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ABSTRACT: Evaporation of sessile droplets on a flat surface
involves a complex interplay between phase change, diffusion,
advection, and surface forces. In an attempt to significantly
reduce the complexity of the problem and to make it
manageable, we propose a simple model hinged on a surface
free-energy-based relaxation dynamics of the droplet shape, a
diffusive evaporation model, and a contact line pinning
mechanism governed by a yield stress. Our model reproduces
the known dynamics of droplet shape relaxation and of
droplet evaporation, both in the absence and in the presence
of contact line pinning. We show that shape relaxation during
evaporation significantly affects the lifetime of a drop. We find
that the dependence of the evaporation time on the initial contact angle is a function of the competition between the shape
relaxation and evaporation and is strongly affected by any contact line pinning.

■ INTRODUCTION

Understanding the dynamics of spreading and drying of
droplets deposited on a substrate is of importance to many
practices, such as inkjet printing,1−3 pesticide spraying,4 and
semiconductor device manufacturing.5,6 In the semiconductor
industry, photolithographic methods are employed to define
patterns for integrated circuits on wafers, coated with
photosensitive polymer layers.5,7 Often, water immersion is
used to increase the resolution of the lithography process.7,8

However, if any droplets are left behind on a wafer, they may
induce the so-called watermark defects in the photoresist
layer.5,9

Due to the importance of understanding the drying
processes, the drying of droplets on surfaces has been intensely
studied experimentally,6,10−15 theoretically,15−19 and numeri-
cally.20−23 Nevertheless, the understanding of this multifaceted
problem remains incomplete due to the multitude of coupled
processes that determine the evaporation dynamics. Apart
from the evaporation itself, processes such as convection and
heat transport in the droplet, shape relaxation, and contact line
pinning play a role.
Associated with the complex physics of the problem at hand

are a large number of physical parameters, the relative
importance of which depends on the initial and boundary
conditions as well as the time and length scales of interest.
Therefore, we aim to develop a macroscopic model that does
not resolve the details of, for example, the velocity field inside
the droplet or the vapor concentration field around it. Rather,
we consider three constituents to make up our model: (1)
interfacial free-energy-based relaxation for the droplet shape,
(2) diffusion-limited evaporation, and (3) contact line pinning.
In the literature, various authors studied the evaporation of

droplets, focusing on two limiting modes of evaporation: a

droplet evaporates with either a constant contact area or a
constant contact angle, allowing transitions between these
limits.13,16,24,25 Others have investigated the shape relaxation of
droplets by measuring the contact angle of nonevaporating
droplets in time.26−28 To combine the both aspects, which are
described in the literature separately, we propose a model that
is not restricted to the two evaporation modes, but contains
the shape relaxation of the droplet during the evaporation
process. It captures and extends the evaluation of Stauber et
al.24 by taking into account the contact line dynamics, i.e.,
incorporating both advancing and receding contact lines and
considering cases without contact line pinning. Moreover, to
describe the transition between mobile and pinned contact
lines, our model includes a yield stress that governs contact
line pinning: contact line motion is inhibited for capillary
driving forces below a critical stress.
The remainder of this paper is organized as follows. In the

Theory section, we present the main ingredients of our
phenomenological model. The Results and Discussion section
compares experimental data and existing theories, as well as
presents an overview of representative cases of evaporation
with and without contact line pinning. We also discuss in detail
the implications of choices made for certain parameters during
the calculations. In the Summary and Conclusions section, we
summarize our results and present our main conclusions.

■ THEORY
The focus of this work is on droplets of sizes smaller than the
capillary length γ ρ=l g/c LG , which allows us to model the
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droplet as a spherical cap.29 Here, γLG denotes the surface
tension of the liquid−gas interface, ρ is the mass density of the
fluid, and g is the gravitational acceleration. For water in air at
room temperature, lc ≃ 3 mm.29 We presume the liquid to be
incompressible. If the shape of the droplet is described as a
spherical cap, it is uniquely defined by only two parameters.
We choose for these the radius a of the contact area and the
contact angle θ of the drop with the solid surface that we

assume to be rigid (see Figure 1).30 Geometrically, they are
related to the droplet volume V according to
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(1)

Equation 1 implies that, for a given volume V, a prescribed
value for the contact area radius a defines the contact angle θ
and vice versa. Within a macroscopic description of the droplet
shape, the equilibrium values of a and θ are determined by γLG,
as well as by the solid−liquid and solid−gas interfacial
tensions, γSL and γSG, respectively. We associate the droplet
shape with an interfacial free energy F(a, θ), given by the sum
of the interfacial tensions multiplied by the respective surface
areas
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For a given volume V, eq 2 can be expressed as a function of θ
only, using eq 1, that is, F(a, θ) → F(θ).31 Minimizing this free
energy F with respect to θ produces the following equation for
its optimal value

γ γ γ θ− − =cos 0SG SL LG eq (3)

which is the well-known Young’s equation for the equilibrium
contact angle θeq.

32,33 We note that θeq denotes the contact
angle corresponding to the free-energy minimum; however,
this angle is not necessarily straightforwardly accessible
experimentally.34

Out of equilibrium, eq 3 does not hold. To describe how an
out-of-equilibrium droplet shape relaxes toward equilibrium,
we construct a kinetic equation for the contact angle using a
relaxational dynamics approach based on our free-energy
landscape.35,36 It describes how the droplet adjusts its contact
angle θ with the surface to move toward equilibrium. Together
with the volume V, this defines a new radius of the contact area
a. We refer to this process as “shape relaxation”, since both θ
and a change simultaneously to accommodate a lower free-
energy state. We note, however, that the overall shape of the

droplet remains a spherical cap. This allows us to quite
naturally include the effects of steady evaporation and of a
potential pinning of the contact line. In the next subsections,
we discuss separately and in detail, the three main components
of our phenomenological model: the relaxation dynamics of
the droplet shape, the description for diffusive evaporation, and
the contact line pinning mechanism.

Relaxation Dynamics of the Droplet Shape. On the
basis of the free energy F(θ) obtained from eqs 1 and 2, we
construct a relaxation equation for the contact angle θ

θ
θ

= −Γ
t

Fd
d

d
d (4)

where Γ is a phenomenological relaxation rate that we specify
in more detail below. Equation 4 describes a rate of change
that is proportional to the generalized force dF/dθ. This is in
analogy to the so-called model A dynamics commonly applied
in the kinetics of phase transitions of nonconserved order
parameters.35−37 We note that it is also possible to derive
kinetic equations by equating capillary and viscous forces.38,39

In our model, this balance is implicit in the parameter Γ.
Several experimental and theoretical works have identified

the difference between the cosines of the instantaneous, time-
dependent contact angle θ and its equilibrium value θeq, given
by eq 3, to be the driving force for the motion of the contact
line.27,28,33,40,41 For small values of the difference cos θ −
cos θeq, this relaxation can be described by a simple exponential
function.27,42 The exponential decay allows us to identify a
characteristic time scale τrlx as

θ θ τ− ∝ −tcos cos exp( / )eq rlx (5)

We discuss the functional expression for τrlx below.
To relate to eq 5, we transform eq 4 into a kinetic equation

for cos θ and expand it around the equilibrium cos θeq. A
linearization produces an exponentially decaying cos θ, from
which we determine Γ. This yields

τ γ θ α
Γ =

ΘV t
1
(cos ) ( )rlx LG

2/3
eq (6)

with

πΘ ≡ − + − + −x x x x x( ) 2(9 ) (1 ) (1 )(2 3 )1/3 3 3 5/3 (7)

Equations 4 and 6 reproduce eq 5 for small deviations from
equilibrium. In eq 6, we introduce a time-dependent,
dimensionless factor α(t) to account for changes in the
dynamics of the droplet shape relaxation due to, e.g., a change
in droplet size over time. We return to this below. Equations 4
and 6 describe how a droplet deposited with a nonequilibrium
initial contact angle θ0 relaxes to the equilibrium value θeq in a
relaxation process characterized by a fundamental time scale
τrlx, provided that the contact line is not pinned. We discuss
our model for contact line pinning below.
The characteristic time scale τrlx for the shape relaxation has

been identified in various experimental and theoretical works
to be dependent on the fluid viscosity η, the liquid−gas
interfacial tension γLG, and a length scale L19,26,27,39,41−44 as

τ η
γ

= L
rlx

LG (8)

In experiments on spreading of polymeric fluids, this length
scale L has been described as a measure of the slip or friction
length of the interaction between a polymeric liquid and the

Figure 1. Schematic of an axisymmetric droplet on a planar surface,
with contact angle θ and radius a of the contact area.
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solid,26,27,42 which seems to be independent of droplet
dimensions27 and has been estimated to be of the order of
micrometers.42 In works on the coalescence of droplets,
however, the length scale L has been shown to be proportional
to the droplet size R,19,39,41 which seems in agreement with the
experimental and theoretical works on the spreading of
polymer melts43 and spherical droplets of simple liquids.44

For this reason, we take the length scale L to be kV0
1/3, with V0

the initial volume of the droplet, making it proportional to the
droplet size, and k a dimensionless proportionality constant
that can be related to an Arrhenius factor.41 Hence

τ
η
γ

= k
V

rlx
0
1/3

LG (9)

As the droplet size decreases during evaporation, the length
scale L related to the shape relaxation may (1) remain constant
(in the case that L is related to a slip or friction length) or (2)
decrease with the droplet size. The scale factor α(t) can be
employed to incorporate either behavior into the dynamics
described by eqs 4 and 6. If L remains constant, we may
choose α = 1, whereas for a size-dependent length scale, α(t) =
(V(t)/V0)

1/3. As we shall see, it turns out that the two
expressions for α give rise to small differences in the droplet
dynamics albeit that the lifetime of an evaporating droplet is
not sensitive to whether α is proportional to the droplet size or
not. For simplicity, we set α = 1 for the evaluation of our
results. We discuss the implications of choosing the alternative
α(t) in more detail in the Results and Discussion section.
The structure of eq 6 allows for the implementation of

different models for droplet shape relaxation, as long as it
progresses exponentially in the limit of small deviations from
equilibrium, as in eq 5. For example, from a microscopic
perspective, the motion of the contact line is often described
by the so-called molecular kinetic theory (MKT).28 This
theory describes the motion of the contact line in terms of
small jumps over the intrinsically microscopically inhomoge-
neous surface, driven by thermal fluctuations. It has been
shown to predict contact line dynamics in agreement with
experiments and molecular simulation.28,45−48 MKT relates the
velocity da/dt of the contact line to the driving force via the
expression

Ä

Ç
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−
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v k T
d
d
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2
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G
k TB

L

LG
2

B
eq

B

(10)

where ξ denotes the distance between adsorption sites on the
surface; kBT is the usual thermal energy, with kB the Boltzmann
constant and T the absolute temperature; vL is the molecular
volume of the liquid; and G* is the surface contribution to the
activation free energy of wetting.28,46,49,50

If we translate eq 10 in terms of the time evolution of the
cosine of the contact angle, i.e., make use of eq 1, and expand
this to linear order for small deformations cos θ − cos θeq, we
find that the characteristic time scale τrlx according to
molecular kinetic theory must be given by
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We see that the functional form of τrlx of eq 11 is analogous to
that of eq 9. This suggests that the characteristic shape
relaxation time as predicted by MKT, which is a microscopic
theory in origin, to linear order also is a function of
macroscopic parameters such as droplet size, viscosity, and
surface tension. Parenthetically, we find that a hydrodynamic
theory for contact angle dynamics, as described by Voinov and
de Ruijter et al., yields an analogous result.45,51 If we expand
the theory for small deformations cos θ − cos θeq, we again find
a characteristic time scale τrlx, which is proportional to the
fraction ηV1/3/γLG. This indicates that the scaling of the
characteristic relaxation time scale with viscosity, droplet size,
and interfacial tension, as described in eq 9, is universal.
This concludes our analysis of the relaxation dynamics of

small drops. We next describe how quasi-steady evaporation
affects the dynamics of a deposited droplet, presuming that an
instantaneous free energy can be defined, in effect presuming a
separation of time scales.

Evaporation of the Droplet. We take quasi-stationary,
isothermal vapor diffusion into the surrounding gas phase to be
the governing mechanism for evaporation, assuming the
droplet to be in contact with an infinite volume of gas. We
neglect thermal effects caused by the evaporation of the fluid,
effectively assuming that heat transport occurs at much shorter
times than the time scales associated with the evaporation
process. For water in air, the evaporative cooling at the droplet
surface has a negligible effect on the evaporation rate52 and we
consider an isothermal substrate, which is reasonable for
surfaces with high thermal conductivity.53−55 Picknett and
Bexon16 derived an expression for the rate of change in mass of
a droplet as a function of contact angle θ. The rate of change of
the volume V of a droplet can then be written as

π
ρ θ

θ= − ΔV
t

aD c
f

d
d

2
sin

( )
(12)

where D denotes the diffusion coefficient of vapor molecules in
the gas phase and ρ is the mass density of the liquid.17

Furthermore, Δc ≡ cs − c∞ denotes the difference between the
vapor mass concentration cs near the liquid−gas interface (in
units of mass per volume), presumed to be the saturation value
of the fluid molecules in the gas phase, and the vapor mass
concentration c∞ at infinity, i.e., that of the ambient
atmosphere. Finally, f(θ) denotes a geometric factor for
which an exact analytical expression is not available in closed
form.16,56 For our purposes, a polynomial representation for
f(θ)

l

m

ooooooooo

n

ooooooooo

θ

θ θ
θ

θ

θ
θ θ

θ

θ π=
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+
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2

3

2 3

4

(13)

is sufficiently accurate. Indeed, the error of the approximant is
less than 0.2% for all values of θ.16

For a constant contact angle θ, eq 12 can be expressed
entirely in the contact area radius a(t) using eq 1 and solved
exactly. This gives

ρ
θ θ

θ θ
= − Δ

− +
a t a

D c f
t( )

4 ( ) sin
2 3 cos cos0

2
2

3
(14)
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where a0 denotes the initial value of the contact area radius a0
= a(0). It shows that the contact area πa2 decreases linearly in
time, a known experimental result.17 From eq 14, we deduce
that the time tevap it takes to evaporate a droplet is the longest
for θ = π/2. For this contact angle, the evaporation time τevap is
given by the simple expression

i
k
jjj

y
{
zzzτ ρ

π
=

ΔD c
V

2
3
2evap

0
2/3

(15)

In the remainder of this work, we shall scale all evaporation
times to τevap. Note that we have identified the two
fundamental time scales that describe our problem: the
fundamental relaxation time τrlx (eq 9) and the fundamental
evaporation time τevap (eq 15). The actual evaporation time
depends not only on the initial contact angle and the relaxation
dynamics of the droplet shape, but also on whether or not
contact line pinning takes place.
Contact Line Pinning. Contact line pinning is the

phenomenon where the contact line of the droplet becomes
stuck, permanently or temporarily, on structural or chemical
inhomogeneities of the supporting surface.40,57−63 In general, a
droplet in the pinned state exhibits a contact angle different
from the equilibrium angle θeq, as it cannot relax to its
equilibrium shape. We model the influence of surface
heterogeneities by introducing a net macroscopic threshold
force per unit length, f p, exerted in the plane of the surface
along the radial direction of the circular contact line. It has a
direction opposite to the capillary driving force per unit length,
fc. As both f p and fc are exerted on the perimeter of the contact
area, we for simplicity refer to both as a force.
If the magnitude of the capillary driving force is smaller than

the threshold f p, then the contact line remains pinned. On the
other hand, if it is greater, we allow the contact line to move:
the relaxation of the contact angle θ is calculated using eqs 4
and 6 and the contact line moves accordingly. In the presence
of contact line pinning, the droplet shape relaxes to the point
where the capillary forces and pinning forces are balanced. The
contact line motion is quasi-steady and hence the associated
friction does not depend on the velocity of the contact line.
For simplicity, we presume that the yield force f p does not
depend on the position on the surface. We define the capillary
force as

π
γ θ θ= − = − −f

a
F
a

1
2

d
d

(cos cos )c LG eq (16)

where we have used Young’s law (eq 3). In our prescription,
we allow motion of the contact line as long as |fc| > fp. Equation
16 is also referred to as the unbalanced Young’s force or
unbalanced capillary forces.25,33,50

The magnitude of the pinning force f p defines a contact
angle range in which the capillary force fc is too weak to
overcome pinning. As long as the contact angle θ resides
within this range, the contact area remains constant. We refer
to this range as the “fixed-area” regime, and it turns out to be
bounded by the receding and advancing contact angles, θr and
θa, which are the contact angles for which fc and f p are
balanced. Within our model, the values of these quantities
depend on the pinning force f p,

40 according to

θ θ γ= + farccos(cos / )r eq p LG (17)

θ θ γ= − farccos(cos / )a eq p LG (18)

The receding and advancing contact angles indicate the points
at which the pinning−depinning transitions occur. If the
droplet evaporates while initially being in the pinned (fixed-
area) state, the contact angle decreases until the droplet depins
at a value equal to θr, after which the evaporation continues
with a constant contact angle θr and a receding contact line. In
contrast to a constant θr, a constant advancing angle θa is not
encountered for droplets with decreasing volume, but it can
only be observed as the point at which the droplet becomes
pinned after initial spreading.

■ RESULTS AND DISCUSSION
We now compare predictions of our phenomenological model
with the full nonlinear response presented by molecular kinetic
theory (MKT) and with experiments on droplet evaporation in
the presence of contact line pinning. We quantify the
competition between evaporation and relaxation using the
ratio of the two time scales τevap and τrlx. It determines,
together with the initial and equilibrium contact angles as well
as the magnitude of the pinning force, the lifetime of an
evaporating droplet. Both fundamental time scales depend only
on the properties of the fluid and the surrounding vapor phase.
Their ratio scales linearly with the droplet size V0

1/3. Presuming
that the Arrhenius factor k in eq 9 is of the order 108,41 typical
values of τevap/τrlx for water droplets of micrometer to
millimeter sizes range from 10−4 to 100; however, the latter
value may increase further under conditions of slow
evaporation (i.e., high humidity). For fluids with higher
viscosity η, presuming the other parameters remain unchanged,
τevap/τrlx decreases. The ratio of the two time scales has also
been addressed by Man and Doi19 to be important in the
context of evaporation problems. Directly connecting the
parameter kev presented in ref 19 to our τevap/τrlx, however, is
not straightforward due to the factor k. We choose the droplets
to be hemispherical in equilibrium, i.e., θeq = π/2, which is
typical for a water droplet on a polymer substrate. The
implications of choosing a different equilibrium contact angle
are discussed at the end of this section.
Because sessile droplet shape relaxation and evaporation

have been described separately in the literature before, we feel
it instructive to first investigate how our model compares to
those works and to known experimental data. After the
validation of the model with the literature, we discuss the
predictions given by our more complete model that unites
shape relaxation, droplet evaporation, and contact line pinning.
Finally, we discuss the impact of the assumptions we make
during our calculations.

Shape Relaxation and Pinning−Depinning Transi-
tion. To illustrate the relaxation dynamics predicted by our
free-energy-based model and to compare the predictions to an
existing model for contact line dynamics, we first compare our
theory with the relaxation dynamics of a droplet deposited on a
surface according to molecular kinetic theory (MKT). This
theory, which has a microscopic basis, is shown to describe
experimentally measured contact line dynamics rather
well.28,45−47 As discussed in the Theory section, for small
values of cos θ − cos θeq, MKT predicts an exponential
relaxation with a time scale τrlx given by eq 11. For greater
values, however, the dynamics deviates from a simple single
exponential description. To compare the nonlinear contact
angle dynamics predicted by our model to that described by
MKT, we solve eq 10 numerically. For convenience, we set the
equilibrium contact angle to θeq = π/2 and choose four initial
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angles θ0 symmetrically around this angle. In Figure 2, we
compare the time dependence of the contact angle θ and the

absolute value of the difference between the cosines of θ(t)
and θeq. Indicated in the figures are the results of our model
(blue triangles), the MKT result (green pluses), and a simple
single exponential relaxation as given in eq 5 (red crosses).
Note that, as in all cases τrlx and θeq are fixed, the results
indicated in the figures as “our model” are independent of the
choice of the characteristic time scale and hence also describe
the result for, e.g., the linearized version of the MKT model.
Figure 2 informs us of the following:

(i) For deviations of ±π/6 from the equilibrium value of π/
2 (see Figure 2c,e), the agreement between the
evolution of the contact angle as a function of scaled
time predicted by all three descriptions is excellent. For
greater initial deviations from the equilibrium angle
(Figure 2a,g), the agreement remains remarkably good,
in particular for the larger initial angle.

(ii) Figure 2d,f highlights any inconsistencies for small
deviations from the equilibrium by focusing on the
difference of the cosines on a logarithmic scale. These
figures show that well within one characteristic time
scale simple single exponential decay is reached. Any
small late-stage deviations between the curves is caused
by the early-stage nonlinear behavior. Figure 2b,h shows
that even for greater initial deviations from the

equilibrium contact angle, simple single exponential
decay occurs within one characteristic time scale.

The process of droplet evaporation in the presence of
contact line pinning has been studied theoretically by Stauber
et al.,24 who describe the dependence of the evaporation time
tevap on the initial contact angle θ0, where they fix the receding
contact angle θr to several values. They consider two separate
modes of evaporation, a constant contact radius (CCR,
pinned) and a constant contact angle (CCA, receding)
mode, allow for pinning−depinning transitions and model
the evaporation dynamics accordingly using an evaporation
description analogous to eq 12. Their results can be
reproduced quantitatively by our model. However, our
model also includes the relaxation of the droplet shape toward
its equilibrium angle, after it is deposited on the surface with an
angle different from the equilibrium value. We discuss in more
detail the similarities and differences between their work and
the results from our model in the next subsection.
We now relate results from our model to the experimental

data of Belmiloud et al.6 on the evaporation of a water droplet
on a flat silicon surface (see Figure 3). Figure 3 shows the

squared contact diameter (2a)2 (blue triangles) and contact
angle θ (red crosses) as a function of time t. The results of
Belmiloud et al., represented by the solid lines, can be readily
reproduced by our phenomenological model (dashed lines).
Initially, the contact line of the droplet is pinned, as is seen
from the squared contact diameter remaining constant, while
the contact angle decreases. As the receding contact angle θr is
reached, a pinning−depinning transition occurs, after which
the angle remains constant at the receding value and the
diameter squared decreases linearly, as discussed in the Theory
section.
To model the evaporation process of the initially pinned

droplet, we choose our model parameters to correspond to the
experimental values. The pinning force per unit length f p was
set to a value of f p ≃ 0.034 N m−1 to obtain a receding contact
angle of θr = 34°. The value of the pinning force per unit
length is of the same order of magnitude as the liquid−air
interfacial tension (γLG = 0.07 N m−1). The values reported by
Belmiloud et al.6 for the surface vapor concentration cs and the

Figure 2. Comparison between predictions for the relaxation
dynamics of the contact angle θ to its equilibrium value θeq = π/2
from our model (blue triangles), molecular kinetic theory (green
pluses), and a simple exponential relaxation for comparison (red
crosses). Left: contact angle θ as a function of dimensionless time t/
τrlx; right: the corresponding |cos θ − cos θeq|.

Figure 3. Comparison between the results of experiments on the
evaporation of sessile water droplets on a silica wafer6 (solid lines)
and the numerical evaluation of the droplet model (dashed lines).
The squared contact diameter (2a)2 (left vertical axis, blue triangles)
and contact angle θ (right vertical axis, red crosses) are shown as a
function of time t. The two modes of evaporation, pinned and
receding, are indicated. The model parameters are as follows: pinning
force, f p ≃ 0.034 N m−1; vapor concentration difference, Δc = 11.6 ×
10−3 kg m−3; and vapor diffusion coefficient, D = 3.15 × 10−5 m2 s−1.
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relative humidity were used to determine Δc = 11.6 × 10−3 kg
m−3. The best correspondence between the measurement and
our model is obtained for a vapor diffusion coefficient D = 3.15
× 10−5 m2 s−1, as opposed to the reported D = 2.60 × 10−5 m2

s−1. However, Belmiloud et al. also report on an under-
estimation of the evaporation rate: the droplet evaporates
faster than predicted by eq 12.6 This is arguably due to
inaccuracies in measuring the properties of the ambient vapor.
Predictions by Full Model. We now consider the effect of

the interplay between the three components of our model to
predict the evaporation dynamics of a droplet. To that end, we
first discuss two limiting cases. We report our findings on (1)
the effect of contact line pinning on a nonevaporating, relaxing
droplet and (2) the effect of shape relaxation on the lifetimes
of droplets with an unpinned contact line. Subsequently, we
present our results on simultaneous shape relaxation and
evaporation of a droplet subject to contact line pinning.
If the shape relaxation of a droplet is affected by contact line

pinning, the contact angle relaxation in the absence of
evaporation studied in the previous section (Figure 2) changes
drastically, as is illustrated in Figure 4. If droplets start out

within the fixed-area region, i.e., have an initial angle θr < θ0 <
θa, indicated by the shaded region in Figure 4, then the contact
line is not able to move. In other words, the droplets are not
able to relax their shape to accommodate the equilibrium
contact angle θeq. For initial angles outside of this regime,
shape relaxation does occur, albeit only until the fixed-area
region is reached, after which the motion of the contact line is
halted. This phenomenon has strong implications for the
lifetime of an evaporating droplet. The asymmetry in the time
it takes for the droplet to become pinned for θ0 = π/6 and for
θ0 = 5π/6 has its origin again, as is the case for the shape
relaxation shown in Figure 2, in the nonlinearity of eqs 4 and 6.
We note that the curves shown in Figure 4 depict the
relaxation of the contact angle θ. The exponential relaxation of
the cosine in eq 5 is therefore not immediately evident from
the figure.
If we allow for evaporation, the shape relaxation of a droplet

from an initial contact angle θ0 toward its equilibrium angle θeq
may have a strong impact on the evaporation dynamics of a
droplet, also without any contact line pinning occurring. As
discussed in the Theory section, the evaporation rate depends

on the contact angle θ, and is at its minimum for θ = π/2. If a
droplet with a certain θeq is deposited onto a surface with an
initial angle θ0 ≠ θeq, the relative speeds at which the droplet
relaxes to its equilibrium angle and at which it evaporates,
characterized by the ratio τevap/τrlx, will influence the lifetime of
such a droplet. In the remainder of our manuscript, we adopt
the representation style of Stauber et al.24 when discussing
lifetimes of droplets, where we depict the scaled evaporation
time tevap/τevap as a function of the initial contact angle θ0.
First, we consider the evaporation of droplets in the absence

of contact line pinning. In Figure 5, we present the droplet

lifetimes tevap/τevap as a function of the initial contact angle θ0,
for τevap/τrlx = 10−4, 10−2, 100, and 102. In the limit of slow
shape relaxation (τevap/τrlx ≪ 1), we exactly recover the result
of Stauber et al.24 for evaporation with a constant contact angle
(see the blue triangles in Figure 5). The droplet lifetime
decreases rapidly for θ0 → 0, as the area-to-volume ratio
increases. As already discussed in the Theory section, the
lifetime is longest for θ = π/2, resulting in a maximum in the
graph. For θ > π/2, the lifetimes slightly decrease again due to
the increase in the area-to-volume ratio.
For increasing τevap/τrlx, we see a decreasing effect of the

initial angle on the lifetimes, as the contact angles relax more
quickly to the equilibrium value θeq = π/2. The increase in
droplet lifetime due to faster shape relaxation is most notable
for small contact angles, as the relaxation is the fastest in that
regime and small changes to the contact angle induce large
changes in the evaporation rate, according to eq 12. Close to θ0
= π/2, however, both shape relaxation and evaporation are
slow and hence the changes in droplet lifetime upon changing
τevap/τrlx are small. For τevap/τrlx ≫ 1, the droplet lifetime is
effectively independent of θ0. We conclude that the
evaporation dynamics of a droplet on a flat surface is strongly
affected by the ratio between the rates of evaporation and
shape relaxation, in the absence of contact line pinning.
If the contact line can become stuck on the surface due to

pinning, however, the response of a drop to deposition on a
surface becomes more complex. We can identify three regimes
in the droplet dynamics, distinguished by the value of the
initial contact angle θ0 relative to the receding and advancing
contact angles θr and θa, respectively

(a) θ0 < θr, where θ0 lies below the fixed-area range;
(b) θr ≤ θ0 ≤ θa, where θ0 lies within the fixed-area range;
(c) θ0 > θa, where θ0 lies above the fixed-area range.

Figure 4. Relaxation of the contact angle θ of a deposited drop on a
surface toward the equilibrium value θeq = π/2. There is no
evaporation and the pinning force f p is set such that the receding and
advancing contact angles are θr = π/4 and θa = 3π/4. This results in
the fixed-area range between θr and θa, where the capillary force fc
cannot overcome fp and the contact line becomes or remains pinned.

Figure 5. Scaled evaporation times tevap/τevap for sessile droplets as a
function of the initial contact angle θ0, for ratios τevap/τrlx = 10−4, 10−2,
100, and 102. The equilibrium contact angle is θeq = π/2.
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Figure 6 shows the droplet shape in terms of the scaled
squared radius (a/a0)

2 (blue triangles) and θ (red crosses) as a

function of nondimensional time t/τevap. The pinning force f p is
set to f p ≈ 0. 924 γLG, leading to θr = π/4 and θa= 3π/4. The
contact angle range between the two (the fixed-area domain) is
indicated by the shaded area. The ratio between evaporation
and relaxation time scales is τevap/τrlx = 1. Three different
graphs are shown to illustrate the three regimes. If θ0 < θr, the
droplet starts out in the depinned state and thus the contact
line moves to accommodate the contact angle relaxation
toward the equilibrium value θeq (see Figure 6a). After some
time, the receding contact angle θr is reached and the contact
angle relaxation halts, resulting in the remainder of the
evaporation process occurring with a constant contact angle θr.
In the second case, shown in Figure 6b, the droplet starts out
with a pinned contact line, since θr < θ0 < θa. Due to
evaporation, the contact angle decreases until it reaches θr. At
that point, a depinning transition occurs, the contact line is
allowed to move again and evaporation continues with a
constant contact angle θr. Parenthetically, in Figure 6b, we
present the results for an initial contact angle θ0 < π/2, but the
general behavior of the contact angle as a function of time is
the same for π/2 ≤ θ0 < θa. Finally, for θ0 > θa, the contact line
can initially move freely, causing the droplet to spread and
increase its contact area (see Figure 6c). After the contact

angle reaches the advancing value θa, however, the contact line
becomes pinned. Once more, from this point on, the contact
angle decreases due to evaporation. And again, as the contact
angle reaches the receding value θr, a depinning transition
occurs and evaporation continues with a constant contact
angle.
The emergence of the three regimes due to the presence of

contact line pinning has a significant impact on the droplet
lifetimes. The extent of the effect depends on the ratio of
evaporation to relaxation time scales τevap/τrlx, as illustrated in
Figure 7. Figure 7 shows the scaled lifetime of an evaporating

Figure 6. Scaled contact area (a/a0)
2 and contact angle θ as a

function of nondimensional time t/τevap, for the evaporation of a
droplet with equilibrium angle θeq = π/2. The shaded areas indicate
the fixed-area domains between the receding and advancing contact
angles, θr = π/4 and θa = 3π/4, respectively. The ratio between
evaporation and relaxation time scales is set to τevap/τrlx = 1, and we
show the time evolution of the droplet shape for three values of the
initial contact angle θ0: (a) θ0 = π/6 < θr, (b) θr < θ0 = π/3 < θa, and
(c) θ0 = 5π/6 > θa.

Figure 7. Scaled evaporation times tevap/τevap of sessile droplets as a
function of the initial contact angle θ0, for various values for f p/γLG ≈
0.924, 0.707, 0.383, and 0, and three ratios τevap/τrlx of (a) 10

−2, (b)
100, and (c) 102, covering the range from fast to slow evaporation.
The values of the respective receding and advancing contact angles
are indicated by arrows in the same color as the corresponding lines in
the graph. The black lines represent the two limiting cases of
evaporation at constant radius of the contact area (CCR, solid) and
evaporation at a constant contact angle (CCA, dashed). The
equilibrium contact angle is θeq = π/2.
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droplet tevap/τevap as a function of the initial contact angle θ0,
for τevap/τrlx = 10−2, 100, and 102, covering the entire range
from fast to slow evaporation. We can identify two limiting
cases for the evaporation in all three graphs, shown in black,
being evaporation with a constant contact radius (CCR, solid
lines) and evaporation with a constant contact angle (CCA,
dashed lines). These two limits are not dependent on the ratio
τevap/τrlx, as we impose that either the contact area or the
constant angle remains fixed.
The time it takes for a droplet to evaporate is shorter at a

constant radius compared to a constant angle for the majority
of the initial angle range 0 ≤ θ0 ≤ π. This is because the
constant contact radius mode causes the contact angle to
decrease during evaporation. Decreasing θ generally speeds up
the evaporation process due to an increase of the surface-to-
volume ratio, especially at late times. For large initial angles (θ0
→ π), however, evaporation in the constant-angle mode
becomes faster than evaporation in the constant-radius mode.
As the latter causes a continuous decrease in the contact angle,
it initially slows down the evaporation rate before speeding it
up again. As discussed before, the maximum lifetime of a
droplet evaporating in the constant-angle mode is tevap = τevap
for θ0 = π/2, resulting in a maximum in the graph. For the
constant-radius mode, the maximum lifetime is shorter than
the maximum in the constant-angle mode, being tevap ≈
0.9354τevap for θ0 ≈ 0.822π.24

The differently colored arrows at the top of Figure 7
represent the receding contact angle θr and the advancing
contact angle θa. These define the domain in which the contact
area remains constant. The arrow colors correspond to the
colors of the curves shown in the figure, which depict the
droplet lifetimes tevap/τevap as a function of the initial contact
angle θ0, for values of the pinning force f p/γLG of approximately
0.924 (blue triangles), 0.707 (green pluses), 0.383 (red
crosses), and 0 (purple dots). The values for θr and θa remain
constant in all three graphs, and as θeq = π/2, they take
symmetric values around the equilibrium.
For all three graphs in Figure 7a−c, the curve segments

between the bounding receding and advancing contact angles
are identical. The reason is that if the contact line of a drop is
initially pinned due to the choice of initial angle, this angle
cannot relax toward its equilibrium value as is also shown in
Figure 6b. Therefore, the magnitude of the shape relaxation
rate does not affect the evaporation process. During
evaporation, the contact angle only decreases from the initial
to the receding angle and remains at that value until the drop
has fully evaporated.
The relaxation of the contact angle toward its equilibrium

value is only possible for initial angles outside of the fixed-area
domain, as shown in Figure 6a,c, where shape relaxation occurs
until the contact angle reaches either boundary. In other
words, for values of θ0 outside of the fixed-area region, the
relative shape relaxation rate does have an impact on the
droplet lifetime. For values of τevap/τrlx ≳ 1, as shown in Figure
7b,c, evaporation is relatively slow and relaxation, in essence, is
instantaneous. This leads to an evaporation time that is
essentially an invariant of the initial angle, outside of the fixed-
area domain, where the lifetime takes on the value at the
nearest boundary (at θr or θa). If evaporation is very fast, i.e.,
τevap/τrlx ≪ 1, as shown in Figure 7a, relaxation cannot keep up
and the evaporation time is dictated by a virtually constant
contact angle. For sufficiently small θ0, however, relaxation can
keep up with evaporation and the evaporation time deviates

from the lifetimes for the constant contact angle mode. This
deviation vanishes for τevap/τrlx → 0.
For initial angles above the advancing angle, the lifetime

curves start to deviate from both limiting cases and from the
curves reported by Stauber et al.,24 when τevap/τrlx increases.
This is caused by the evaporation dynamics predicted by our
model being more complicated than a simple imposed
transition from a pinned into a depinned state. As shown in
Figure 6c, the contact line can initially move freely, implying
that the contact angle starts to move toward its equilibrium
value θeq. Upon reaching θa, the contact line becomes pinned
and the contact angle decreases until it reaches θr.
Subsequently, a pinning−depinning transition occurs and the
droplet evaporates with a fixed contact angle. In other words,
the droplet experiences two transitions, rather than one, by
subsequently going through depinned, pinned, and depinned
modes.

Impact of Assumptions. We developed a phenomeno-
logical model for the shape relaxation of an evaporating
droplet. The characteristic time scale associated with this
relaxation is found to be proportional to a length scale L. This
length scale L has been connected to (1) a slip or friction
length or (2) the size of the droplet. To incorporate the effects
of either length scale on the evaporation dynamics, we have
equipped eq 6, which describes the droplet relaxation, with a
scale factor α. In the discussion of the results above, we chose
α = 1 for simplicity.
Now we discuss in more detail the implications of

considering an alternative α = α(t), which is proportional to
the droplet size
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where V(t) and V0 denote the instantaneous and initial droplet
volumes, respectively. As a consequence, the relaxation process
speeds up as the droplet size decreases. We find, however, that
explicitly taking this effect into account hardly affects the
droplet lifetime. This is caused by the circumstance that the
capillary driving force is the strongest at short times, as the
difference cos θ − cos θeq is then the greatest. In other words,
the majority of the relaxation process occurs at short times.
However, at short times, the droplet has hardly lost any volume
by evaporation, which means that the scale factor α(t) ≈ 1,
causing the relaxation processes for both expressions for α to
occur in virtually the same manner. In Figure 8, we depict the
squared scaled radius (a/a0)

2 (blue triangles) and the contact
angle θ (red crosses) of evaporating droplets as a function of
scaled time t/τevap. We present the results for the scale factor
α(t) = [V(t)/V0]

1/3 (solid lines) compared to α = 1 (dashed
lines), for three values of θ0. For these calculations, we do not
incorporate a contact line pinning force, which means the
droplet is allowed to relax its shape toward θeq = π/2, and
τevap/τrlx = 1.
In all three graphs, we can clearly see that the dynamics

described by the two expressions for α are identical at early
times. Only after the droplet has partly evaporated, we see a
slight deviation in the dynamics, due to the decrease of α(t).
This effect only arises after approximately 30% of the
evaporation time has passed. For large initial contact angles
θ0, which we show in Figure 8c, the deviations between the
graphs for the two expressions for α are slightly larger than
those for smaller θ0 (Figure 8a,b). However, the time at which
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the droplet is fully evaporated is hardly affected. Note that the
presence of contact line pinning would only decrease the effect
shape relaxation has on the evaporation time, as it inhibits
contact line motion for a certain range of the contact angle θ.
We conclude from this that the lifetime of an evaporating
droplet is not sensitive to our choice of α, hence explicitly
taking into account the size dependence of the relaxation
process has a negligible effect on the total evaporation time.
We note that this phenomenon is valid regardless of the value
of τevap/τrlx: a reproduction of Figure 7 with the alternative
scale factor α yields the same graph.
A second point left for discussion is the influence of the

value of the equilibrium angle θeq on the evaporation dynamics
of a droplet. We recall that an equilibrium contact angle of π/2
has two implications for the evaporation dynamics of a droplet.
First, evaporation is slowest at θ = π/2, as described by eq 12.
Second, in the presence of contact line pinning, the fixed-area
domain is located symmetrically around the equilibrium angle:
as cos θeq = 0, the advancing contact angle is given by θa = π −
θr, as described by eqs 17 and 18. Both properties are not valid
for droplets with an equilibrium contact angle θeq ≠ π/2. A
droplet taking on a nonhemispherical equilibrium results, on
the one hand, in the fact that faster shape relaxation, or
increasing τevap/τrlx, not necessarily implies slower evaporation,
as we have shown in Figure 7, but that this depends on the
initial and equilibrium contact angles. On the other hand, the
receding and advancing contact angles are now located
asymmetrically around the equilibrium angle.
As we have seen above, if contact line pinning occurs, the

time it takes for a droplet to evaporate depends strongly on the

values of the receding and advancing contact angles (see Figure
7). For contact angles in between the two, contact line motion
is inhibited. For θeq ≠ π/2, this principle is still valid, only θr
and θa are located asymmetrically around θeq. For initial angles
within the fixed-area domain, the lifetimes remain unchanged
with respect to θeq = π/2. As contact line motion is inhibited
there, shape relaxation is blocked, so the value of θeq is
irrelevant. For initial angles outside of the domain, the lifetime
as a function of initial angle behaves similar to what we show in
Figure 7: for increasing shape relaxation rates, i.e., increasing
τevap/τrlx, the evaporation time of a droplet converges to the
values at the boundaries and it becomes increasingly less
dependent on the initial contact angle θ0.
We conclude from the above that the specific value of the

equilibrium contact angle θeq has little effect on the general
behavior of the droplet lifetime as a function of the initial
contact angle. It does affect the evaporation dynamics, but to
an extent that is limited to two factors. On the one hand, it
determines the evaporation time at the equilibrium angle, so it
affects the droplet lifetime most in the absence of contact line
pinning and in the limit of fast shape relaxation. On the other
hand, it determines, together with the magnitude of the
pinning force f p, the locations of the receding and advancing
contact angles, which in turn define the region in which
contact line motion is inhibited.

■ SUMMARY AND CONCLUSIONS
In conclusion, we propose a model for diffusive evaporation of
a droplet on a flat surface, which accounts for the relaxation of
the contact angle toward its equilibrium value. This shape
relaxation is driven by the tendency of the droplet to reach its
minimum free-energy state. We also model pinning of the
contact line onto the surface by introducing a pinning force,
insisting that the contact line remains pinned as long as the
capillary forces are not able to overcome this threshold force.
Within our model description, the time it takes for a droplet

to evaporate turns out to depend on five parameters: the initial
and equilibrium contact angles, the characteristic time scales
associated with shape relaxation and evaporation, and the
magnitude of the contact line pinning force. The ratio between
the two characteristic time scales describes the competition
between shape relaxation and evaporation, which has a
significant effect on the droplets’ lifetime. In the limit of
slow relaxation (or fast evaporation), the total evaporation
time of a droplet strongly depends on the initial contact angle,
whereas for fast relaxation, the lifetime is virtually unaffected
by the value of the initial contact angle.
The presence of a pinning force results in a contact angle

range for which the contact line is fixed, as the capillary forces
are not capable of overcoming the pinning force. This regime is
bounded by the receding and advancing contact angles and as
long as the contact angle resides within this range, the contact
area remains constant. The magnitude of the pinning force
determines the values of the receding and advancing contact
angles and therefore has an impact on the lifetime of an
evaporating droplet: the shape relaxation of a droplet becomes
partly suppressed because the droplet cannot relax its shape for
contact angles within this fixed-area regime.
We show that shape relaxation has a significant impact on

the evaporation time of a droplet, both in the absence and in
the presence of contact line pinning. Explicitly taking into
account the size dependence of the relaxation process turns out
to have virtually no effect on the droplet’s lifetime, since the

Figure 8. Comparison of the squared scaled radius (a/a0)
2 and the

contact angle θ between the alternative scale factor α(t) = [V(t)/
V0]

1/3 (solid lines) and the original α = 1 (dashed lines), as a function
of scaled time t/τevap. τevap/τrlx = 1 and figures are shown for initial
angles: (a) θ0 = π/6, (b) θ0 = π/3, (c) θ0 = 5π/6.
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majority of the relaxation occurs at short times for which the
droplet size has hardly decreased. The value of θeq does also
not affect the general dynamical behavior; however, it does
define the lifetime for a droplet at its equilibrium angle and the
location of the receding and advancing contact angles.
Finally, the simplicity of our model allows for relatively

straightforward evaluation of the dynamics of an evaporating
droplet. This means that it can also be readily extended to, e.g.,
take into account compound exchange between the solid phase
and the liquid phase, or investigate an evaporation process
wherein the droplet properties do not remain constant in time.
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