating filter wheel or a tunable filter in front of a monochrome camera. This approach is 
preferable if the number of bands needed is limited and the object can be held still in front of the camera 
during recording. The second approach requires an imaging spectrograph coupled to a monochrome area 
camera. One dimension of the camera (spatial axis) records the line pixels, and the other dimension 
(spectral axis) records the spectral information for each pixel. This approach is well suited in a conveyor 
belt system, using the camera as a line-scan camera. 

In this experiment, we used the ImSpector (Spectral Imaging Ltd., Oulu, Finland) straight-axis imaging 
spectrograph, which uses a prism-grating-prism (PGP) dispersive element and transmission optics 
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(Herrala and Okkonen, 1996; Hyv•nen et al., 1998). 

To record a spatial two-dimensional image, the object was moved perpendicular to the optical axis of the 
camera using a linear translation table. 

Color Invariance 

The spectra obtained by the imaging spectrograph depend on the light source and object characteristics. 
Therefore, these spectra may vary with a change in the intensity and energy distribution of the light 
source, material characteristics, and viewing mode. The aim of this section is to propose spectra that are 
invariant to illumination (color constancy) and the object geometry and shadows (normalization). We will 
follow the method proposed by Stokman and Gevers (1999). 

The section is outlined as follows. First, the reflection is given, modeling interaction between light and 
matter. Then color-constant spectra are presented. Finally, the color-constant spectra are made 
independent of object geometry and shading using normalization. 

The Reflection Model 

Let  be the spectral power distribution of the incident (ambient) light at the object surface at  

and let  be the spectral reflectance function of the object at  . The spectral sensitivity of the k th 
sensor is given by F k ( ? ). Then f k , the sensor response of the k th channel, is given by: 

 ( 1 ) 

where 

? = wavelength 

 = a complicated function based on the geometric and spectral properties of the object surface. 

The integral is taken over the relevant part of the electromagnetic spectrum (i.e., 380 to 700 nm). 

Further, consider an opaque inhomogeneous dielectric object. The geometric and surface reflection 

component of function  can then be decomposed in a body and surface reflection component as 
described by Shafer (1985): 

 ( 2 ) 

giving the k th sensor response. Further,  and  are the surface albedo and Fresnel 
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reflectance, respectively, at  ,  is the surface patch normal,  is the direction of the illumination 

source, and  is the direction of the viewer. Geometric terms G B and G S denote the geometric 
dependencies on the body and surface reflection component, respectively, independent of the wavelength. 
Matte surfaces are described by the body reflection alone; shiny surfaces are described by both the body 
and surface reflection. 

Color Constancy 

Consider the reflectance of a perfect reflecting diffuser. A sample is called perfect when the sample 
reflects all wavelengths of the light source with an equal amount in all directions, producing an isotropic 

diffuser. This means that there is no surface reflection,  . Further, we assume that the 

diffuser has constant spectral albedo reflectance  . Assuming diffuse reflectance and that the 

surface normal  is the same as the viewing direction  , this gives  . Then the sensor 
response of the k th channel of the reference sample (assuming no specular reflections) is given by: 

 ( 3 ) 

The relative spectral power distribution of the reference sample is measured in this way. 

Further, assume that an image of an arbitrary sample is captured under the same illumination conditions. 
Then the relative reflection of the arbitrary sample with respect to the reference sample is: 

 ( 4 ) 

giving the k th sensor response of a sample with respect to the reference reflectance. As mentioned before, 
the spectrograph spectral filters F k ( ? ) are narrow-band filters. At channel k , the wavelength 
dependency can, therefore, be considered as fixed and we can rewrite equation 4 as: 

 ( 5 ) 

If the spectral distribution of the light at  ,  , can be assumed identical to that at the reference 

sample,  , then this can be simplified to: 
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 ( 6 ) 

Equation 6 implies that, under the assumption that at channel k the wavelength dependency can be 
considered as fixed (a unit impulse band filter), the spectral images obtained by the spectrograph can be 
made independent of the illuminant by dividing the original spectral image by the spectral radiation of the 
illuminant. The spectral radiation of the illuminant is determined by measuring the reflectance of a perfect 
isotropic diffuser. Note that the spectral power distribution of the light source is unimportant as long as it 
contains all relevant wavelengths at a sufficient intensity and is constant over the whole image. 

The diffuser used in this article is patch 21 from the GretagMacBeth standard color checker (New 
Windsor, N.Y.) with a spectral reflectance of 0.36 from 300 to 900 nm. Before dividing the spectra by the 
spectral radiation of the illuminant, the dark current has been subtracted. The dark current was estimated 
by taking an image with a closed lens cap and all illumination set to zero. 

Normalization 

In this section, the color-constant spectra are normalized, yielding spectra that are independent of the 
object geometry, under the assumption of matte surfaces (negligible Fresnel reflection). 

Consider the body reflection term of equation 6: 

 ( 7 ) 

giving the k th sensor response of the spectral reflectance curve of a matte surface. 

According to equation 7, the color depends only on surface albedo, and the brightness depends on factor 

 . As a consequence, a uniformly painted surface may give rise to a broad variation in sensor 
values due to the varying circumstances induced by the image-forming process, such as a change in object 
geometry. 

In contrast, a normalized sensor space can be insensitive to surface orientation, illumination direction, and 
intensity by dividing each channel by the sum of channels: 

 (8) 

The result is taken over N wavelengths and only dependent on the surface albedo. It is independent of the 

illumination spectral power distribution, illumination direction  , and object geometry  . 
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Linear Discriminant Analysis 

Linear discriminant analysis (LDA) is a supervised classification technique. For each class in a training 
set, it calculates the means and covariance matrix of the features (in our case the spectral bands) and then 
assigns new objects (pixels) to the category with the smallest Mahalanobis distance to that object 
(Fukunaga, 1990; Ripley, 1996). The Mahalanobis distance between pixel x and class c is defined as: 

 (9) 

where 

? c = mean vector of class c 

G c = covariance matrix of class c 

x = spectrum of a pixel belonging to class c . 

We assume G i = G j for all  . To obtain the classes, the LDA model is calculated by applying 
the transformation y = W T x . The weight matrix W is used to reduce the features x to the discriminant 
space y , where the ratio of the between-class scatter matrix of the projected samples to the within-class 
scatter matrix of the projected samples is maximized. 

From these transformed training pixels, the class means ? and corresponding covariance matrices G c of 
each class are calculated. The class membership of the pixels in the test set can be predicted by 
calculating the Mahalanobis distances to each class. A vector in which integer-valued elements represent 
the membership of each pixel to a particular class expresses the classification result. 

Experiment: Image Recording of Tomatoes 

Five tomatoes (Capita F1 from De Ruiter Seeds, Bergschenhoek, The Netherlands) in ripeness stage 7 
(orange) were harvested. The ripeness stage was defined using a tomato color chart standard (The 
Greenery, Breda, The Netherlands), which is commonly used by breeders. Each day over a time period of 
5 days, a color RGB image and spectral images were taken of the five fruits on a black velvet background. 

The RGB images were recorded with a Sony DX-950P 3-CCD color camera. The light source consisted 
of fluorescent daylight tubes (6500 K) with a high-frequency (50 kHz) electronic ballast, which prevents 
flickering caused by interference of the camera frame rate and the AC mains frequency. The frame 
grabber used was a Matrox Meteor RGB (Dorval, Quebec). 

The imaging spectrograph used in this experiment is the ImSpector (Spectral Imaging Ltd., Oulu, 
Finland). The ImSpector is available in several different wavelength ranges. Type V7, which was used, 
has a spectral range of 396 to 736 nm and a slit size of 13 ? m, resulting in a spectral resolution of 1.3 nm. 

The spectral images were recorded using two Dolan-Jenner PL900 illuminators (Andover St. Lawrence, 
Mass.), with 150 W quartz halogen lamps. These lamps have a relatively smooth emission between 380 
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and 2000 nm. Glass fiber optic line arrays of 0.02 inch • 6 inch aperture and rod lenses for the line arrays 
(Vision Light Tech, Uden, The Netherlands) were used for illuminating the scene. 

To test the effect of using different light sources for the training set and test set using color-constant and 
normalized images, an additional experiment was carried out with halogen illumination for the training set 
and three other illumination sources for the test set: 

1.  Halogen combined with a Schott KG3 filter in front of the camera lens. 

2.  Halogen with an additional TLD58W (Philips, The Netherlands) fluorescence tube. 

3.  Halogen with an additional blue fluorescence tube (Marine Blue Actinic, Arcadia, U.K.). 

The camera used was a Qimaging PMI-1400 EC Peltier cooled camera with a NIKON 55 mm lens and the 
ImSpector V7 between the lens and the camera. The frame grabber used was a Datacell Limited Snapper 
board (Berkshire, U.K.). The translation table used to move the object with respect to the camera was a 
Lineartechniek Lt1-Sp5-C8-600 translation table (Andelst, The Netherlands) driven by a SDHWA 120 
programmable microstepping motor driver (Ever Elettronica, Italy). The resolution of this translation table 
was ? 30 ? m, and the maximum speed 250 mm/s. 

Full-size hyperspectral images are large. If the full spatial resolution of the camera (1320 • 1035 pixels) 
for the x-axis and spectral axis was used, and with 1320 pixels in the y-direction, a single hyperspectral 
image would be 3.6 GB (using 16 bits/pixel). Due to limitations in lens and ImSpector optics, such a 
spectral image is oversampled and binning can be used to reduce the size of the image without losing 
information (Polder and van der Heijden, 2001). The software allows binning of the image separately in 
both the spatial and the spectral axes during capture of the image. The binning factor in both the spatial x-
axis and the spectral axis was 4. The step size of the stepper table was chosen to match the binned spatial 
resolution in the x-direction. The number of steps was chosen to capture five tomatoes and the gray 
reference in one image. The resulting images have a spatial dimension of 318 • 512 square pixels and a 
spectral dimension of 257 bands (about 84 MB). 

The software to control the stepper table and frame grabber, to construct the hyperspectral images, and to 
save and display them was locally developed in a single computer program written in Java. 

Data Analysis 

Data analysis was performed in the following steps. First, image preprocessing was performed as 
described in the section below. The preprocessed images were then analyzed with linear discriminant 
analysis (LDA). All analyses were done using Matlab (The Mathworks, Inc., Natick, Mass.) and the 
Matlab PRTools toolbox (Faculty of Applied Physics, Delft University of Technology, The Netherlands). 

Image Preprocessing 

To separate the tomatoes from the background and process each tomato image as a separate object, a 
threshold was performed on the intensity image of the RGB and spectral images. The intensity image was 
calculated as the sum of the R, G, and B components of the RGB image and as the sum of the different 
bands for the spectral image. The binary image that was obtained was labeled, giving the locations of the 
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five fruits and the gray reference patch in each image. 

The spectral images contain high-intensity regions caused by specular reflection of the illumination 
source at the tomato surface. These specular regions act like a mirror and predominantly show the spectral 
power distribution of the light source, distorting the measurements. These pixels were discarded by 
thresholding the intensity image. The threshold value applied was 0.75 • the maximum gray value of the 
image. This value was determined by dividing the gray values of the specular region by the mean gray 
value of the rest of the tomato surface. A labeled mask image was calculated with one label for each 
tomato object, discarding the specular regions. The tomatoes and the gray reference are large objects in 
the image, compared to noise pixels or small artifacts in the specular region of the tomatoes. Therefore, 
single pixels and small objects were removed by ignoring labeled objects with an object size less than 
5000. Figure 1 shows the reflectance values of the five tomatoes and the reference at 600 nm, at the day of 
harvest. 

 

Figure 1. Image of the reflectance of the five tomatoes and the reference at 600 nm at the day of harvest. 

The low radiation from the light source and the low sensitivity of the CCD camera combined with low 
reflectance values of tomatoes in the lower part of the spectrum (below 500 nm) produced a low signal-to-
noise ratio (<30 dB) in this part of the spectrum. Therefore, the spectrum was reduced by discarding 
reflectance values below a certain threshold. The threshold value chosen was empirically determined at 
2% of the maximum reflectance value of the mean spectrum of the first image of each time series. The 
remaining spectra consisted of 200 data values. 

Linear Discriminant Analysis 

http://asae.frymulti.com/request.asp?JID=3&AID=9924&CID=t2002&v=45&i=4&T=1&refer=7&access= (8 of 17)6-10-2005 11:16:21



Article Request Page

Each labeled tomato was considered as a separate ripeness stage. From the similarly labeled tomato 
objects, 2500 (pixel) spectra were randomly selected to form a learning set for the LDA. From the 
remaining spectra, 2500 spectra were randomly chosen to form the validation set. This experiment was 
repeated for all five tomatoes. In this experiment, we assume that all training pixels of a tomato image, 
captured at a certain day, belong to one ripeness class. To ensure that the training and the test data were 
exactly of the same ripeness stage, the pixels were randomly taken from the same tomatoes. 

To compare the power of spectral images with that of RGB images for ripeness classification, LDA was 
performed on the RGB images, the original (raw) spectral images, the color-constant spectral images, and 
the normalized spectral images. 

After learning the LDA of each spectrum or RGB triple, the test sets were classified. 

Results 

Scatter plots were made of randomly selected test sets of 100 pixels, from the original RGB triplets 
(figure 2), the LDA mapping to two canonical variables for the RGB images (figure 3) and the LDA 
mapping to two canonical variables for the raw spectral images (figure 4) of one tomato (figure 1, tomato 
B). From these plots, it is clear that the RGB domain representations of the tomato show considerable 
overlap at the different time stages. The LDA mapping of the RGB images also show this overlap. The 
overlap in the LDA domain of the spectral images is considerably reduced. Due to the reduction of 
variation within classes, the classes in the LDA domain are much more concentrated. 

 

Figure 2. Scatter plot of the RGB points of the color images. Depicted are: (A) red versus green, (B) red 
versus blue, and (C) green versus blue. Classes 1 to 5 represent the ripeness stages of tomato B during the 
five days after harvest, respectively. 
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Figure 3. Scatter plot of the first and second canonical variables of the LDA analysis of the RGB images. 
Classes 1 to 5 represent the ripeness stages of tomato B during the five days after harvest, respectively. 
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Figure 4. Scatter plot of the first and second canonical variables of the LDA analysis of the spectral 
images. Classes 1 to 5 represent the ripeness stages of tomato B during the five days after harvest, 
respectively. 

The result of comparing the LDA classification of the ripeness stages of the RGB images against the 
actual stages for all five tomatoes is tabulated in table 1. The error rate is 51%. If one class difference is 
allowed (e.g., for class 2, classes 1, 2, and 3 are considered correct), then the error rate is 19%. The error 
rates for the individual tomatoes are tabulated in table 3. From this table, we see that the error rate varies 
from 48% to 56% with a standard deviation of 3.2%. When one class difference is allowed, these values 
are 15% to 24% with a standard deviation of 3.7%. 

Table 1. Cross table of the number of pixels of the actual ripeness stage against the ripeness stage 
predicted by LDA on a test set of the RGB images (five tomatoes with 2500 pixels per class). Error rate = 
51%. 

LDA 
RGB 

Actual 

1 2 3 4 5 Total 

1 11985 406 59 29 21 12500 

2 2545 5277 1732 1181 1765 12500 

3 1245 4218 2090 1856 3091 12500 
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4 459 2159 1852 2600 5430 12500 

5 170 668 952 2210 8500 12500 

Total 16404 12728 6685 7876 18807 62500 

Table 2 lists the result of the LDA classification of the raw spectral images. The error rate is 19%. If one 
class difference is allowed, then the error rate is reduced to 1.3%. The error rates for the individual 
tomatoes are tabulated in table 3. From this table, we learn that the error rate varies from 16% to 20% 
with a standard deviation of 1.7%. When one class difference is allowed, these values are 0.6% to 1.5% 
with a standard deviation of 0.4%. 

Table 2. Cross table of the number of pixels of the actual ripeness stage against the ripeness stage 
determined with the LDA on a test set of the raw spectral images (five tomatoes with 2500 pixels per 
class). Error rate = 19%. 

LDA 
Spectral 

Actual 

1 2 3 4 5 Total 

1 11737 743 20 0 0 12500 

2 59 11531 811 70 29 12500 

3 3 1306 9964 1094 133 12500 

4 1 372 2447 5977 3703 12500 

5 1 36 138 616 11709 12500 

Total 11801 13988 13380 7757 15574 62500 

Table 3. Error rates for individual tomatoes. Error rates for the case in which one class difference is 
allowed are shown in brackets. 

Error 
Rates 

Tomato 

RGB Spectral 

A 50 [17] 18 [1.5] 

B 56 [24] 20 [1.5] 

C 48 [15] 18 [1.4] 

D 54 [23] 16 [1.5] 

E 48 [16] 20 [0.6] 

Mean 51 [19] 19 [1.3] 
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Std. Dev. 
3.2 
[3.7] 

1.7 
[0.4] 

Tables 1 to 3 show the results for individual pixels; when we moved from pixel classification to object 
classification, only one tomato RGB image was misclassified. Object classification was performed by a 
simple majority vote (i.e., each object was assigned to the class with the highest frequency of assigned 
pixels). In the spectral images, no error was made. Table 4 shows the result. 

Table 4. Cross table of the actual ripeness stage against the ripeness stage determined with the LDA on a 
test set of the raw spectral images and the RGB images (in brackets) by majority voting on the individual 
pixels. 

LDA Spectral 
[RGB] 

Actual 

1 2 3 4 5 

1 
5 
[5] 

2 
5 
[5] 

3 
5 
[4] 

4 [1] 
5 
[5] 

5 
5 
[5] 

When using different light sources for the training and test set, the reflectance of the reference is needed 
to make the spectra color-constant. Figure 5 shows the four reference spectra obtained by the reflectance 
of the gray reference. The intensity of the TLD58W source and the Arcadia Blue sources were relatively 
low compared to the halogen intensity. The greatest difference is at the emission peaks of these 
fluorescence tubes. Since wavelengths with low signal-to-noise ratios were excluded from the analysis, 
only the spectra between 487 and 736 nm were used. Because of this, the effect of the blue fluorescence 
of the Arcadia lamp was minimal. 
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Figure 5. Spectral reflectance of the gray reference using different illumination sources. 

Discussion 

An RGB color camera is frequently used for ripeness sorting. However, the results show that considerable 
errors may occur when classifying small differences in ripeness using RGB images. Spectral images are 
more suitable for classifying ripeness because they have a higher discriminating power compared to 
regular color images. Spectral images allow us to become independent of the light source and, after 
normalization, of object geometry as well. 

Variations in lighting conditions such as intensity, direction, and spectral power distribution are the main 
disturbing factors in fruit sorting applications. Traditionally, these factors are kept constant as much as 
possible. This is very difficult, since illumination is sensitive to external factors such as temperature and 
aging. In addition, this procedure does not guarantee identical results using various machines, each 
equipped with different cameras and light sources. Calibration of machines is tedious and error-prone. In 
this article, we show that by using color-constant spectral images we become independent of recording 
conditions such as camera and light source, as long as the light source is regularly measured (e.g., by 
recording a small piece of white or gray reference material in every image). 

We have used spectral imaging for a very demanding problem: comparing tomatoes with very limited 
maturity differences. From table 5, we can see that, although the error rate increases from 19% to 36% 
when using different light sources, it is still considerably below the 51% for RGB under the same light 
source. Nevertheless, an error rate of 36% is still very high. The main reasons for this high error rate are 
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the rather small differences in maturity (one-day difference) and non-uniform ripening of the tomato. If 
tomatoes are classified as whole objects, using majority voting of the pixels, then all tomatoes are 
correctly classified based on the spectral images, and only one tomato is wrongly classified using the 
RGB images. If one class difference is allowed for classification of the individual pixels, then the error 
rate is about 7% for spectral images, compared to 19% for RGB. These two factors are indications that 
our assumption of uniform ripening of a single tomato is not fully valid and that individual pixels of the 
same tomato may have slightly different maturity stages. 

Table 5. Error rates for individual pixels of spectral images captured with different illumination sources, 
using raw, color-constant, and color-constant normalized spectra. Error rates for the case in which one 
class difference is allowed are shown in brackets. The training pixels were captured with halogen 
illumination. 

Method of 

Illumination 
Raw 

Color 

Constant 

Normalized 

Color 
Constant 

Halogen 19 [1] 19 [2] 19 [2] 

Kg3 
80 
[42] 

35 [4] 36 [3] 

Halogen/
TLD 

41 
[10] 

35 [7] 34 [7] 

Halogen/
Blue 

42 [6] 36 [7] 33 [4] 

Tomatoes are spherical objects with a shiny, waxy skin. Since high intensity illumination is required for 
spectral imaging, it is almost impossible to avoid specular patches on the tomato surface. Pixels from 
these specular patches do not merely show the reflection values of the tomato, but they also exhibit the 
spectral power distribution of the illumination source. To avoid disturbance from this effect, 
preprocessing the images was needed to discard these patches. 

In the normalized spectral image, the color difference due to object geometry has also been eliminated. 
When using normalized images, the color is independent of the surface normal, the angle of incident light, 
the viewing angle, and shading effects, as long as sufficient light is still present and under the assumption 
of non-specularity. The results indicate that the normalized spectral images yield at least the same, if not 
better, results than the color-constant spectral images. Since tomato fruit is a spherical object, the above-
mentioned effects play a role in the images. Because the training pixels were randomly taken from the 
whole fruit surface, the positive effect of normalization could possibly be achieved in the color-constant 
images using linear discriminant analysis. In situations where the training pixels are taken from positions 
on the tomato surface that are geometrically different from the validation pixels, it is expected that 
normalized spectral images would give a significantly better result than color-constant spectra only. Since 
the normalized images do not perform worse than the color-constant images, normalization is preferred. 
However, care should be taken not to include specular patches. 

The accuracy of spectral imaging appeared to suffer slightly if different light sources were used. Under all 
circumstances, however, the results were better than those for RGB color imaging under a constant light 
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source. This opens possibilities to develop a sorting machine with high accuracy that can be calibrated to 
work under different conditions of light source and camera. 
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