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Chen & Fried [1] claim that our solution of the shape of a material Möbius strip (taken to be
inextensible) in [2] is incorrect as it involves stretching of the material. The purported proof of this
claim, the calculation in Section 7, is in fact the main result of the paper. The claim is elaborated
upon in subsequent publications with Fosdick [3, 4, 5]. Here we show that all these papers are
based on a misunderstanding of the elastic deformation involved and what it means for such a
deformation to be isometric (i.e., to preserve distances).

We all agree on the problem at issue, which is to find the equilibrium shape of a Möbius band made
of a thin strip of inextensible material. This shape will be given by a developable surface that
can be constructed by isometrically deforming a planar rectangular reference strip into a closed
structure with half a turn of twist. An arbitrary developable strip of width 2w can be parametrised
as

x = x(s, v) = r(s) + v[b(s) + η(s)t(s)] (1)
τ(s) = η(s)κ(s), s ∈ [0, L], v ∈ [−w, w],

where r is the centreline of the strip (of length L), t and b are the unit tangent and binormal, and
κ and τ are the curvature and torsion. (There is a slight complication here that b is not defined
in points where the curvature vanishes, but dealing with this is standard and not at issue here.)
The surface is thus swept out by a one-parameter family of straight generators v[b(s) + η(s)t(s)],
v ∈ [−w, w]. With η an arbitrary function, (1) defines a ruled surface; it becomes developable if
η = τ/κ. Expression (1) agrees with Eq. (7.1) in [1].

The corresponding 2D stress-free reference configuration can be expressed in terms of the same
coordinates (s, v) as

X = ue3 + ve1 = se3 + v(e1 + η(s)e3). (2)

Here, e1 and e3 are the unit vectors of a Cartesian coordinate system with coordinates (u, v).
The relationship between the Cartesian coordinates (u, v) and the ‘skew’ coordinates (s, v) of an
arbitrary point P is illustrated in Fig. 1. The same coordinate transformation is used by Wunderlich
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Figure 1: Reference configuration of a developable strip with generators indicated.
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[6] to reduce the strain energy of the strip to its centreline. Note that the parametrisation (2) is valid
provided the mapping (s, v) 7→ (s+vη(s), v) is locally injective, i.e., provided that 1+vη′(s) > 0 on
[0, L]× [−w,w]. We therefore require w|η′(s)| < 1 (i.e., generators cannot intersect in the interior
of the strip).

It is well-known that a Möbius strip centreline has a so-called switching point where not only κ = 0
(i.e., it is an inflection point) but also η = 0 [7]. We may therefore parametrise the centreline of the
closed strip such that η(0) = η(L) = 0 (we impose these boundary conditions in all our calculations
in [2], as well as in our subsequent publications [8] and [9], the latter dealing with open strips).
This means that the reference configuration (2) is a rectangle.

The deformation X 7→ x = f(X) can be imagined as lifting up the planar strip and bending it
everywhere about the (fixed) local generator to form the Möbius strip (the pattern of generators
thus completely determines the shape of the strip in space). No stretching is involved. If we were
to vary the width 2w of the strip, or to apply end loads, then this would cause a rearrangement of
the generators over the surface of the strip. The generators are not attached to the material under
these actions. Chen & Fried seem to think that the generators are material lines and confuse the
‘lifting-up’ deformation described above with a rearrangement of generators (which, if they were
material, would indeed induce stretching). The lifting-up action is the real deformation at issue
here, not the shearing action of generators under parameter change.

Chen & Fried make a big point about the fact that a deformation from a planar region to a
developable surface need not be isometric. This is a simple fact: a rectangle cannot be mapped
into a parallelogram without stretching. We do not consider such non-isometric deformations. Our
boundary conditions prevent them. It may be worth pointing out though that for closed strips
the boundary conditions η(0) = η(L) = 0 above can be replaced by η(0) = η(L): it is possible to
isometrically deform a parallelogram into a cylinder and a trapezoid into a Möbius strip. The short
sides of the strip (at s = 0 and s = L) need not be generators in such cases. By the way, these
examples show that the discussion of the so-called ‘covering requirement’ in [5] completely misses
the point: it is pointless to discuss these isometric deformations without considering boundary
conditions that would put kinematic constraints on the allowable deformations.

To confirm that the deformation does not involve stretching of the material we compute the relevant
strain tensor to show that the deformation X 7→ x is indeed isometric. This calculation is also
carried out in [1] to support the authors’ statements. We follow the corrected version in [10] but
explain in more detail precisely where Chen & Fried go wrong. Let

Gi =
∂X

∂ξi
, gi =

∂x

∂ξi
(i = 1, 2), (ξ1, ξ2) = (s, v).

Then the deformation gradient can be written as

F = ∇f =
∂x

∂X
=

∂x

∂ξi
⊗Gi = gi ⊗Gi.

The right Cauchy-Green strain tensor is

C = F T F = (Gi ⊗ gi) · (gj ⊗Gj) = (gi · gj)(G
i ⊗Gj) = gijG

i ⊗Gj .

Here gij := gi · gj are the components of the spatial metric tensor. For an isometric deformation,
C = I.
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On using the developability condition τ = ηκ and the Frenet-Serret equations t′ = κn, n′ =
−κt + τb, b′ = −τn (n being the unit principal normal), we have

∂x

∂ξ1
= r′ + v(b′ + η′t + ηt′) = (1 + vη′)t,

∂x

∂ξ2
= b + ηt.

Thus
g11 = (1 + vη′)2, g12 = g21 = η(1 + vη′), g22 = 1 + η2

and hence

C = gijG
i ⊗Gj = (1 + vη′)2G1 ⊗G1 + η(1 + vη′)(G1 ⊗G2 + G2 ⊗G1) + (1 + η2)G2 ⊗G2.

This agrees with Eq. (7.10) in [1]. From this result the authors conclude that “x elongates material
filaments ... unless τ ≡ 0” and hence that the deformation f is isometric only if η is identically
zero, i.e., if the generator is everywhere perpendicular to the centreline. It would of course follow
from this that the only non-planar developable surfaces are cylinders. Chen & Fried stop short of
drawing this conclusion, although the claim “our analysis shows that the mapping from a prescribed
planar region to a rectifying developable surface is isometric only if that surface is cylindrical” in
their Abstract comes very close.

However, contrary to what Chen & Fried write, (s, v) are not Cartesian coordinates and (G1,G2)
is not an orthogonal basis. To complete the calculation, we note that

Gi = gijG
j and det g = (1 + vη′)2

and hence

G1 =
1

(1 + vη′)2
[
(1 + η2)G1 − η(1 + vη′)G2

]
,

G2 =
1

(1 + vη′)2
[
−η(1 + vη′)G1 + (1 + vη′)2G2

]
,

where
G1 =

∂X

∂ξ1
= e3 + vη′e3 = (1 + vη′)e3, G2 =

∂X

∂ξ2
= e1 + ηe3.

Inserting this into the expression for C above we finally obtain

C = gijG
i ⊗Gj = Gi ⊗Gi = e1 ⊗ e1 + e3 ⊗ e3.

(In geometrical terms, this calculation shows that the spatial metric pulled back to the reference
configuration (source manifold) is equal to the Cartesian identity.)

This confirms that the deformation f is isometric, provided the boundary conditions on η are
compatible. There is no stretching. Because of this we do not need to impose unstretchability
constraints (as suggested in the final section of [1]) in our subsequent variational analysis minimising
the Wunderlich functional subject to appropriate boundary conditions. This analysis gives us Euler-
Lagrange equations that we can solve for r, κ and η, after which we can draw the equilibrium shape
through (1).
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