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A B S T R A C T

Thin strips or sheets with in-plane curvature have a natural tendency to adopt highly symmetric
shapes when forced into closed structures and to spontaneously fold into compact multi-
covered configurations under feed-in of more length or change of intrinsic curvature. This
disposition is exploited in nature as well as in the design of everyday items such as foldable
containers. We formulate boundary-value problems (for an ODE) for symmetric equilibrium
solutions of unstretchable circular annular strips and present sequences of numerical solutions
that mimic different folding modes. Because of the high-order symmetry, closed solutions
cannot have an internal force, i.e., the strips are forceless. We consider both wide and narrow
(strictly zero-width) strips. Narrow strips cannot have inflections, but wide strips can be either
inflectional or non-inflectional. Inflectional solutions are found to feature stress localisations,
with divergent strain energy density, on the edge of the strip at inflections of the surface.
‘Regular’ folding gives these singularities on the inside of the annulus, while ‘inverted’ folding
gives them predominantly on the outside of the annulus. No new inflections are created in the
folding process as more length is inserted. We end with a discussion of an intriguing apparent
connection with a deep result on the topology of curves on surfaces.

. Introduction

Spontaneous folding of two-dimensional structures into complex three-dimensional shapes is found in nature (e.g., in flowers,
eaves and insect wings (Faber et al., 2018)) and is exploited in the design of deployable structures used in space (Miura, 1993)
r medical (Kuribayashi et al., 2006) applications. Similarly, the age-old art of paper folding has inspired the design of origami
echanisms (Hanna et al., 2014; Saito et al., 2016) and self-folding electronics (Miyashita et al., 2014; Sundaram et al., 2017),
hile controlled folding is of interest from a robotics perspective (Balkcom and Mason, 2008). Spontaneous assembly is also
xploited in some everyday objects such as foldable baskets, so-called ‘2-second’ pop-up tents and other light-weight foldable trekking
tems (Mouthuy et al., 2012).

During the folding and manipulation of thin sheets stress localisations may occur (Witten, 2007). When designing foldable or
eployable structures it may be important to be able to predict how and where these occur. For instance, twisting a thin rectangular
trip causes a repetitive pattern of alternating points of high stress on the two long edges of the strip (Korte et al., 2011). The
opology of the classical Möbius strip gives an example of a surface with only one such point of stress localisation (Starostin and
an der Heijden, 2007, 2015). In both cases the high stresses are associated with inflection points of the centreline of the strip,
.e., points of vanishing centreline curvature.

Thin sheets under most conditions deform predominantly by bending, without stretching, and such sheets have therefore been
tudied within the theory of inextensible plates. Absence of stretching means that an intrinsically flat strip within this theory
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is described by a developable surface. This geometrical structure can be used to reduce the strain energy of the strip to its
centreline, giving the one-dimensional Wunderlich functional (Wunderlich, 1962). The equilibrium (Euler–Lagrange) equations for
this functional are thus ordinary differential equations (ODEs) (Starostin and van der Heijden, 2007) and therefore much easier to
analyse than the usual partial differential equations (PDEs) of plate theory.

In the reduced ODE formulation the stress localisations are described by logarithmic singularities of the strain energy density.
hese lead to singularities of the equilibrium equations that are therefore generally hard to solve. Narrow limits have therefore been
onsidered (Sadowsky, 1931), but these are not accurate near inflection points.

Numerical solutions for the full Wunderlich model are given in Starostin and van der Heijden (2015) and Korte et al. (2011) for
losed and open strips, respectively. The developable Möbius strip solution in Starostin and van der Heijden (2015) has recently
een validated experimentally (Kumar et al., 2021). The equations have been extended to annular strips (Dias and Audoly, 2015)
nd developable shapes of diametrically folded circular discs with a hole are computed in Yu et al. (2022) and Yu (2022). Here we
ompute equilibrium shapes of annular strips and investigate their spontaneous folding and stress localisation.

Many of the foldable structures mentioned above consist of naturally curved strips. One folding mechanism is illustrated by
utting a ring along its radius and inserting extra material. This leads to frustration, i.e., inconsistency between the length of the
ew ring and its intrinsic shape. The structure, although developable, can no longer adopt a planar shape and is forced to deform
ut of the plane into a wavy saddle shape (as in Fig. 1), which may occur in various modes. The same effect is observed if instead
f increasing the length the intrinsic curvature is increased. Such saddle shapes have for instance been created in annular bilayer
anostructures by means of heat-induced differential stress (Cho et al., 2010) and also in temperature-responsive hydrogel ribbons
Bae et al., 2014). We call such shapes overcurved. By contrast, if material is cut out of a ring, or its curvature is decreased, then
he strip may be pulled into a conical shape (see Fig. 1). We call this shape undercurved. As we shall see later, the cone is not the
nly possible equilibrium shape in this case.

Shapes as in Fig. 1 have high-order symmetry. Because of this symmetry these closed structures (just as closed rods of similar
hapes) cannot have an internal force; they are forceless. Knowing in advance that the force is zero allows us to significantly
implify the equilibrium equations and to make analytical progress that does not seem possible for general developable shapes. This
rogress is even stronger in the narrow limit, which is governed by a strain energy functional analogous to the Sadowsky functional
Sadowsky, 1931) for rectangular strips. Forceless (non-inflectional) solutions for this functional can be obtained explicitly (as is
lso the case for the Sadowsky functional Starostin and van der Heijden, 2018).

Thus here we consider forceless equilibria of circular annular strips closed without a twist. We consider both non-inflectional and
nflectional shapes but are particularly interested in the latter as they have stress localisations at inflectional generators of the surface.

here the centreline crosses such a generator, it must have vanishing normal curvature. Thus we extend the work in Starostin and
an der Heijden (2015) on developable surfaces with straight centreline in their planar development to the non-geodesic case of
evelopable surfaces with non-straight centreline in their planar development.

The paper is structured as follows. Section 2 presents the geometry of developable surfaces for deformed annular strips. The
ean curvature is computed, which is required for the (bending) strain energy. In Section 3 the Wunderlich-like reduction of this

train energy is performed. This leads to a second-order variational problem on a space curve for which the equilibrium equations
re written down. Our treatment in these two sections is self-contained because our subsequent analysis requires details (e.g., the
amiltonian) not touched on in Dias and Audoly (2015). The derivation of the equations (initially a differential–algebraic system
f equations that we however immediately turn into a system of ordinary differential equations) is different from that in Dias and
udoly (2015), following more closely our treatment of rectangular strips (Starostin and van der Heijden, 2015). We also identify
imple analytical solutions (circular cones) of the equations. Then in Section 4 we formulate boundary-value problems for (two-sided)
trip configurations with high-order symmetry and present numerical solutions (all forceless), both inflectional and non-inflectional,
he latter showing stress localisation. In Section 5 we consider the special Sadowsky-like case of narrow strips for which a reduction
o a planar system is possible. Section 6 ends the study with a discussion of our results.

. Geometry of a developable annular strip

.1. Basic geometrical description

We consider an inextensible plate of uniform thickness that in its unstressed state has the form of a plane strip bounded by
wo concentric circular arcs. By the developability property, the strip, however deformed, can be reconstructed from an arbitrary
eference curve on the surface of the strip. We take for this reference curve the natural and convenient choice of the centreline of
he strip, i.e., the curve that is equidistant from both circular arcs in the intrinsic geometry of the strip. We denote this curve by
(𝑠) ∈ R3, where 𝑠 ∈ [0, 𝐿] is arclength along the curve and 𝐿 is its length. We assume that 𝒓(𝑠) is a regular curve of differentiability

class 𝐶3. The strip may be arbitrarily long so that when developed, it may have multiple overlappings, or it may be too short to
complete a single full turn (Fig. 1).

Developable surfaces are special cases of ruled surfaces. We describe the deformed strip therefore by the general parametrisation
of a ruled surface:

𝒙(𝑠, 𝑣) = 𝒓(𝑠) − 𝑣 [𝑼 (𝑠) + 𝜂(𝑠) 𝒕(𝑠)] , 𝜂 = cot 𝛽 <∞, 𝑠 = [0, 𝐿], 𝑣 = [𝑣−, 𝑣+], (1)

where 𝒕 = 𝒓′ is the unit tangent to the centreline and 𝑼 is a transverse unit vector (perpendicular to 𝒕). Here and in what follows a
prime denotes differentiation with respect to 𝑠. The straight lines 𝑠 = const are the generators of the surface. They make an angle
2
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Fig. 1. Undercurved (left) and overcurved (right) annulus with geodesic curvature 𝜅𝑔 = 0.12 cm−1 and width 2𝑤 = 3.1 cm. The sectors cut from the left and
inserted into the right figure both have angle 𝛾 = 78◦, giving a length deficit 𝑄 = −𝛾∕(2𝜋) = −0.22 and a length excess 𝑄 = 0.22, respectively.

Fig. 2. Developable surface of an annular strip made up of straight generators in the tangent plane spanned by the tangent vector 𝒕 to the centreline 𝒓 and the
vector 𝑼 = 𝒕 ×𝑵 , 𝑵 being the unit normal to the surface of the strip. The generators make an angle 𝛽 with the tangent 𝒕.

𝛽 = arctan(1∕𝜂) with the positive tangent direction of the curve 𝒓(𝑠) (see Fig. 2). The interval bounds 𝑣− and 𝑣+ are the 𝑣 coordinates
(along −𝑼 ) of the points on the long edges of the strip where the generator intersects in the planar development of the strip. They
are therefore functions of 𝑠. They will be defined in Section 3.1. At this point 𝜂 is an arbitrary function; we will later derive a
condition on 𝜂 such that (1) describes a developable surface. We require that the short edges 𝑠 = 0 and 𝑠 = 𝐿 of the strip are
generators so that closure of the strip is equivalent to the condition 𝜂(0) = 𝜂(𝐿) (we only consider two-sided surfaces). We need to
avoid the case 𝜂 = ∞, which corresponds to 𝛽 = 0, i.e., a generator that is tangent to the centreline. Deformations in which such a
tangency happens can be studied but would need a different reference curve to be chosen.

Let 𝑵 ∶= 𝑼 × 𝒕 be the surface unit normal. The three vectors then define the orthonormal Darboux frame {𝒕(𝑠),𝑵(𝑠),𝑼 (𝑠)} at the
centreline (see Fig. 2). After choosing a coordinate system we may identify orientations of the Darboux frame with elements of the
group of orthogonal 3 × 3 matrices:

𝑅(𝑠) ∶= (𝒕(𝑠),𝑵(𝑠),𝑼 (𝑠)) ∈ SO(3).
3
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This defines a skew-symmetric 3 × 3 matrix in the Lie algebra so(3) as follows:

𝜔̂ = 𝑅⊺𝑅′, (2)

where we have introduced the ‘hat’ isomorphism between skew-symmetric matrices 𝗐̂ =
⎛

⎜

⎜

⎝

0 −𝑤3 𝑤2
𝑤3 0 −𝑤1
−𝑤2 𝑤1 0

⎞

⎟

⎟

⎠

in so(3) and axial (or

rotation) vectors 𝗐 = (𝑤1, 𝑤2, 𝑤3)⊺ in R3.1 By definition of the Darboux frame, we have 𝜔1 = 𝜏𝑔 , 𝜔2 = 𝜅𝑔 , 𝜔3 = 𝜅𝑁 , which are the
geodesic torsion, the geodesic curvature and the normal curvature, respectively.

We compute the first fundamental form of the surface coordinate patch given by Eq. (1):

I = d𝒙 ⋅ d𝒙 = 𝐸 d𝑠2 + 2𝐹 d𝑠 d𝑣 + 𝐺 d𝑣2,

where

𝐸 = 𝒙𝑠 ⋅ 𝒙𝑠 = [1 − 𝑣(𝜂′ + 𝜅𝑔)]2 + 𝑣2[𝜂2𝜅2𝑔 + (𝜏𝑔 − 𝜂𝜅𝑁 )2],

𝐹 = 𝒙𝑠 ⋅ 𝒙𝑣 = −𝜂(1 − 𝑣𝜂′),

𝐺 = 𝒙𝑣 ⋅ 𝒙𝑣 = 1 + 𝜂2.

The area element is d𝜎 = ‖𝒙𝑠 ×𝒙𝑣‖ d𝑣 d𝑠 =
√

𝐸𝐺 − 𝐹 2 d𝑣 d𝑠 =
√

[1 − 𝑣(𝜂′ + 𝜅𝑔(1 + 𝜂2))]2 + 𝑣2(1 + 𝜂2)(𝜏𝑔 − 𝜂𝜅𝑁 )2 d𝑣 d𝑠. The unit normal
o the surface is defined as 𝑵(𝑠, 𝑣) = 𝒙𝑠×𝒙𝑣

‖𝒙𝑠×𝒙𝑣‖
(for 𝑣 = 0 it becomes the above 𝑵(𝑠)). We also need the second fundamental form

defined by

II = −d𝒙 ⋅ d𝑵 = 𝑒 d𝑠2 + 2𝑓 d𝑠 d𝑣 + 𝑔 d𝑣2,

where

𝑒 = −𝑵𝑠 ⋅ 𝒙𝑠 = −𝜅𝑁 [1 − 𝑣(𝜂′ + 𝜅𝑔)] − 𝑣𝜂𝜅𝑔𝜏𝑔 ,

𝑓 = −𝑵𝑠 ⋅ 𝒙𝑣 = 𝜏𝑔 − 𝜂𝜅𝑁 ,

𝑔 = −𝑵𝑣 ⋅ 𝒙𝑣 = 0.

We can now compute the shape operator (or Weingarten map) 𝑆, i.e., the linear operator on the tangent plane defined by
𝑆(𝑻 ) = −𝜕𝑻𝑵 , where 𝑻 is a unit tangent vector to the surface (Spivak, 1999). 𝑆(𝑻 ) is the gradient of the unit normal to the
surface in the tangent direction 𝑻 . It therefore encodes information about the curvature of the surface. In fact, the eigenvalues of
the shape operator at each point are the principal curvatures at this point and the eigenvectors are the principal directions. We have
𝑆(𝒙𝑠) = −𝑵𝑠, 𝑆(𝒙𝑣) = −𝑵𝑣, and hence in the basis (𝒙𝑠,𝒙𝑣),

𝑆 =
(

𝐸 𝐹
𝐹 𝐺

)−1 (𝑒 𝑓
𝑓 𝑔

)

= 1
𝐸𝐺 − 𝐹 2

(

𝑒𝐺 − 𝑓𝐹 𝑓𝐺 − 𝑔𝐹
𝑓𝐸 − 𝑒𝐹 𝑔𝐸 − 𝑓𝐹

)

=
(

𝑠11 𝑠12
𝑠21 𝑠22

)

,

𝑠11 =
(𝜅𝑁 + 𝜂𝜏𝑔)[1 − 𝑣(𝜂′ + 𝜅𝑔(1 + 𝜂2))]

[1 − 𝑣(𝜂′ + 𝜅𝑔(1 + 𝜂2))]2 + 𝑣2(1 + 𝜂2)(𝜏𝑔 − 𝜂𝜅𝑁 )2
,

𝑠12 =
(𝜏𝑔 − 𝜂𝜅𝑁 )(1 + 𝜂2)

[1 − 𝑣(𝜂′ + 𝜅𝑔(1 + 𝜂2))]2 + 𝑣2(1 + 𝜂2)(𝜏𝑔 − 𝜂𝜅𝑁 )2
,

𝑠21 =
[1 − 𝑣(𝜂′ + 𝜅𝑔(1 + 𝜂2))][𝜏𝑔(1 − 𝑣𝜂′) − 𝑣𝜅𝑔(𝜏𝑔 − 𝜂𝜅𝑁 )] + 𝑣2(𝜏𝑔 − 𝜂𝜅𝑁 )3

[1 − 𝑣(𝜂′ + 𝜅𝑔(1 + 𝜂2))]2 + 𝑣2(1 + 𝜂2)(𝜏𝑔 − 𝜂𝜅𝑁 )2
,

𝑠22 =
𝜂(1 − 𝑣𝜂′)(𝜏𝑔 − 𝜂𝜅𝑁 )

[1 − 𝑣(𝜂′ + 𝜅𝑔(1 + 𝜂2))]2 + 𝑣2(1 + 𝜂2)(𝜏𝑔 − 𝜂𝜅𝑁 )2
.

We then compute the Gaussian curvature

𝐾 ∶= det 𝑆 = 𝜅1𝜅2 =
𝑒𝑔 − 𝑓 2

𝐸𝐺 − 𝐹 2
,

here 𝜅1 and 𝜅2 are the two principal curvatures of the surface.
Now we set 𝜂 = 𝜏𝑔∕𝜅𝑁 . It is easy to check that this choice makes the Gaussian curvature vanish. Thus the ruled surface

escribed by Eq. (1) is actually developable. The developability condition is therefore the same as for the geodesic case of a straight
entreline (Starostin and van der Heijden, 2015), but with the curvature replaced by the normal curvature and the torsion replaced
y the geodesic torsion. For a developable surface the surface normal 𝑵 is constant along generators, i.e., 𝑵(𝑠, 𝑣) = 𝑵(𝑠). The area
lement becomes

d𝜎 = [1 − 𝑣(𝜂′ + 𝜅𝑔(1 + 𝜂2))] d𝑣 d𝑠, (3)

1 Throughout we adopt the notation that for any vector 𝒗 ∈ R3 the sans-serif symbol 𝗏 denotes the triple of components (𝑣1 , 𝑣2 , 𝑣3)⊺ = (𝒗 ⋅ 𝒕, 𝒗 ⋅𝑵 , 𝒗 ⋅ 𝑼 )⊺ in
4

the Darboux frame.



Journal of the Mechanics and Physics of Solids 169 (2022) 105054E.L. Starostin and G.H.M. van der Heijden

b
c
p
c

2

𝑄
l
b

2

d
E
W
t
w
m
a

A

t
o

3

3

2

while the coefficients of the shape operator reduce to

𝑠11 =
𝜅𝑁 (1 + 𝜂2)

1 − 𝑣[𝜂′ + 𝜅𝑔(1 + 𝜂2)]
, 𝑠12 = 0, 𝑠21 =

𝜂𝜅𝑁 (1 − 𝑣𝜂′)
1 − 𝑣[𝜂′ + 𝜅𝑔(1 + 𝜂2)]

, 𝑠22 = 0.

For the mean curvature we then find

𝐻 ∶= 1
2
tr𝑆 = 1

2
(𝜅1 + 𝜅2) =

𝑒𝐺 + 𝑔𝐸 − 2𝑓𝐹
2(𝐸𝐺 − 𝐹 2)

=
𝜅𝑁 (1 + 𝜂2)

2{1 − 𝑣[𝜂′ + 𝜅𝑔(1 + 𝜂2)]}
. (4)

Because the surface described by Eq. (1) is henceforth taken to be developable, the deformed configuration of the strip can
e obtained from a planar reference configuration by bending only, without stretching, provided both reference and deformed
onfigurations have bounding end generators with the same angle 𝛽 (or, with the same 𝜂(0) and 𝜂(𝐿)) (for closed configurations this
roviso is superfluous). The deformation implicit in Eq. (1) is therefore isometric. We verify this property in Appendix A by first
onstructing the reference configuration and then calculating the relevant strain tensor.

.2. Closed strips

For a closed annular strip of finite radius 𝑅 = 𝜅−1𝑔 and centreline length 𝐿 we define the relative length excess parameter
∶= 𝐿𝜅𝑔∕(2𝜋) − 1, 𝑄 > −1. If 𝑄 < 0 then we say that the closed strip is undercurved (relative to the single-covered annulus of

ength 2𝜋∕𝜅𝑔) and if 𝑄 > 0 then the strip is called overcurved. The fact that 𝑄 ∈ Z≥0 does not imply that the closed strip is planar,
ut all closed planar solutions have 𝑄 ∈ Z≥0 (of these solutions only the one with 𝑄 = 0 is non-self-intersecting).

.3. Edge of regression

The asymptotic completion of a developable strip is defined as the surface obtained by extending all generators to infinity in both
irections, i.e., taking 𝑣 in all of R in Eq. (1). From Eq. (4) we see that the mean curvature 𝐻 becomes singular if the parameter 𝑣 in
q. (1) equals 1∕[𝜂′+𝜅𝑔(1+𝜂2)]. If 𝜂′ = −𝜅𝑔(1+𝜂2) then there is no singularity on the extended generator in the asymptotic completion.
e call points on the centreline where 𝜂′ = −𝜅𝑔(1 + 𝜂2), ‘cylindrical’. At such points the mean curvature 𝐻 is independent of 𝑣, so

he principal curvatures are constant along the local generator. The meaning of the cylindrical point condition becomes transparent
hen we rewrite it in terms of the angle between the generator and the tangent vector: 𝛽′ = 𝜅𝑔 . At a cylindrical point the generators
ust remain parallel. As the tangent vector turns with the angular rate 𝜅𝑔 , the generator should rotate with respect to the tangent

t the same rate.
Away from cylindrical points we can define the curve

𝒙𝑒(𝑠) = 𝒓(𝑠) − 1
[𝜂′(𝑠) + 𝜅𝑔(1 + 𝜂2(𝑠))]

[𝑼 (𝑠) + 𝜂(𝑠) 𝒕(𝑠)] ,

which is called the edge of regression. When [𝜂′(𝑠) + 𝜅𝑔(1 + 𝜂2(𝑠))] changes sign the edge of regression jumps within the asymptotic
completion from one side of the centreline to the other. The strip cannot be wider than the critical value of 𝑣, i.e., we require that
𝑣 ∈ [𝑣−, 𝑣+] and either 1∕[𝜂′ + 𝜅𝑔(1 + 𝜂2)] ≤ 𝑣− or 𝑣+ ≤ 1∕[𝜂′ + 𝜅𝑔(1 + 𝜂2)]. The developable surface is then the envelope of tangents
to the edge of regression (i.e., of the generators of the surface) and is therefore also the tangent developable. This envelope meets
the edge of regression in two sheets that form cusps in the normal plane to 𝒙𝑒 (Naokawa, 2013).

The edge of regression may have its own singularities. By differentiation we find

𝒙′𝑒(𝑠) = −
𝜂′′(𝑠) + 𝜅𝑔𝜂(𝑠)[𝜂′(𝑠) − 𝜅𝑔(1 + 𝜂2(𝑠))]

[𝜂′(𝑠) + 𝜅𝑔(1 + 𝜂2(𝑠))]2
[𝑼 (𝑠) + 𝜂(𝑠) 𝒕(𝑠)] .

t points where

𝜂′′(𝑠) + 𝜅𝑔𝜂(𝑠)[𝜂′(𝑠) − 𝜅𝑔(1 + 𝜂2(𝑠))] = 0 (5)

he tangent to the edge of regression is discontinuous. This corresponds to a cusp point on the curve and a swallow tail singularity
f the asymptotic completion of the strip. We call isolated points of the centreline where Eq. (5) holds ‘conical’.

. Mechanics

.1. Energy functional

We assume that the annular plate is planar in its relaxed state and remains developable throughout deformation. Its width is
𝑤 = const and 𝑤𝜅𝑔 < 1, 𝜅𝑔 = const > 0. The length of the strip is arbitrary and may exceed 2𝜋∕𝜅𝑔 . Technologically, if it exceeds this

length then the strip cannot be cut out of a sheet of film or paper, so other means of obtaining such models must be used. A kind
of growing material may for instance be considered. For a sufficiently thin plate the stretching energy may be neglected (Cerda and
Mahadevan, 2005) and we are left with the bending energy, which is

𝑈 = 2𝐷 𝐻2 d𝜎, (6)
5
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where 𝐷 = 2𝐸ℎ3∕[3(1 − 𝜈2)] is the flexural rigidity, with 2ℎ the thickness of the plate, 𝜈 Poisson’s ratio and 𝐸 Young’s modulus.
By substituting the mean curvature from Eq. (4), the area element from Eq. (3) and performing integration first in the radial

irection and then along the centreline we get

𝑈 = 𝐷
2 ∫

𝐿

0 ∫

𝑣+

𝑣−

𝜅2𝑁 (1 + 𝜂2)2

1 − 𝑣[𝜂′ + 𝜅𝑔(1 + 𝜂2)]
d𝑣d𝑠. (7)

To find the limits 𝑣− and 𝑣+, we solve the equation for the edges of the strip in its planar development (see Fig. 2): (𝑣−1∕𝜅𝑔)2+𝑢2 =
(1∕𝜅𝑔 ±𝑤)2, where 𝑣 and 𝑢 are the coordinates of the orthogonal reference frame with origin at the current point of the centreline,
𝑢 the coordinate along the current tangent direction and 𝑣 the coordinate in the perpendicular direction, positive in the direction
of the centroid of the annulus; so the generator is described by 𝑢 = −𝑣𝜂. There exists a critical value 𝜂∗ = 1−𝑤𝜅𝑔

√

𝑤𝜅𝑔 (2−𝑤𝜅𝑔 )
such that for

|𝜂| > 𝜂∗ the generator never crosses the inner edge. Restricting ourselves first to the regular case by assuming that |𝜂| ≤ 𝜂∗, we find
the limits

𝑣± = 1
𝜅𝑔(1 + 𝜂2)

(

1 −
√

(1 + 𝜂2)(1 ∓𝑤𝜅𝑔)2 − 𝜂2
)

.

Note that in the conical limit 𝑤𝜅𝑔 → 1, 𝜂∗ = 0. Generally, when 𝜂 = 0, 𝑣+ = 𝑤, 𝑣− = −𝑤.
Now consider briefly the case when there exists a generator that is tangent to the inner edge. Such a generator crosses the

entreline twice with 𝜂 = ±𝜂∗ at points 𝑠0 and 𝑠1, say. Assuming |𝜂(𝑠)| > 𝜂∗ for 𝑠 ∈ [𝑠0, 𝑠1] we conclude that there must be a point
f discontinuity 𝜂(𝑠) = ∞ within this interval where the generator becomes tangent to the centreline (and where the width of the
trip must vanish). We have excluded such cases from our consideration by requiring finite 𝜂 everywhere, i.e., the generators must
lways cross the centreline transversely. The other possibility is that |𝜂(𝑠)| < 𝜂∗ for 𝑠 ∈ [𝑠0, 𝑠1] and the generators cross the inner
dge all in the same point (a singular point of the edge of regression). In this case the single generator tangent to the inner edge can
imply be viewed as two (aligned) generators: one at point 𝑠0 with 𝜂(𝑠0) = 𝜂∗ and the other at 𝑠1 with 𝜂(𝑠1) = −𝜂∗ (or vice versa).
he segment of the strip between 𝑠0 and 𝑠1 must remain planar.

The 𝑣-integration in Eq. (7) can be carried out analytically (as in the case of straight parallel edges Wunderlich, 1962; Starostin
nd van der Heijden, 2015), and we arrive at

𝑈 = 𝐷𝑤∫

𝐿

0
ℎ(𝜅𝑁 , 𝜂, 𝜂′)d𝑠 (8)

ith

ℎ(𝜅𝑁 , 𝜂, 𝜂′) = 𝜅2𝑁
(

1 + 𝜂2
)2 𝑉 (𝜂, 𝜂′),

𝑉 (𝜂, 𝜂′) = 1
2𝑤[𝜂′ + 𝜅𝑔(1 + 𝜂2)]

log

⎛

⎜

⎜

⎜

⎝

[𝜂′ + 𝜅𝑔(1 + 𝜂2)]
√

(1 + 𝜂2)(1 +𝑤𝜅𝑔)2 − 𝜂2 − 𝜂′

[𝜂′ + 𝜅𝑔(1 + 𝜂2)]
√

(1 + 𝜂2)(1 −𝑤𝜅𝑔)2 − 𝜂2 − 𝜂′

⎞

⎟

⎟

⎟

⎠

.

he argument of the logarithm is 0 or ∞ when generators intersect on the outer or inner edge, respectively, corresponding to
ivergence of the mean curvature 𝐻 , and hence the bending energy density, on the edge of the strip.

Note that equilibrium shapes do not depend on the material properties of the strip: 𝐷 is a simple factor. Also note that in the
imit of a narrow strip, 𝑤 → 0, we have 𝑉 → 1 and no derivative enters the integrand in Eq. (8). Thus, in this case we obtain a
unctional analogous to Sadowsky’s (1930, 1931),

𝑈 = 𝐷𝑤∫

𝐿

0
𝜅2𝑁

(

1 + 𝜂2
)2 d𝑠, (9)

n which the curvature and torsion of the centreline are replaced by the normal curvature and the geodesic torsion, respectively.
he other limiting case is obtained by pushing the geodesic curvature to zero, 𝜅𝑔 → 0, i.e., the radius of the annular strip tends
o infinity and the strip, when developed onto the plane, becomes a band with straight edges. Then 𝜅𝑁 → 𝜅 and 𝜏𝑔 → 𝜏 and the

bending energy reduces to Eq. (8) with

ℎ(𝜅, 𝜂, 𝜂′) = 𝜅2
(

1 + 𝜂2
)2 𝑉 (𝑤𝜂′),

𝑉 (𝑤𝜂′) = 1
2𝑤𝜂′

log
(

1 +𝑤𝜂′

1 −𝑤𝜂′

)

, (10)

hich is the Wunderlich functional (Wunderlich, 1962; Starostin and van der Heijden, 2007, 2015).
For solutions of closed strips or strips with fixed end points we impose a constant end-to-end distance constraint by adding the

ollowing integral expression to the bending energy:

𝑊 = −𝑭 ⋅ [𝒓(𝐿) − 𝒓(0)] = −∫

𝐿

0
𝑭 ⋅ 𝒕 d𝑠,

here we have used inextensibility of the centreline, i.e., 𝒕 = 𝒓′, and 𝑭 is a (constant) Lagrange multiplier (with the physical
eaning of an internal force). Finally, we have to impose the constraint that the centreline is circular in the intrinsic geometry,

.e. its geodesic curvature is a constant: 𝜔2 = 𝜅𝑔 = const. We enforce this constraint by adding the integral 𝑇 = ∫ 𝐿0 𝑀2𝜔2 d𝑠, where
𝑀 =𝑀 (𝑠) is another (local) Lagrange multiplier.
6
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In conclusion, equilibrium shapes of a thin, inextensible and intrinsically planar strip are given by stationary points of the
unctional

 = 𝑈 +𝑊 + 𝑇 = ∫

𝐿

0
 d𝑠, with  = ℎ +𝑀2𝜔2 − 𝑭 ⋅ 𝒕, (11)

where  is the Lagrangian of the problem and 𝑈 = 𝑈∕(𝐷𝑤) (all force and moments in the rest of the paper are thus normalised by
𝑤). This represents a 1D variational problem on a curve in R3 cast in Euclidean invariant form.

Although we are here interested in closed-strip solutions, the functional  can also be used to study open-strip solutions. If for
uch open strips the ends are free to move relative to each other then 𝑊 represents the work done by any applied end force 𝑭 .
owever, since we use the parametrisation of Eq. (1) in the 𝑣-integration to obtain the one-dimensional integral (8), the short edges
f the strip must be generators and therefore straight. This is quite natural for fixed ends (held by a straight clamp covering the
ntire edge of the strip) but constitutes a restriction on deformations considered for strips with free ends.

.2. Equilibrium equations

The derivation of the equilibrium equations follows closely the approach in Starostin and van der Heijden (2015) to which we
efer for details. Alternative methods for deriving the equations can be found in Starostin and van der Heijden (2009), Hornung
2010) and Dias and Audoly (2015).

In terms of the original rotation matrix 𝑅 the Lagrangian  may be expressed as  = 𝑭 (𝑅,𝑅′, 𝑅′′), where 𝑭 is considered a
arameter. This form shows that the variational problem is second-order, i.e., defined on the second tangent bundle of the symmetry
roup SO(3). This is a consequence of using developability to reduce the variational problem for a (inextensible) two-dimensional
lastic body (a strip) to one for a one-dimensional elastic body (the strip’s centreline), giving equilibrium equations in the form of
DEs rather than PDEs. We can then apply Euler–Poincaré reduction to the tangent space (in the presence of advected parameters)
nd obtain the symmetry-reduced functional 𝑙(𝜔,𝜔′, 𝖥) = 𝑭 (𝑅,𝑅′, 𝑅′′), where 𝖥 is the force in the body frame (Gay-Balmaz et al.,
012). In fact, this is the natural form of the functional  already derived in (11). We can therefore immediately write down the
Euler–Lagrange) equilibrium equations in the form of Euler–Poincaré equations. They consist of Starostin and van der Heijden
2015):

(a) balance equations for the components of the internal force 𝖥 = (𝐹1, 𝐹2, 𝐹3)⊺ and moment 𝖬 = (𝑀1,𝑀2,𝑀3)⊺ expressed in the
arboux frame (Starostin and van der Heijden, 2009; Hornung, 2010)

𝖥′ + 𝜔 × 𝖥 = 𝟢, (12)

𝖬′ + 𝜔 ×𝖬 + 𝗍 × 𝖥 = 𝟢, (13)

nd (b) the ‘constitutive’ equations

𝑀𝑗 =
𝜕𝑙
𝜕𝜔𝑗

− d
d𝑠

𝜕𝑙
𝜕𝜔′

𝑗
, 𝑗 = 1, 2, 3, (14)

It follows directly from Eqs. (12) and (13) that |𝖥|2 and 𝖥 ⋅𝖬 are first integrals, i.e., are independent of 𝑠.

3.3. Equations in the original variables 𝜅𝑁 , 𝜂

We note that Eq. (14) for 𝑗 = 2 is trivial. For 𝑗 = 1 and 3 we use a contact transformation (𝜔1, 𝜔3) = (𝜏𝑔 , 𝜅𝑁 ) → (𝜂, 𝜅𝑁 ) (Starostin
and van der Heijden, 2009) to obtain

𝜕𝜅𝑁 ℎ − 𝜂𝑀1 −𝑀3 = 0, (15)

𝜕𝜂ℎ − (𝜕𝜂′ℎ)′ − 𝜅𝑁𝑀1 = 0. (16)

We see that Eq. (15) contains only the first derivative of 𝜂 (coming from the energy density ℎ), while Eq. (16) also has a term with
the second derivative of 𝜂. Note that for the infinitesimally narrow strip both Eqs. (15), (16) are algebraic. To use Eqs. (12), (13)
we represent the Darboux vector as 𝜔 = (𝜅𝑁𝜂, 𝜅𝑔 , 𝜅𝑁 )⊺.

To bring Eqs. (15), (16) into a convenient form for numerical solution, we first differentiate Eq. (15) with respect to 𝑠. On
substitution of the moment derivatives from Eq. (13) this gives (𝜂𝑀1 +𝑀3)′ = 𝜂′𝑀1 − 𝐹2. Combining this equation with Eq. (16)
we obtain the following third-order system, linear with respect to the highest derivatives, i.e., 𝜅′𝑁 and 𝜂′′:

𝑎1(1 + 𝜂2)2𝜅′𝑁 = −𝜅𝑁 (1 + 𝜂2)2(𝑏1𝜂′ + 𝑏5) − 8𝑏2𝜅𝑁𝜂(1 + 𝜂2) − 𝑏3𝑀1 − 𝑏6𝑀3 − 𝑏4𝐹2, (17)

𝑎1𝜅𝑁 (1 + 𝜂2)2𝜂′′ = −𝜅𝑁 (1 + 𝜂2)2(𝑎7𝜂′ + 𝑎5) − 4𝑎3𝜅𝑁𝜂(1 + 𝜂2) + 𝑎6𝑀1 − 𝑎2𝑀3 − 𝑎4𝐹2, (18)

where

𝑎1 = 2𝑉 2
𝜂′ − 𝑉 𝑉𝜂′𝜂′ , 𝑏1 = 𝑉𝜂′𝑉𝜂𝜂′ − 𝑉𝜂𝑉𝜂′𝜂′ ,

𝑎 = 𝜅 𝜂𝑉 ′ , 𝑏 = 1 [𝜂′(𝑉 2 − 𝑉 𝑉 ′ ′ ) − 𝑉 𝑉 ′ ],
7
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𝑎3 = 𝑉 2 + 𝜂′𝑉 𝑉𝜂′ , 𝑏3 = 𝑉𝜂′ +
1
2
𝑉𝜂′𝜂′ (𝜂′ + 𝜅𝑔),

𝑎4 = 𝑉𝜂′ , 𝑎5 = 𝑉 𝑉𝜂 , 𝑏4 = −1
2
𝑉𝜂′𝜂′ ,

𝑎6 = 𝑉𝜂′ (𝜂′ + 𝜅𝑔) + 𝑉 , 𝑏5 = −𝑉𝜂𝜂′ ,

𝑎7 = 2𝑉𝜂𝑉𝜂′ − 𝑉 𝑉𝜂′𝜂′ , 𝑏6 = −1
2
𝜅𝑔𝜂𝑉𝜂′𝜂′ .

Note that the above equations become singular if the normal curvature vanishes or if 𝑎1 = 0.

3.4. Hamiltonian

Legendre transformation of the second-order reduced Lagrangian 𝑙 gives the symmetry-reduced Hamiltonian

(𝜋1, 𝜔, 𝜋2, 𝖥) = 𝜋1 ⋅ 𝜔 + 𝜋2 ⋅ 𝜔′ − 𝑙(𝜔,𝜔′, 𝖥),

where 𝜋1 = 𝜕𝑙
𝜕𝜔 − d

d𝑠

(

𝜕𝑙
𝜕𝜔′

)

= 𝖬, 𝜋2 = 𝜕𝑙
𝜕𝜔′ are the reduced Ostrogradsky momenta (Gay-Balmaz et al., 2012). The Euler–Lagrange

quations for the reduced Lagrangian 𝑙 derived in Section 3.2 are equivalent to Hamilton’s equations for the reduced Hamiltonian 
with respect to a non-canonical Poisson bracket. It is easy to show that ∑3

𝑗=1
𝜕𝑙
𝜕𝜔′𝑗

𝜔′
𝑗 =

𝜕ℎ
𝜕𝜂′ 𝜂

′. So in terms of 𝜂 and our other variables
he Hamiltonian can be written as

 =𝑀1𝜅𝑁𝜂 +𝑀2𝜅𝑔 +𝑀3𝜅𝑁 + 𝜕ℎ
𝜕𝜂′

𝜂′ − ℎ(𝜅, 𝜂, 𝜂′) + 𝐹1. (19)

For a uniform strip with ℎ not explicitly depending on arclength 𝑠,  is a conserved quantity, as can be verified directly by
ifferentiating the right-hand side of Eq. (19) with respect to 𝑠 and using Eqs. (12), (13), (15) and (16) to show that ′ = 0.
his conserved quantity will be useful in reducing the equilibrium equations in various special cases (Sections 3.8, 3.9 and 5.1). It

s also useful for measuring the accuracy of a given numerical solution.
With the help of Eq. (15) and the obvious property of ℎ: 𝜕ℎ

𝜕𝜅𝑁
𝜅𝑁 = 2ℎ, we can rewrite Eq. (19) as

 =𝑀2𝜅𝑔 +
𝜕ℎ
𝜕𝜂′

𝜂′ + ℎ(𝜅, 𝜂, 𝜂′) + 𝐹1

and after substitution of ℎ from Eq. (10) in the explicit form

 =𝑀2𝜅𝑔 + 𝐹1 + 𝜅2𝑁
(

1 + 𝜂2
)3 𝜅𝑔

2𝑤[𝜂′ + 𝜅𝑔(1 + 𝜂2)]
×

⎡

⎢

⎢

⎢

⎣

1
𝜂′ + 𝜅𝑔(1 + 𝜂2)

log

⎛

⎜

⎜

⎜

⎝

[𝜂′ + 𝜅𝑔(1 + 𝜂2)]
√

1 +𝑤𝜅𝑔(1 + 𝜂2)(𝑤𝜅𝑔 + 2) − 𝜂′

[𝜂′ + 𝜅𝑔(1 + 𝜂2)]
√

1 +𝑤𝜅𝑔(1 + 𝜂2)(𝑤𝜅𝑔 − 2) − 𝜂′

⎞

⎟

⎟

⎟

⎠

+

𝜂′
[√

1 +𝑤𝜅𝑔(1 + 𝜂2)(𝑤𝜅𝑔 + 2) −
√

1 +𝑤𝜅𝑔(1 + 𝜂2)(𝑤𝜅𝑔 − 2)
]

{

[𝜂′ + 𝜅𝑔(1 + 𝜂2)]
√

1 +𝑤𝜅𝑔(1 + 𝜂2)(𝑤𝜅𝑔 + 2) − 𝜂′
}{

[𝜂′ + 𝜅𝑔(1 + 𝜂2)]
√

1 +𝑤𝜅𝑔(1 + 𝜂2)(𝑤𝜅𝑔 − 2) − 𝜂′
}

⎤

⎥

⎥

⎥

⎦

. (20)

In the limit 𝜅𝑔 → 0 the above simplifies to

 =
𝜅2(1 + 𝜂2)2

1 −𝑤2𝜂′2
+ 𝐹1 (21)

(cf. Starostin and van der Heijden (2015)). The first term in Eq. (21) may be broken up into two so that we may write it as

 = 1
2
𝜅2(1 + 𝜂2)2

1 −𝑤𝜂′
+ 1

2
𝜅2(1 + 𝜂2)2

1 +𝑤𝜂′
+ 𝐹1.

Intriguingly, each of the two new terms may be viewed as the bending energy density (in units of 𝐷) at one of the edges of the strip
(compare Eq. (7)). For narrow annular strips,

 =𝑀2𝜅𝑔 + 𝐹1 + 𝜅2𝑁 (1 + 𝜂2)2 + (𝑤2). (22)

3.5. Symmetries

The equilibrium equations (Eqs. (12), (13), (17), (18)) are invariant under the non-reversing involution

𝑆 ∶ 𝐹1 → 𝐹1, 𝐹2 → −𝐹2, 𝐹3 → 𝐹3, 𝑀1 → −𝑀1, 𝑀2 →𝑀2, 𝑀3 → −𝑀3,
8

𝜅𝑁 → −𝜅𝑁 , 𝜂 → 𝜂, 𝑠→ 𝑠,
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and the reversing involution

𝑅 ∶ 𝐹1 → 𝐹1, 𝐹2 → 𝐹2, 𝐹3 → −𝐹3, 𝑀1 →𝑀1, 𝑀2 →𝑀2, 𝑀3 → −𝑀3,

𝜅𝑁 → −𝜅𝑁 , 𝜂 → −𝜂, 𝑠→ −𝑠.

Note that in both cases 𝜅𝑔 remains the same (does not change sign). The following non-reversing involution in which 𝜅𝑔 changes
sign will also be useful:

𝐾 ∶ 𝐹1 → 𝐹1, 𝐹2 → 𝐹2, 𝐹3 → −𝐹3, 𝑀1 → −𝑀1, 𝑀2 → −𝑀2, 𝑀3 →𝑀3,

𝜅𝑁 → 𝜅𝑁 , 𝜂 → −𝜂, 𝜅𝑔 → −𝜅𝑔 , 𝑠→ 𝑠.

3.6. Kinematics equations

Reconstruction of the centreline of the strip requires solving for the tangent 𝒕 and integrating this to get 𝒓. We choose a
parametrisation of the Darboux frame {𝒕,𝑵 ,𝑼} in terms of three Euler angles 𝜓 , 𝜗 and 𝜑 (Love, 1927) (not to be confused with the
angles defined in Fig. 2):

𝒕 =
⎛

⎜

⎜

⎝

sin 𝜗 cos𝜓
sin 𝜗 sin𝜓

cos 𝜗

⎞

⎟

⎟

⎠

, 𝑵 =
⎛

⎜

⎜

⎝

− sin𝜓 sin𝜑 + cos 𝜗 cos𝜓 cos𝜑
cos𝜓 sin𝜑 + cos 𝜗 sin𝜓 cos𝜑

− sin 𝜗 cos𝜑

⎞

⎟

⎟

⎠

, 𝑼 =
⎛

⎜

⎜

⎝

− sin𝜓 cos𝜑 − cos 𝜗 cos𝜓 sin𝜑
cos𝜓 cos𝜑 − cos 𝜗 sin𝜓 sin𝜑

sin 𝜗 sin𝜑

⎞

⎟

⎟

⎠

. (23)

The Euler angles are related to the Darboux vector by the kinematics equations

𝜓 ′ = (𝜅𝑁 sin𝜑 − 𝜅𝑔 cos𝜑) csc 𝜗,

𝜗′ = 𝜅𝑁 cos𝜑 + 𝜅𝑔 sin𝜑, (24)
𝜑′ = 𝜅𝑁𝜂 − (𝜅𝑁 sin𝜑 − 𝜅𝑔 cos𝜑) cot 𝜗.

Note that the angle 𝜗 should stay away from 0 and 𝜋. To guarantee this we must choose the 𝑧 axis of the laboratory reference frame
such that the tangent 𝒕 never aligns with the ±𝑧 axis (alternatively, we can use a parametrisation of the Darboux frame in terms of
Euler parameters Starostin and van der Heijden, 2014).

To find the centreline 𝒓 we solve Eq. (24) in conjunction with the equation 𝒓′ = 𝒕, or, writing 𝒓 = (𝑥, 𝑦, 𝑧)⊺,

𝑥′ = sin 𝜗 cos𝜓,

𝑦′ = sin 𝜗 sin𝜓, (25)
𝑧′ = cos 𝜗.

3.7. Full system of equations

For ease of reference we collect here together all the equations derived (i.e., Eqs. (12), (13), (17), (18), (24), (25)):

𝐹 ′
1 + 𝜅𝑔𝐹3 − 𝜅𝑁𝐹2 = 0,

𝐹 ′
2 + 𝜅𝑁𝐹1 − 𝜅𝑁𝜂𝐹3 = 0,

𝐹 ′
3 + 𝜅𝑁𝜂𝐹2 − 𝜅𝑔𝐹1 = 0,

𝑀 ′
1 + 𝜅𝑔𝑀3 − 𝜅𝑁𝑀2 = 0,

𝑀 ′
2 + 𝜅𝑁𝑀1 − 𝜅𝑁𝜂𝑀3 − 𝐹3 = 0,

𝑀 ′
3 + 𝜅𝑁𝜂𝑀2 − 𝜅𝑔𝑀1 + 𝐹2 = 0,

𝑎1(1 + 𝜂2)2𝜅′𝑁 = −𝜅𝑁 (1 + 𝜂2)2(𝑏1𝜂′ + 𝑏5) − 8𝑏2𝜅𝑁𝜂(1 + 𝜂2) − 𝑏3𝑀1 − 𝑏6𝑀3 − 𝑏4𝐹2,

𝑎1𝜅𝑁 (1 + 𝜂2)2𝜂′′ = −𝜅𝑁 (1 + 𝜂2)2(𝑎7𝜂′ + 𝑎5) − 4𝑎3𝜅𝑁𝜂(1 + 𝜂2) + 𝑎6𝑀1 − 𝑎2𝑀3 − 𝑎4𝐹2,

𝜓 ′ = (𝜅𝑁 sin𝜑 − 𝜅𝑔 cos𝜑) csc 𝜗,

𝜗′ = 𝜅𝑁 cos𝜑 + 𝜅𝑔 sin𝜑,

𝜑′ = 𝜅𝑁𝜂 − (𝜅𝑁 sin𝜑 − 𝜅𝑔 cos𝜑) cot 𝜗,

𝑥′ = sin 𝜗 cos𝜓,

𝑦′ = sin 𝜗 sin𝜓,

𝑧′ = cos 𝜗. (26)

his system of 14 equations is of 15th order for 14 variables 𝐹1, 𝐹2, 𝐹3, 𝑀1, 𝑀2, 𝑀3, 𝜅𝑁 , 𝜂, 𝜓 , 𝜗, 𝜑, 𝑥, 𝑦, 𝑧. In the following sections
e formulate boundary-value problems for these equations that exploit the symmetries identified in Section 3.5.
9



Journal of the Mechanics and Physics of Solids 169 (2022) 105054E.L. Starostin and G.H.M. van der Heijden

a
s

b

a

T
e
v

u
o

𝜓

a

A
𝜂

3.8. Special solution (circular cone)

We begin the exploration of equilibrium solutions by testing our equations for the existence of the conical solution in Fig. 1. For
conical solution all centreline points are ‘conical’, i.e., Eq. (5) is satisfied for all 𝑠. It immediately follows that the only uniform

olution 𝜂 = const. is 𝜂 ≡ 0, i.e., the generator is everywhere perpendicular to the centreline.
For the analysis of this case we shall need

𝑉0 ∶= 𝑉 (0, 0) = 1
2𝑤𝜅𝑔

log
1 +𝑤𝜅𝑔
1 −𝑤𝜅𝑔

, 𝑉𝜂(0, 0) = 0, (27)

𝑉1 ∶= 𝑉𝜂′ (0, 0) =
1
𝜅𝑔

(𝑉𝑤 − 𝑉0), 𝑉𝑤 ∶= 1
1 −𝑤2𝜅2𝑔

. (28)

The first constitutive equation Eq. (15) gives us 𝑀3 = 2𝜅𝑁𝑉0, while the second Eq. (16) implies 𝑀1 = −2𝜅′𝑁𝑉1. From the moment

alance equations (the 4th to 6th Eq. (26)) we find 𝑀2 = 2
(

𝜅𝑔𝑉0 −
𝜅′′𝑁
𝜅𝑁
𝑉1

)

, 𝐹2 = −
2𝜅′𝑁

1−𝑤2𝜅2𝑔
and 𝐹3 = −2

[(

𝜅′′𝑁
𝜅𝑁

)′
+ 𝜅𝑁𝜅′𝑁

]

𝑉1 (we

ssume non-vanishing 𝜅𝑁 ), while for 𝐹1 we use the expression of the Hamiltonian: 0 = 𝜅2𝑁𝑉0 +𝑀2𝜅𝑔 +𝐹1. With these 𝐹𝑖, 𝑖 = 1, 2, 3,
the first force balance equation in Eq. (26) is identically satisfied, while the second and third give, respectively,

𝜅′′𝑁 +
𝜅𝑁
2

(

𝜅2𝑁 −
0
𝑉0

+ 2𝜅2𝑔

)

= 0,

𝜅𝑔
1 −𝑤2𝜅2𝑔

(

𝜅2𝑁 −
0
𝑉0

+ 2𝜅2𝑔

)

= 0.

he first equation is a reminder that conical deformations of elastic sheets under various conditions are governed by the elastica
quation in which the ordinary curvature 𝜅 is replaced by the normal curvature 𝜅𝑁 (Cerda and Mahadevan, 2005; Starostin and
an der Heijden, 2015).

The above system immediately implies that the only solution is 𝜅𝑁 = const. The centreline is thus a circle of radius 1∕
√

𝜅2𝑔 + 𝜅
2
𝑁

and the length of the closed single-covered strip is 𝐿 = 2𝜋∕
√

𝜅2𝑔 + 𝜅
2
𝑁 . Therefore, the uniform conical solution exists only for an

ndercurved annular strip. The surface of the strip belongs to a circular cone. All the generators intersect in a single point, the apex
f the cone, and make a constant right angle with the centreline (Fig. 3).

For constant 𝜅𝑁 the forces and moments reduce to 𝐹1 = 𝐹2 = 𝐹3 = 0 (i.e., the solution is forceless) and 𝑀1 = 0, 𝜅𝑔𝑀3 = 𝜅𝑁𝑀2

(which means that the constant moment vector is directed along the axis of the cone). Explicitly, 𝑀2 = 1
𝑤 log 1+𝑤𝜅𝑔

1−𝑤𝜅𝑔
and 𝑀3 =

𝜅𝑁
𝑤𝜅𝑔

log 1+𝑤𝜅𝑔
1−𝑤𝜅𝑔

. In the narrow limit (𝑤 → 0) this becomes 𝑀2 = 2𝜅𝑔 , 𝑀3 = 2𝜅𝑁 .
Let the centreline lie in the 𝑥𝑦 coordinate plane; to have this we set 𝜗 ≡ 𝜋∕2. Then the kinematics equations Eq. (24) imply

𝜙 = −arctan(𝜅𝑁∕𝜅𝑔) = const and 𝜓 ′ = ±
√

𝜅2𝑁 + 𝜅2𝑔 . The latter can be integrated to find the angle 𝜓 as a linear function of arclength:

= ±
√

𝜅2𝑁 + 𝜅2𝑔 𝑠+𝜓0. Further integration of Eq. (25) provides explicit expressions for the coordinates of the circular centreline. We
finally comment that, as we shall see in the following, conical solutions are not the only equilibria of undercurved closed annular
strips.

3.9. Perturbation of conical solutions and linearisation

We first expand Eqs. (15), (16) to express the moments 𝑀1 and 𝑀3 as

𝑀1 = (1 + 𝜂2){4𝜂𝜅𝑁 (𝑉 − 𝜂′𝑉𝜂′ ) + (1 + 𝜂2)[𝜅𝑁 (𝑉𝜂 − 𝑉𝜂𝜂′𝜂′ − 𝑉𝜂′𝜂′𝜂′′) − 2𝜅′𝑁𝑉𝜂′ ]}, (29)

𝑀3 = 2𝜅𝑁 (1 + 𝜂2)2𝑉 − 𝜂𝑀1. (30)

Our aim here is to study non-inflectional shapes that appear as small perturbations of multicovered circular conical solutions.
Thus we assume |𝜂(𝑠)| ≪ 1, |𝜂′(𝑠)| ≪ 1. Then we can write 𝑉 = 𝑉0 + 𝑉1𝜂′ + (𝜂2, 𝜂′2) with 𝑉0 and 𝑉1 defined in Eqs. (27), (28),
respectively. For the derivatives, we have 𝑉𝜂 = 𝑉𝜂1𝜂 + (𝜂2, 𝜂′2) with 𝑉𝜂1 = 2

(

1
(1−𝑤2𝜅2𝑔 )2

− 𝑉0

)

, 𝑉𝜂′ = 𝑉1 + (𝜂, 𝜂′), 𝑉𝜂𝜂′ = (𝜂2, 𝜂′2),

nd 𝑉𝜂′𝜂′ = 𝑉𝜂′𝜂′0 + (𝜂, 𝜂′) with 𝑉𝜂′𝜂′0 =
2
𝜅2𝑔

(

𝑉0 −
1−2𝑤2𝜅2𝑔
(1−𝑤2𝜅2𝑔 )2

)

.

We only consider forceless solutions. From Eq. (20) we then obtain  −𝑀2𝜅𝑔 = 𝜅2𝑁 (𝑉0 + 2𝑉1𝜂′) +(𝜂2, 𝜂′2), from which we find
the remaining second component of the moment

𝑀2 =
1
𝜅𝑔

[

 − 𝜅2𝑁 (𝑉0 + 2𝑉1𝜂′)
]

+ (𝜂2, 𝜂′2).

Now let the normal curvature be the sum of a constant and a small variable term: 𝜅𝑁 (𝑠) = 𝜅𝑁0+𝜅𝑁1(𝑠), 𝜅𝑁0 = const, |𝜅𝑁1(𝑠)|≪ 1.
ssuming that 𝜅𝑁0 ≠ 0, we introduce the normalised variable term 𝜘(𝑠) ∶= 𝜅𝑁1(𝑠)∕𝜅𝑁0. Keeping only constant and linear terms in
, 𝜅𝑁1 and their derivatives we then have

𝑀 = (4𝑉 + 𝑉 )𝜅 𝜂 − 2𝑉 𝜅′ − 𝑉 𝜅 𝜂′′,
10
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Fig. 3. Conical solution. All generators make a right angle 𝛽 with the tangent 𝒕 to the centreline (red). The moment vector 𝑴 (pink) lies in the normal plane
of the strip (spanned by the vectors 𝑵 and 𝑼 ) and is parallel to the axis of the cone.

𝑀2 =
1
𝜅𝑔

[

 − (𝑉0 + 2𝑉1𝜂′)𝜅2𝑁0 − 2𝑉0𝜅𝑁0𝜅𝑁1
]

,

𝑀3 = 2(𝑉0 + 𝑉1𝜂′)𝜅𝑁0 + 2𝑉0𝜅𝑁1.

We substitute the above into the first moment balance equation Eq. (13) and equate the zero- and first-order terms. The first results
in an expression for the value of the Hamiltonian  = (2𝜅2𝑔 + 𝜅2𝑁0)𝑉0, while the second, together with the other two equations
Eq. (13), gives us three linear homogeneous differential equations for 𝜘(𝑠) and 𝜂(𝑠), only two of which are independent because of
the conservation of the moment vector. These equations may be given the following form:

𝑝2𝜘′′ + 𝑞1𝜂′ + 𝑝0𝜘 = 0, (31)

𝑞2𝜂
′′ + 𝑝1𝜘′ + 𝑞0𝜂 = 0, (32)

where

𝑝0 = 𝜅𝑔𝜅
2
𝑁0𝑉0(𝑉𝑤 − 1), 𝑝1 = 𝜅𝑔 , 𝑝2 = 𝜅𝑔𝑉𝑤(𝑉0 − 1),

𝑞0 = −𝜅2𝑔𝑉𝑤, 𝑞1 = 𝜅2𝑁0(𝑉𝑤 − 𝑉0)(𝑉𝑤 − 1) + 𝜅2𝑔𝑉𝑤(2𝑉𝑤 − 𝑉0 − 1), 𝑞2 = 𝑉𝑤 − 1.

The system Eqs. (31), (32) has an oscillatory solution 𝑨 sin(𝛺(𝑠 − 𝑠0)), 𝑨 = 𝐜𝐨𝐧𝐬𝐭, with

𝛺 = 𝜅𝑔

√

√

√

√
𝜁
2
+

𝑉0
1 − 𝑉0

+

√

𝜁2

4
+

𝑉0
(1 − 𝑉0)2

,

where 𝜁 ∶= 
𝑉0𝜅2𝑔

− 1 =
𝜅2𝑔+𝜅

2
𝑁0

𝜅2𝑔
> 1. The period of the solution equals 𝑇 = 2𝜋∕𝛺, and for mode number 𝑛 (𝑛 ∈ Z+) we have 𝑛𝑇 = 𝐿,

where 𝐿 is the length of the centreline closed after 𝑚 (𝑚 ∈ Z+) turns, so we can write 𝐿 = 2𝜋𝑚
√

𝜅2𝑔+𝜅2𝑁0

= 2𝜋𝑚
𝜅𝑔

√

𝜁
. Thus, we arrive at

𝜅2𝑔𝜁 = 𝜌𝛺2,

where 𝜌 ∶= (𝑚∕𝑛)2. We can now replace 𝛺 in the above equation and write

2𝜁 = 𝜌

(

𝜁 +
2𝑉0

1 − 𝑉0
+

√

𝜁2 +
4𝑉0

(1 − 𝑉0)2

)

,

which can be rewritten as the equation

𝑃 (𝜁 ) ∶= 𝑎𝜁2 + 𝑏𝜁 + 𝑐 = 0, (33)
11
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Fig. 4. Three views of an annular strip with 𝐷𝑛𝑑 symmetry (𝑛 = 3). All views show the side axes of 𝜋-rotation symmetry; the central view also shows the planes
of mirror symmetry. The elementary fragment between 𝑎 (𝑠 = 0) and 𝑏 (𝑠 = 𝐿∕(4𝑛)) is light green, its mirror image dark green, while their 𝜋-rotated copies are
light and dark yellow. The vectors 𝒕(𝑠0) (pink) and 𝑼 (𝑠𝑒𝑛𝑑 ) (cyan) are orthogonal to the moment 𝑴 (along the central axis, black) and make an angle ± 𝜋

2
− 2𝜋𝑚

4𝑛
( 𝜋
3

for 𝑚 = 1, 𝑛 = 3).

where the coefficients are 𝑎 = (𝜌−1)(𝑉0−1), 𝑏 = 𝑉0𝜌(𝜌−2), 𝑐 = −𝑉0𝜌2. For 𝜌 = 1, Eq. (33) is linear and the root is negative, therefore
we discard this case. For 𝜌 ≠ 1, Eq. (33) is quadratic with roots

𝜁± = 𝜌
𝑉0(2 − 𝜌) ±

√

𝑉0[𝑉0𝜌2 + 4(1 − 𝜌)]
2(𝜌 − 1)(𝑉0 − 1)

.

Note that 𝑃 (0) < 0. For 𝜌 < 1, we always have 𝑎 < 0 and the maximum of the parabola 𝑃 (𝜁 ) is reached at 𝜁𝑚𝑎𝑥 = 𝑉0𝜌(2−𝜌)
2(1−𝜌)(1−𝑉0)

< 0. This
means that 𝑃 (𝜁 ) has no positive roots in this case. For 𝜌 > 1, 𝑎 > 0, hence 𝜁− < 0 and must be discarded, while 𝑃 (1) = 1−𝜌−𝑉0(1+𝜌) < 0
implies 𝜁+ > 1, which is consistent with its definition. We conclude that the number of turns 𝑚 must always exceed the mode
number 𝑛. The Hamiltonian is given by 𝐻 = 𝑉0𝜅2𝑔 (1 + 𝜁+).

We will use these linearised solutions to compute non-inflectional annulus configurations in Section 4.3.

4. Numerical solutions for forceless strips

4.1. Symmetry

Inspection of Fig. 1, or simple experimentation with plastic or paper annular strips, reveals that moderately overcurved closed
strips possess antiprismatic symmetry, or 𝐷𝑛𝑑 -symmetry in the Schönflies notation of point symmetry groups in 3D (Müller, 2006).
An object with 𝐷𝑛𝑑 -symmetry has an 𝑛-fold central axis of rotational symmetry (i.e., rotation by an angle 2𝜋∕𝑛 leaves the object
invariant), 𝑛 side axes of 2-fold symmetry (i.e., 𝜋-rotation symmetry) perpendicular to the central axis (together giving 𝐷𝑛 symmetry)
and in addition 𝑛 mirror-symmetry planes containing the central axis and passing between 2-fold axes (see Fig. 4). 𝐷1𝑑 -symmetry
(equal to 𝐶2ℎ-symmetry) is degenerate in having a continuum of central axes of symmetry under rotations by 2𝜋∕𝑛 = 2𝜋: any line
in the plane of mirror symmetry that intersects the side axis of 𝜋-rotation symmetry is a central axis (see, e.g., Figs. 5 and 8).

This high-order symmetry has consequences for the forces and moments that can exist in a deformed strip having this symmetry.
Specifically, the force must be perpendicular to a mirror-symmetry plane cutting the structure, while the moment, as an axial vector,
must lie in the plane. Furthermore, at a point of the structure through which passes an axis of rotational symmetry there can neither
be a force nor a moment component along that axis. Since for 𝑛 ≥ 1 there is always a rotational side axis that does not belong to a
mirror plane, it follows immediately that the force vector must vanish. But the force vector is constant in space, so we conclude that
the force must vanish identically, 𝑭 = 𝟎. This in turn means that the moment vector is conserved, i.e., 𝑴 = 𝐜𝐨𝐧𝐬𝐭. The condition
that it must belong to every mirror plane then implies that the moment is directed along the central symmetry axis (or, in case of
𝑛 = 1, along one of the central axes).

We note that the 𝐷𝑛𝑑 symmetry group is also characteristic of equilibrium shapes of excess cones (e-cones) (see Müller et al.
(2008)), which may be considered as limiting cases of an annulus when its hole shrinks to a point, i.e., when 𝑤𝜅𝑔 → 1.

In the absence of the 𝑛 side axes of 2-fold symmetry, 𝐷𝑛𝑑 -symmetry reduces to 𝐶𝑛𝑣-symmetry (𝐶𝑛𝑣 being a subgroup of 𝐷𝑛𝑑).
Since for 𝑛 ≥ 2 the force vector must then be perpendicular to at least two non-parallel planes, this lower-order symmetry still
implies a zero force for 𝑛 ≥ 2. However, 𝐶1𝑣-symmetry does not imply a zero force, as the (single) axis of rotational symmetry lies
in the (single) mirror plane. A non-zero force must then be normal to this plane (and hence to this axis).
12
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4.2. Inflectional solutions

4.2.1. Boundary-value problem
Motivated by the above symmetry observations we focus on 𝐷𝑛𝑑 -symmetric shapes for both undercurved (𝐿 < 2𝜋∕𝜅𝑔) and

overcurved strips (𝐿 > 2𝜋∕𝜅𝑔 , 𝐿 the length of the closed centreline). We assemble a closed strip from 2𝑛 pairs of fragments
building blocks), see Fig. 4. Each pair consists of a fragment, of length 𝐿∕(4𝑛), and its mirror image glued together. We formulate
boundary-value problem for the arclength interval [0, 𝐿∕(4𝑛)].

We specify the following boundary conditions for the system of Eqs. (26) over a 1∕(4𝑛)th fragment of the strip:

𝐹2(0) = 0, (34)

𝐹3(0) = 0, 𝐹3(𝐿∕(4𝑛)) = 0, (35)

𝑀1(0) = 0, (36)

𝑀3(𝐿∕(4𝑛)) = 0, (37)

𝜅𝑁 (𝐿∕(4𝑛)) = 0, (38)

𝜂(0) = 0, 𝜂(𝐿∕(4𝑛)) = 0, (39)

𝜓(𝐿∕(4𝑛)) = 2𝜋, (40)

𝜗(𝐿∕(4𝑛)) = 𝜋
2
, (41)

𝜙(𝐿∕(4𝑛)) = 𝜋, (42)

𝑥(𝐿∕(4𝑛)) = 0, (43)

𝑦(𝐿∕(4𝑛)) = 0, (44)

𝑧(𝐿∕(4𝑛)) = 0. (45)

Note that the 𝑀3(𝐿∕(4𝑛)), 𝜅𝑁 (𝐿∕(4𝑛)) and 𝜂(𝐿∕(4𝑛)) conditions together enforce the constitutive relation (15) (taking the explicit
form (30)) that was differentiated in deriving our system of Eqs. (26). The conditions (34)–(39) place the solution in the fixed-point
set of the reversing involution 𝑆𝑅 at 𝑠 = 0 and in the fixed-point set of the reversing involution 𝑅 at 𝑠 = 𝐿∕(4𝑛). This makes the
plane through 𝑷 0 ∶= 𝒓(0) and the central axis a plane of mirror symmetry and the line through 𝑷 1 ∶= 𝒓(𝐿∕(4𝑛)) and perpendicular to
the central axis a side axis of 2-fold symmetry (see Fig. 4). Consequently, we have an inflection of the surface at 𝑷 1, where 𝜅𝑁 goes
through zero. At both ends of the elementary fragment the generator is orthogonal to the centreline (𝜂(0) = 𝜂(𝐿∕(4𝑛)) = 0). At 𝑠 = 0
it therefore lies in a symmetry plane, while at 𝑠 = 𝐿∕(4𝑛) it coincides with a side axis of rotational symmetry. The six kinematics
conditions (40)–(45) are arbitrary (but for the requirement to avoid Euler-angle singularities) and fix the position and orientation
of the strip in space.

Consider the pair consisting of the fragment from 𝑠 = 0 to 𝑠 = 𝐿∕(4𝑛) and its mirror image in the plane passing through 𝑷 0 and
with normal vector 𝒕0. The vector 𝑼̃ 1 ∶= 𝑼 1−2(𝒕0 ⋅𝑼 1)𝒕0, where 𝑼 1 = 𝑼 (𝐿∕(4𝑛)), is the mirror image of 𝑼 1 with respect to this plane.
Our pair of fragments have 𝑼̃ 1 and 𝑼 1 at their ends. Let the angle between them be 𝜒 . Then we can write cos𝜒 = 1 − 2(𝒕0 ⋅ 𝑼 1)2.
For a closed strip we require 2𝑛𝜒 = 2𝜋𝑚 (for the planar multicovered annulus, 𝑚 is simply the number of turns around the central
axis). This gives us the final boundary condition

𝒕0 ⋅ 𝑼 1 = ± sin
(𝜋
2
𝑚
𝑛

)

. (46)

The two signs correspond to the two symmetrically related solutions, with opposite signs of 𝜅𝑔 , under the involution 𝐾. We are
taking 𝜅𝑔 > 0 so we have to accept both signs in Eq. (46), which will give different solutions. This final condition (46) guarantees
that concatenation of 2𝑛 copies of pairs each made of the elementary piece and its mirror image, produces a closed strip (with 2𝑛
inflections). By substituting the Darboux frame vectors from Eq. (23), this condition may be expressed in terms of Euler angles.

Let 𝑼 0 ∶= 𝑼 (0). Then the generator lines at both ends 𝑷 0 +𝑤𝑼 0 and 𝑪 ∶= 𝑷 1 + 𝑣𝑼 1 cross the central axis for some 𝑤, 𝑣 ∈ R, so
that we get the vectorial equation

𝑷 0 +𝑤𝑼 0 = 𝑷 1 + 𝑣𝑼 1 + 𝑢𝒆𝑀 , (47)

where 𝒆𝑀 = 𝑴
‖𝑴‖

is a unit vector along the central axis (and the line of the moment) and 𝑢 ∈ R is a third unknown. By solving the
above equation we find 𝑢, 𝑣, 𝑤; in particular,

𝑣 =
𝒕0 ⋅ (𝑷 0 − 𝑷 1)

𝒕0 ⋅ 𝑼 1
, 𝑤 =

𝑣 − 𝑼 1 ⋅ (𝑷 0 − 𝑷 1)
𝑼 0 ⋅ 𝑼 1

. (48)

he central symmetry axis is now defined by computing one point that lies on it, for instance 𝑪 .
Eq. (47) has no solution if 𝒕0 ⋅𝑼 1 = 0 (i.e., if the rotational axis is parallel to the mirror-symmetry plane) unless that axis belongs

o the plane. If it does not belong to the plane then the assembled shape lacks 𝐷𝑛𝑑 -symmetry and the concatenation results in an
pen periodic configuration. If it does belong to the plane then the strip has 𝐶1𝑣 symmetry. In both cases the solution may have a
on-vanishing force directed normal to the symmetry plane.
13



Journal of the Mechanics and Physics of Solids 169 (2022) 105054E.L. Starostin and G.H.M. van der Heijden

d
t
f
𝑉

a
i
n

4

𝐿

a

a
d

w
𝐿
‘
s
a

(
a
w

4

r
t
T

T

o
s

The boundary-value problem is solved numerically by the continuation code AUTO (Doedel et al., 2007). There are numerical
ifficulties solving this problem as a result of the logarithmic singularity in 𝑉 (𝜂, 𝜂′), corresponding to intersection of generators on
he edge of the strip. The issues are the same as in the case of rectangular strips and we refer to Starostin and van der Heijden (2015)
or further discussion of our numerical approach. Singularities are found to occur when 𝜅𝑁 = 0 and as a result of the divergence of

all coefficients 𝑎𝑖, 𝑏𝑖 in Eqs. (17) and (18) diverge then as well. On the other hand, 𝑎1 never approaches zero. The only measure
we take in our computations to circumvent singularities is that we allow 𝜅𝑁 to stay away from zero at the right end point of the
integration interval. 𝜅𝑁 (𝐿∕(4𝑛)) can therefore be interpreted as a regularising parameter. We try to make it as small as possible,
typically reaching values between 10−2 and 10−7, depending on the solution at hand. With this approach, singularities can only be
ccommodated at end points of the integration interval. This is not a limitation for the symmetric solutions we are here interested
n, which never develop a singularity in the interior of the interval under the various parameter continuations. The generator also
ever becomes tangent to the inner edge of the strip.

.2.2. 𝐷1𝑑 -symmetric
We start by presenting results for varying length 𝐿 (or 𝑄) in the case 𝑛 = 1, taking 𝜅𝑔 = 0.5, 𝑤 = 0.5. Fig. 5 shows a sequence

of four undercurved (𝑄 < 0) 𝐷1𝑑 -symmetric solutions. The left column shows the shape in space coloured according to the elastic
bending energy density (from violet for low to red for high bending). The middle column shows the corresponding development
in the plane, while the right column gives the normal curvature 𝜅𝑁 and geodesic torsion 𝜏𝑔 for a quarter of the centreline. In this
figure, and in subsequent figures, red curves outside the strip show the edge of regression.

We see that even for very small length deficit 𝑄 (top row), the solution has two inflections, at 𝑠 = 𝐿∕4 and 𝑠 = 3𝐿∕4. At these
points the edge of regression touches the outer edge of the strip, corresponding to logarithmic singularities of 𝑉 (𝜂, 𝜂′) and hence of
the bending energy density. Then also 𝜂 = 0, so the generator is perpendicular to the centreline (both generators belonging to the
same straight line in space). Out of the singularities radiate flat triangular regions. The same spontaneous bending features were
found in one-sided (Starostin and van der Heijden, 2015) and twisted open (Korte et al., 2011) inextensible strips and are more
generally seen in crumpled membranes (Witten, 2009).

As the length of the strip is reduced the solution approaches a folded state with sharp creases connecting four vertices (bottom
row in Fig. 5). The edge of regression comes very close to the inner edge of the strip at two points, but the cusp point remains
off the strip until the limiting planar multi-covered state is reached. This limiting folded state has the shape of a double-covered
rhombus and has length 𝐿 = 8

𝜅𝑔
arctan(𝑤𝜅𝑔) (see Appendix B for details). For 𝜅𝑔 = 0.5, 𝑤 = 0.5, this gives a length deficit of

−2𝜋∕𝜅𝑔 = −8.64671 (𝑄 = −0.68808). For comparison, the limiting state of a rectangular strip with 𝐷4 symmetry has lim𝜅𝑔→0 𝐿 = 8𝑤

nd the final configuration is a double-covered square with sides 2
√

2𝑤 so that each edge of the strip makes up one of the diagonals
of the square while covering it twice (Starostin and van der Heijden, 2015). In another limiting case, 𝑤 → 1∕𝜅𝑔 implies 𝐿 → 2𝜋∕𝜅𝑔
nd the strip becomes a flat disc with no hole. The variation of the normalised magnitude of the moment under varying length
eficit for these solutions (for 𝜅𝑔 = 1.0) is shown by the dashed curve in Fig. 6. The moment diverges as the length shrinks to zero.

A flat rhombus may be folded in a different way from what is illustrated in Fig. 5. If the outer and inner edges are swapped
e obtain the shape shown at the bottom row of Fig. 7. The length of the strip in both flat limits is given by the same expression
= 8

𝜅𝑔
arctan(𝑤𝜅𝑔) (see Appendix B). If we now gradually increase the length we trace another branch of solutions carrying the

inverted’ equilibria displayed in Fig. 7. The strip of length 𝐿 = 2𝜋∕𝜅𝑔 of the unperturbed plane annulus (i.e., 𝑄 = 0) is now
ignificantly warped. As the strip becomes longer it starts to intersect itself. Continuing with the length increase we eventually
pproach the flat triple-covered annulus for the limiting length 𝐿 = 3 × 2𝜋∕𝜅𝑔 (i.e., 𝑄 = 2). Dependence of the normalised moment

on the relative length deficit/excess for this branch of strip solutions is given by the dotted 𝑛 = 1 curve in Fig. 6.
We also include here in Fig. 8 a similar equilibrium with the same symmetries but for a rectangular strip, with geodesic centreline

i.e., 𝜅𝑔 = 0). The simple closed two-sided solution for such a strip is a circular cylinder, but this ‘inverted’ state is also an equilibrium
nd can indeed be folded from a paper strip (suggesting the solution is stable). The strip folds into a flat square with diagonal 4𝑤
hen its aspect ratio tends to the critical value 𝐿 = 8𝑤 (see Eq. (61)).

.2.3. 𝐷2𝑑 -symmetric
Undercurved 𝐷2𝑑 -symmetric solutions are shown in Fig. 9. Singularities occur on the outer edge of the strip (close inspection

eveals tiny gaps between cusps of the edge of regression and the inner edge of the strip). There is a critical length deficit at which
he strip touches itself (bottom row in the figure). By symmetry, a pair of contacts occur simultaneously, both on the central axis.
he condition for this contact can be obtained from Eq. (48), which can be rewritten as

(𝑷 0 − 𝑷 1) ⋅ [(𝑼 1 ⋅ 𝒕0)𝑼 1 − 𝒕0] +𝑤(𝑼 0 ⋅ 𝑼 1)(𝒕0 ⋅ 𝑼 1) = 0. (49)

he inner edge of the strip touches itself when 𝑤 = −𝑤.
Overcurved 𝐷2𝑑 -symmetric solutions at increasing length are shown in Fig. 10. The top row displays the familiar saddle shape

btained for small excess length. We see that singularities now occur on the inner edge of the strip. On the second row we see the
olution at first self-contact (of the outer edges of the strip), when Eq. (49) is satisfied for 𝑤 = 𝑤. Longer strips cross themselves

and the limiting state is a flat triple-covered annulus of length 𝐿 = 3×2𝜋∕𝜅𝑔 . Similar spontaneous folding of a single-covered planar
equilibrium into a triple-covered planar equilibrium has been observed in growing thin isotropic intrinsically curved rods (Moulton
et al., 2013) and in slender overcurved structures (Goto et al., 1992; Mouthuy et al., 2012; Audoly and Seffen, 2015). The behaviour
is confirmed in the bifurcation diagram in Fig. 6, which also shows a discontinuity in the limiting value of 𝑴 between under- and
14

overcurved folding at 𝑄 = 0.
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Fig. 5. Undercurved 𝐷1𝑑 -symmetric solutions, 𝜅𝑔 = 0.5, 𝑤 = 0.5. Left to right: Shape in 3D coloured to show the bending energy density (violet for low, red for
high bending), the development in the plane, the normal curvature 𝜅𝑁 (solid) and the geodesic torsion 𝜏𝑔 (dashed) for the 1∕4th of the centreline. The black
arrow shows the moment vector 𝑴 . Top to bottom: 𝑄 = −0.00210, −0.04345, −0.52092, −0.61803; the absolute value of the moment is 6.648, 7.319, 49.695,
207.074.
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Fig. 6. 𝐷𝑛𝑑 -symmetric folding diagram for the first four folding modes, 𝑛 = 1 (red), 2 (blue), 3 (green) and 4 (violet): normalised moment |𝑴|𝐿 against relative
excess length 𝑄 for 𝜅𝑔 = 1.0, 𝑤 = 0.5. Solid curves are for overcurved ‘regular’ folding (𝑄 > 0) with solutions going planar at 𝑄 = 0 (see, e.g., Fig. 5). Dashed
curves are for undercurved ‘regular’ folding (𝑄 < 0). Dotted curves are for ‘inverted’ folding, passing smoothly through 𝑄 = 0, where the solution is not planar.
At large 𝑄, ‘regular’ solutions fold into closed (2𝑛− 1)-covered planar annuli having 𝑄 = 2𝑛− 2. The vertical asymptotes correspond to flat folded configurations
with 𝑄 given by 𝐿 in Eq. (60) (𝑚 = 1).

Dependence of the shape at first contact on the width of the strip is demonstrated by the series of solutions in Fig. 11 at fixed
𝜅𝑔 = 1. All three shapes have two pairs of contacting points on their outer edge. The graphs in the right column show that the
curvature of the centreline (equal to

√

𝜅2𝑁 + 𝜅2𝑔 ) increases with the width, while the deviation of the generators from the direction
rthogonal to the centreline (measured by 𝜂 = 𝜏𝑔∕𝜅𝑁 ) becomes smaller. Thus we may say that the surface is getting closer to conical
s 𝑤 is increased. Another characteristic feature that is seen in these graphs is that as the strip becomes narrower, the curvature
evelops a knee in the approach to the inflection. This was also observed for the curvature of the Möbius strip (Starostin and van der
eijden, 2007, 2015).

Similar to the 𝐷1𝑑 -symmetric case, there exists another branch of ‘inverted’ 𝐷2𝑑 -symmetric solutions, also included in Fig. 6. In
he large-𝐿 (i.e., large-𝑄) limit it starts with a flat 5-times-covered annulus of length 𝐿 = 5 × 2𝜋∕𝜅𝑔 . Solutions on this branch are

shown in Fig. 12, the top solution being close to the 5-times-covered limit. As the length is decreased the shape becomes free of
self-intersections and the strip turns only once around the central symmetry axis (see the bottom row of the figure, which is for
length 𝐿 equal to 2𝜋∕𝜅𝑔 , the length of the unperturbed planar annulus). For 𝑄 < 0 the strip eventually collapses into a compact
state at the 𝑄 value given by Eq. (60) for 𝑛 = 2 (similar to the sequence in Fig. 7 for 𝐷1𝑑 -symmetry, but now self-intersecting).

.2.4. 𝐷3𝑑 -symmetric
Fig. 13 shows three undercurved 𝐷3𝑑 -symmetric solutions. The top solution is for a tiny length deficit. It has six inflections with

ogarithmic singularities (stress localisations) on the outer edge of the strip and six alternating near-singularities (cusps of the edge
f regression just off the strip) on the inner edge. The ridges connecting the singularities on the outer edge and the points of high
urvature on the inner edge form a star-like polygon that divides the strip into twelve flat triangular domains. As the strip shrinks,
ix pairwise contacts (three at the top and three at the bottom) occur simultaneously on the inner edge at some critical length
eficit (closely approximated by the bottom shape in the figure). Unlike the case for 𝑛 = 2, the contacts are located off the central

symmetry axis.
Overcurved 𝐷3𝑑 -symmetric solutions of increasing length are shown in Fig. 14. For small 𝑄 solutions have a monkey-saddle-like

hape that becomes more wavy as the length increases. Six singularities lie on the inner edge of the strip, where the surface has
nflections. At some critical length six pairs of points on the outer edges touch each other. Further increase of length leads to
elf-intersections and the strip eventually collapses into a 5-covered annulus of length 𝐿 = 5 × 2𝜋∕𝜅𝑔 .

Similar to the case of 𝐷2𝑑 -symmetry, there exists another branch of ‘inverted’ solutions with the same 𝐷3𝑑 -symmetry (see Fig. 6).
Fig. 15 presents three strips on this branch. The top row shows a shape that is a perturbation of the 7-covered flat annulus with self-
intersections for a length slightly shorter than 7 × 2𝜋∕𝜅𝑔 . Further contraction leads to a 3 + 3-lobes shape without self-intersections.

n example is shown on the bottom row of Fig. 15, which is for length 𝐿 exactly equal to the length 2𝜋∕𝜅𝑔 of the undeformed
nnulus. For 𝑄 < 0 the strip eventually collapses into a compact state at the 𝑄 value given by Eq. (60) for 𝑛 = 3 and 𝑚 = 1 (similar
o the sequence in Fig. 7 for 𝐷1𝑑 -symmetry).

.2.5. 𝐷4𝑑 -symmetric
Fig. 16 presents three overcurved solutions with 𝐷4𝑑 symmetry. The top row configuration, which is already quite far from the

lat unperturbed annulus, has an articulated wavy look resembling a ruff. Further increase of length causes multiple self-intersections
nd ends in a 7-covered flat annulus. Again, there also exists a branch of ‘inverted’ solutions (included in Fig. 6), but its further
iscussion is omitted.
16



Journal of the Mechanics and Physics of Solids 169 (2022) 105054E.L. Starostin and G.H.M. van der Heijden
Fig. 7. 𝐷1𝑑 -symmetric ‘inverted’ solutions, 𝜅𝑔 = 0.2, 𝑤 = 0.5. Left to right: Shape in 3D coloured to show the bending energy density (violet for low, red for high
bending), the development in the plane (one half for the top solution), the normal curvature 𝜅𝑁 (solid) and the geodesic torsion 𝜏𝑔 (dashed) for a quarter of
the centreline. The black arrow shows the moment vector 𝑴 . Top to bottom: 𝑄 = 1.80167, 0.27378, −0.61749, −0.86116; the absolute value of the moment is
0.36443, 1.20552, 8.20660, 1144.3523.
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Fig. 8. Rectangular strip with 𝐷1𝑑 symmetry, 𝜅𝑔 = 0, 𝑤 = 0.5, 𝐿 = 12.01518. Left : shape in 3D coloured to show the elastic bending energy density (violet for
low, red for high). The arrow shows the moment vector 𝑴 (of absolute value 9.67502). The 𝜋-rotation symmetry axis is drawn as a thin black line. Middle:
top view, with view direction along the moment vector. Right, top: curvature 𝜅 (solid) and torsion 𝜏 (dashed) for a quarter of the centreline. Right, bottom:
development in the plane (one half of the full strip).

Fig. 9. Undercurved, 𝐷2𝑑 -symmetric solutions, 𝜅𝑔 = 1, 𝑤 = 0.5. Left to right: Shape in 3D coloured to show the bending energy density (violet for low, red for
high bending), the development in the plane (the generators are shown for one half of the strip), the normal curvature 𝜅𝑁 (solid) and the geodesic torsion 𝜏𝑔
(dashed) for a 1∕8th of the centreline. The black arrow along the central axis shows the moment vector 𝑴 . Top to bottom: 𝑄 = −0.10873, −0.23937; the absolute
value of the moment is 65.48045, 128.79757.
18
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Fig. 10. Overcurved 𝐷2𝑑 -symmetric solutions, 𝜅𝑔 = 1, 𝑤 = 0.5. Left to right: Shape in 3D coloured to show the bending energy density (violet for low, red for
high bending), the development in the plane (the generators are shown for one half of the strip), the normal curvature 𝜅𝑁 (solid) and the geodesic torsion 𝜏𝑔
(dashed) for a 1∕8th of the centreline. The black arrow along the central axis shows the moment vector 𝑴 . Top to bottom: 𝑄 = 0.27324, 1.219801, 1.54648,
1.99211; the absolute value of the moment is 3.25904, 1.55317, 1.30039, 1.05721.
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Fig. 11. Overcurved 𝐷2𝑑 -symmetric solutions, self-contacting, 𝜅𝑔 = 1. Left to right: Shape in 3D coloured to show the bending energy density (violet for low, red
for high bending), the development in the plane (the generators are shown for one half of the strip), the normal curvature 𝜅𝑁 (solid) and the geodesic torsion
𝜏𝑔 (dashed) for the 1∕8th of the centreline. The black arrow along the central axis shows the moment vector 𝑴 . Top to bottom: 𝑤 = 0.2, 0.5, 0.9; 𝑄 = 1.30724,
1.219808476, 1.12805; the absolute value of the moment is 1.29082, 1.55317, 2.74202.

4.3. Non-inflectional solutions

For the inflectional solutions we constructed solutions from fragments of 1∕(4𝑛)th of the strip. This was possible because of
the 𝐷𝑛𝑑 -symmetry but was also necessary because of the singularities (stress localisations) at inflections of the surface (where
𝜅𝑁 = 0) that prevent numerical integration through such points unless special measures are taken. Here we compute non-inflectional
solutions for which we solve our 15th-order system (26) over the full arclength domain [0, 𝐿] subject to the following 15 boundary
conditions consisting of: 5 conditions at 𝑠 = 0,

𝐹 (0) = 0, 𝐹 (0) = 0, 𝐹 (0) = 0, 𝑀 (0) = 2𝜅 (0)𝑉 (𝜂(0), 𝜂′(0)), 𝜂(0) = 0,
20
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Fig. 12. Overcurved 𝐷2𝑑 -symmetric ‘inverted’ solutions, 𝜅𝑔 = 0.1, 𝑤 = 0.5. Left to right: Shape in 3D coloured to show the bending energy density (violet for
low, red for high bending), the development in the plane (the generators are shown for one half of the strip), the normal curvature 𝜅𝑁 (solid) and the geodesic
torsion 𝜏𝑔 (dashed) for a 1∕4th of the centreline. The black arrow along the central axis shows the moment vector 𝑴 . Top to bottom: 𝑄 = 3.78435, 2.35568, 0;
the absolute value of the moment is 0.16202, 0.25841, 1.17257.

6 arbitrary kinematics conditions, for instance,

𝜓(𝐿) = 2𝜋, 𝜃(𝐿) = 𝜋∕2, 𝜙(𝐿) = 𝜋, 𝑥(𝐿) = 0, 𝑦(𝐿) = 0, 𝑧(𝐿) = 0,
21
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Fig. 13. Undercurved 𝐷3𝑑 -symmetric solutions, 𝜅𝑔 = 0.6, 𝑤 = 0.5. Left to right: Shape in 3D coloured to show the bending energy density (violet for low, red for
high bending), the development in the plane (the generators are shown for one third of the strip), the normal curvature 𝜅𝑁 (solid) and the geodesic torsion 𝜏𝑔
(dashed) for a 1∕12th of the centreline. The black arrow along the central axis shows the moment vector 𝑴 . Top to bottom: 𝑄 = −0.000006, −0.19786, −0.42704;
the absolute value of the moment is 19.54148, 31.25898, 79.86860.

and 4 periodicity conditions,

𝐹1(0) = 𝐹1(𝐿), 𝑀1(0) =𝑀1(𝐿), 𝑀3(0) =𝑀3(𝐿), 𝜂(0) = 𝜂(𝐿).

Note that the 𝑀3(0) and 𝜂(0) conditions together enforce the constitutive relation (15). Solutions with mode numbers (𝑚, 𝑛) can be
computed by starting from the multi-covered circles calculated in Section 3.9 and then varying the length 𝐿 (or any other parameter).

Not having inflection points, which used to coincide with side axes of 2-fold rotational symmetry, we now do not have these side
symmetry axes and the symmetry group is reduced from 𝐷𝑛𝑑 to 𝐶𝑛𝑣. In particular, the perturbed conical solutions constructed in
Section 3.9 are 𝐶𝑛𝑣-symmetric. Figs. 17 and 18 illustrate how the shape of an annular 𝐶2𝑣-symmetric strip of unit width and radius
1∕𝜅𝑔 = 10 with (𝑚, 𝑛) = (3, 2) varies as its length (and hence 𝑄) decreases. The top figure in Fig. 17 shows a slightly perturbed triple-
covered solution; the bottom corresponds to a shorter strip (𝑄 < 0). As the length is reduced further the self-intersections disappear
and the saddle-like strip approaches a flat folded state, as illustrated in Fig. 18. Fig. 19 similarly shows an (𝑚, 𝑛) = (9, 2) solution
for two different lengths. Neither of these solutions features singularities of the strain energy density ℎ (i.e., stress concentrations)
on the edge of the strip, as confirmed by the edge of regression (in red) staying away from the edge of the strip, although such
singularities are approached in the flat folded limit (see Fig. 18).
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Fig. 14. Overcurved 𝐷3𝑑 -symmetric solutions, 𝜅𝑔 = 1, 𝑤 = 0.5. Left to right: Shape in 3D coloured to show the bending energy density (violet for low, red for
high bending), the development in the plane (the generators are shown for one third of the strip), the normal curvature 𝜅𝑁 (solid) and the geodesic torsion 𝜏𝑔
(dashed) for a 1∕12th of the centreline. The black arrow along the central axis shows the moment vector 𝑴 . Top to bottom: 𝑄 = 0.24141, 0.90986, 3.96563; the
absolute value of the moment is 8.29193, 4.43882, 1.24610.

Note that the self-intersections of these solutions are not isolated events. They persist under parameter variations and suggest
that the centreline of the strip lies on an imaginary surface. The same phenomenon is observed for forceless narrow rectangular
strips, which lie on a sphere (Starostin and van der Heijden, 2018). It is not clear on what (𝜅𝑔-dependent) surface these annular
strips lie.
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Fig. 15. Overcurved 𝐷3𝑑 -symmetric ‘inverted’ solutions, 𝜅𝑔 = 0.1, 𝑤 = 0.5. Left to right: Shape in 3D coloured to show the bending energy density (violet for low,
red for high bending), the development in the plane (the generators are shown for one third of the strip), the normal curvature 𝜅𝑁 (solid) and the geodesic
torsion 𝜏𝑔 (dashed) for a 1∕4th of the centreline. The black arrow along the central axis shows the moment vector 𝑴 . Top to bottom: 𝑄 = 5.87549, 3.21016, 0;
the absolute value of the moment is 0.15066, 0.28306, 1.53245.
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Fig. 16. Overcurved 𝐷4𝑑 -symmetric solutions, 𝜅𝑔 = 1, 𝑤 = 0.5. Left to right: Shape in 3D coloured to show the bending energy density (violet for low, red for
high bending), the development in the plane (the generators are shown for one quarter of the strip), the normal curvature 𝜅𝑁 (solid) and the geodesic torsion
𝜏𝑔 (dashed) for a 1∕16th of the centreline. The black arrow along the central axis shows the moment vector 𝑴 . Top to bottom: 𝑄 = 2.81972, 4.21647, 5.97541;
the absolute value of the moment is 2.89648, 1.91756, 1.31557.

5. Narrow forceless strips

5.1. Reduction of the equilibrium equations

The special case of narrow annular strips with zero force allows for explicit solution of the equilibrium equations (as was found
to be the case for narrow rectangular strips Starostin and van der Heijden, 2018). Setting 𝑤 = 0 in Eq. (8) gives ℎ = 𝜅2𝑁 (1+ 𝜂2)2 and
Eqs. (15) and (16) allow us to express 𝑀1 = 4𝜅𝑁𝜂(1 + 𝜂2) and 𝑀3 = 2𝜅𝑁 (1 − 𝜂4), while the remaining moment component is found
from Eq. (22): 𝑀2 = 1

𝜅𝑔
[ − 𝜅2𝑁 (1 + 𝜂2)2], 𝜅𝑔 > 0. Substitution of all three components into the moment balance Eq. (13) yields a

system of two equations for 𝜅 , 𝜂 (the third scalar equation is redundant because of the conservation of the moment) which can be
25

𝑁



Journal of the Mechanics and Physics of Solids 169 (2022) 105054E.L. Starostin and G.H.M. van der Heijden
Fig. 17. Mode (𝑚, 𝑛) = (3, 2), 𝐶2𝑣-symmetric, 𝜅𝑔 = 0.1, 𝑤 = 0.5, 𝑄 = 0.0080576,−0.35380. Left: Shape in 3D coloured to show the elastic bending energy density
(violet for low, red for high). The arrow shows the moment vector 𝑴 of absolute value 0.59575 (top), 1.20113 (bottom), the symmetry axes are shown in black.
The red curves show the edge of regression. Right: the normal curvature 𝜅𝑁 (solid) and the geodesic torsion 𝜏𝑔 (dashed) for the centreline.

cast as the following pair

2(1 + 𝜂2)𝜂′′ − 2𝜅2𝑔𝜂(1 + 𝜂
2)2 + 4𝜂𝜂′2 +𝜂 = 0, (50)

𝜅2𝑁 (1 + 𝜂2)2 =  − 2𝜅2𝑔 (1 + 𝜂
2)2 − 4𝜅𝑔(1 + 𝜂2)𝜂′. (51)

Note that this system is semi-decoupled: the first equation contains only 𝜂.
The first integral |𝖬|

2 =𝑀2 of the moment balance equations in explicit form reads

4𝜅2𝑔𝜅
2
𝑁 (1 + 𝜂2)4 + [ − 𝜅2𝑁 (1 + 𝜂2)2]2 = 𝜅2𝑔𝑀

2. (52)

𝑀 = 0 corresponds to the unstressed flat state (having  = 0, 𝜅𝑁 = 0). So from now on we assume 𝑀2 > 0. Eliminating 𝜅𝑁 from
Eqs. (51) and (52), we obtain

′ 2 2 ′2 2 2 2 2
26

𝐹 (𝜂, 𝜂 ) ∶= 4(1 + 𝜂 ) [4𝜂 − 𝜅𝑔 (1 + 𝜂 ) +] =𝑀 . (53)
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Fig. 18. Mode (𝑚, 𝑛) = (3, 2), 𝐶2𝑣-symmetric, 𝜅𝑔 = 0.1, 𝑤 = 0.5, 𝑄 = −0.92580. Top: Shape in 3D coloured to show the elastic bending energy density (violet
for low, red for high). The arrow shows the moment vector 𝑴 of absolute value 384.94740 (bottom), the symmetry axes are shown in black. Bottom right: the
development of strip in the plane (the generators and edge of regression (red) are shown for one half of the strip). Bottom right: the normal curvature 𝜅𝑁 (solid)
and the geodesic torsion 𝜏𝑔 (dashed) for one half of the centreline.

It is easy to verify that Eq. (53) is a first integral of Eq. (50). It allows us to study the phase portrait in the (𝜂, 𝜂′) plane. To this end
we first compute the derivatives of 𝐹 (𝜂, 𝜂′):

𝐹𝜂 = 16𝜂(1 + 𝜂2)(4𝜂′2 − 2𝜅2𝑔 (1 + 𝜂
2)2 +),

𝐹𝜂′ = 32𝜂′(1 + 𝜂2)2,

𝐹𝜂𝜂 = 16(1 + 3𝜂2)(4𝜂′2 +) − 32𝜅2𝑔 (1 + 7𝜂2)(1 + 𝜂2)2,

𝐹𝜂𝜂′ = 128𝜂𝜂′(1 + 𝜂2),

𝐹𝜂′𝜂′ = 32(1 + 𝜂2)2.

The first derivatives vanish at the critical points, all of which are located on the 𝜂-axis (𝜂′ = 0), one in the origin 𝜂 = 0 and a pair

at 𝜂 = ±𝜂⋆, 𝜂⋆ =
√

1
𝜅𝑔

√


2 − 1 (provided  > 2𝜅2𝑔 ). For the critical point at the origin, 𝐹𝜂𝜂 = 16( − 2𝜅2𝑔 ), 𝐹𝜂𝜂′ = 0, 𝐹𝜂′𝜂′ = 32. This

critical point is therefore a (stable) centre if  > 2𝜅2𝑔 and a (unstable) saddle otherwise. For 𝜂 = 𝜂⋆, 𝜂′ = 0, we find 𝐹𝜂𝜂 = −64𝜂2⋆ < 0,
𝐹𝜂𝜂′ = 0, 𝐹𝜂′𝜂′ = 32(1+𝜂2⋆)

2 > 0 and we conclude that these critical points are (unstable) saddles, when they exist. We therefore have
a subcritical pitchfork bifurcation under variation of  (i.e., the value of the Hamiltonian), with an unstable critical point becoming
stable with the simultaneous birth of a pair of unstable critical points. The critical points ±𝜂⋆ move away from the origin and tend
to infinity as 𝜅𝑔 approaches zero, i.e., in the geodesic limit (indeed, for the rectangular strip there is only a (non-bifurcating) critical
point at the origin Starostin and van der Heijden, 2018). Fig. 20 shows the phase portrait for parameters  = 0.5, 𝜅 = 0.1.
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Fig. 19. Mode (𝑚, 𝑛) = (9, 2), 𝐶2𝑣-symmetric, 𝜅𝑔 = 0.1, 𝑤 = 0.5, 𝑄 = 7.03870 (top), 5.88884 (bottom). Left: Shape in 3D coloured to show the elastic bending energy
density (violet for low, red for high). The arrow shows the moment vector 𝑴 of absolute value 0.26797 (top), 0.96814 (bottom), the symmetry axes are shown
in black. Right: the normal curvature 𝜅𝑁 (solid) and the geodesic torsion 𝜏𝑔 (dashed) for the half of the centreline.
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Fig. 20. Phase portrait for the reduced Eq. (50) of a forceless narrow annular strip ( = 0.5, 𝜅𝑔 = 0.1). The colouring is according to the magnitude of the
normal curvature, which vanishes at the upper separatrix (thick black line) and is imaginary in the region above the separatrix (coloured grey, except for the
small white subregions where the moment is imaginary as well). The saddles are located at ±𝜂⋆ = ±2.

Substituting 𝜂 = 𝜂⋆, 𝜂′ = 0 into Eq. (53) gives for the saddles and separatrices (heteroclinic orbits connecting the saddles)
𝑀2 =𝑀2

⋆ = 2

𝜅2𝑔
. The heteroclinic orbits may be found explicitly as follows. Setting 𝑀2 = 2

𝜅2𝑔
in Eq. (53) we obtain

2(1 + 𝜂2)𝜂′ = ±
[


2𝜅𝑔

− 𝜅𝑔(1 + 𝜂2)2
]

(54)

and hence

2∫
1 + 𝜂2


2𝜅2𝑔

− (1 + 𝜂2)2
d𝜂 = ±𝜅𝑔(𝑠 − 𝑠0). (55)

For  > 2𝜅2𝑔 , evaluation of the integral yields

1
√

1
𝜅𝑔

√


2 − 1

arctanh

⎛

⎜

⎜

⎜

⎜

⎝

𝜂
√

1
𝜅𝑔

√


2 − 1

⎞

⎟

⎟

⎟

⎟

⎠

− 1
√

1
𝜅𝑔

√


2 + 1

arctan

⎛

⎜

⎜

⎜

⎜

⎝

𝜂
√

1
𝜅𝑔

√


2 + 1

⎞

⎟

⎟

⎟

⎟

⎠

= ±𝜅𝑔(𝑠 − 𝑠0).

This gives an implicit equation for 𝜂 as a function of arclength 𝑠.
A similar calculation for  < 2𝜅2𝑔 yields

1
√

1
𝜅𝑔

√


2 + 1

arctan

⎛

⎜

⎜

⎜

⎜

⎝

𝜂
√

1
𝜅𝑔

√


2 + 1

⎞

⎟

⎟

⎟

⎟

⎠

+ 1
√

1 − 1
𝜅𝑔

√


2

arctan

⎛

⎜

⎜

⎜

⎜

⎝

𝜂
√

1 − 1
𝜅𝑔

√


2

⎞

⎟

⎟

⎟

⎟

⎠

= ∓𝜅𝑔(𝑠 − 𝑠0),

while for  = 2𝜅2𝑔 we get the simpler result

1
𝜂
−

√

2
2

arctan

(

𝜂
√

2

)

= ±𝜅𝑔(𝑠 − 𝑠0).

The heteroclinic solution, with corresponding pince-nez shape of the narrow annular strip, is displayed in Fig. 21.
To find the normal curvature for the heteroclinic solution, we first rewrite Eq. (54) as

2(1 + 𝜂2)𝜂′ = ±𝜅𝑔[(1 + 𝜂2⋆)
2 − (1 + 𝜂2)2]. (56)

Here the ‘+’ sign corresponds to the separatrix with 𝜂′ > 0 for |𝜂| < 𝜂⋆ or the separatrix with 𝜂′ < 0 for |𝜂| > 𝜂⋆, while the ‘−’ sign
corresponds to the other separatrices (reflected about the 𝜂 axis). An expression for 𝜅 can then be obtained from Eq. (51) after
29
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Fig. 21. Heteroclinic pince-nez-shaped solution for the narrow annular strip with  = 0.5, 𝜅𝑔 = 0.1 (four views). The shape is drawn for half-width 𝑤 = 0.9 and
coloured to show the elastic bending energy density (violet for low, red for high bending). The moment vector 𝑴 is drawn as a black arrow. The bottom row
shows graphs of 𝜂(𝑠) and the normal curvature 𝜅𝑁 (solid) and geodesic torsion 𝜏𝑔 (dashed) of the centreline.

elimination of the derivative with help of Eq. (56). The result for the ‘−’-curve is

𝜅2𝑁 = 4𝜅2𝑔

[

(1 + 𝜂2⋆)
2

(1 + 𝜂2)2
− 1

]

. (57)

The right-hand side of the above is non-negative only for |𝜂| ≤ 𝜂⋆. The ‘+’-curve has identically-zero 𝜅𝑁 . It separates physical
solutions from unphysical ones (see Fig. 20). The rings in Fig. 21, which correspond to the saddles in Fig. 20, have 𝜅𝑁 = 0 and
therefore have radius 1∕𝜅𝑔 .

5.2. Linearisation

Linearisation of Eq. (50) yields

𝜂′′ +
(
2

− 𝜅2𝑔
)

𝜂 = 0. (58)

We again assume that the normal curvature is the sum of a constant and a small variable term: 𝜅𝑁 (𝑠) = 𝜅𝑁0(1 + 𝜘(𝑠)), 𝜅𝑁0 = const,
𝜅𝑁0 ≠ 0. Then, keeping only the zero- and first-order terms in Eq. (51), we find  = 2𝜅2𝑔 + 𝜅

2
𝑁0 and 𝜘 = − 2𝜅𝑔

𝜅2𝑁0
𝜂′. Substituting the

Hamiltonian into Eq. (58), we obtain the pendulum-like equation

𝜂′′ + 1𝜅2 𝜂 = 0
30
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Fig. 22. Bifurcation diagram for 𝑚 = 3, 5 and 7: normalised moment |𝑴|𝐿 against relative excess length 𝑄 for 𝜅𝑔 = 0.1. 𝐶𝑛𝑣-symmetric (𝑚, 𝑛) modes are born in
the fixed point at the origin of the (𝜂, 𝜂′) phase plane (cf. Fig. 20) at 𝑄 =

√

𝑚2 − 2𝑛2 − 1 and |𝑴|𝐿 = 4𝜋𝑚. 𝑛 = 1 branches carry non-closed solutions. Solutions
at the end points of bifurcating branches not ending at 𝑄 = −1 are very close to the heteroclinic orbit in the phase plane. Diamonds label solutions shown in
Figs. 23–26.

(identical to the linear equation obtained in the Sadowsky case Starostin and van der Heijden, 2018). Its periodic solutions have
period 𝑇 = 2

√

2𝜋
𝜅𝑁0

. Introducing mode numbers (𝑚, 𝑛) such that 𝑛𝑇 = 𝐿, with 𝐿 = 2𝜋𝑚
√

𝜅2𝑔+𝜅2𝑁0

, we find 𝐿 = 2𝜋
𝜅𝑔

√

𝑚2 − 2𝑛2, 𝜅2𝑁0 =
2𝑛2

𝑚2−2𝑛2 𝜅
2
𝑔 ,

 = 2(𝑚2−𝑛2)
𝑚2−2𝑛2 𝜅

2
𝑔 and 𝑀2 = 4𝑚2

𝑚2−2𝑛2 𝜅
2
𝑔 . We conclude that the number of turns 𝑚 must exceed ⌈

√

2𝑛⌉.

5.3. Numerical results

Fig. 22 shows a bifurcation diagram with (𝑚, 𝑛) modes bifurcating from flat multi-covered configurations for 𝑚 = 3, 5 and 7
(having, respectively, 1, 2 and 3 bifurcating branches). To obtain this diagram we solve the system of Eqs. (50), (51), coupled to the
kinematics equations (24), (25), imposing the boundary condition 𝜂(0) = 1 and the closure conditions 𝜂(0) = 𝜂(𝐿) and 𝜗(0) = 𝜗(𝐿),

hile treating the value of the Hamiltonian, , as a free parameter. Bifurcation points are given by 𝑄 =
√

𝑚2 − 2𝑛2−1 and𝑀𝐿 = 4𝜋𝑚,
in agreement with the calculation in Section 5.2. All bifurcating modes are non-inflectional and have 𝐶𝑛𝑣-symmetry. All solutions
remain closed along the bifurcating branches in Fig. 22 except for the 𝑛 = 1 modes, which have 𝑥(0) ≠ 𝑥(𝐿) (conversely, if we impose
(0) = 𝑥(𝐿) then the tangent is non-closed). We recall from Section 4.1 that 𝐶1𝑣-symmetry is exceptional: non-closure for 𝑛 = 1 is

possible because in 𝐶1𝑣-symmetry the axis of rotational symmetry lies in the mirror plane. We note that for each 𝑚 the branch for
the highest possible 𝑛 ends at 𝑄 = −1, i.e., 𝐿 = 0, with finite 𝑀𝐿.

A selection of closed solutions is shown in Figs. 23–26 with phase-space orbits indicated. Strip configurations are drawn with
small width 𝑤 and coloured to illustrate how they twist and bend in space. As in the case of the wide non-inflectional solutions

n Section 4.3 (and the case of narrow rectangular strips Starostin and van der Heijden, 2018), the configurations have persistent
elf-intersections, suggesting that narrow strips lie on some imaginary surface. Solutions on orbits near the fixed point at the origin
re close to the flat multi-covered limit, while solutions on orbits near the heteroclinic orbit demonstrate the pince-nez nature of
hese orbits, but in ‘quantised’ form, showing two-cycle solutions for 𝑛 = 2 (Fig. 25) and (lotus-flower-like) three-cycle solutions
or 𝑛 = 3 (Fig. 26). Looking back at Fig. 19 we also note that the pince-nez nature of non-inflectional solutions is retained by wide
trips.

. Discussion

Over- and undercurved thin annular strips or sheets forced into closed structures have a natural tendency to adopt highly symmet-
ic shapes and to spontaneously fold into compact multi-covered configurations under feed-in of more length (or varying intrinsic
urvature). We have formulated and solved boundary-value problems for 𝐷𝑛𝑑 -symmetric equilibrium solutions of unstretchable
nnular strips. Continuation of the length parameter allows us to mimic the folding process for different solution modes governed
y two integer numbers. Because of the high-order symmetry, closed solutions cannot have an internal force, i.e., the strips are
orceless. We have considered both wide and narrow (strictly zero-width) strips. Narrow strips cannot have inflections, but wide
trips can be either inflectional or non-inflectional.

Inflectional solutions are found to feature stress localisations on the edge of the strip at generators of surface inflection and
orresponding to logarithmic singularities of the strain energy density. Numerics suggests that all inflections induce such infinite
tress localisation and all such stress localisations are associated with inflections. It is not clear why this should be so. This behaviour
s similar to what was found for the geodesic case of rectangular strips (Starostin and van der Heijden, 2007; Korte et al., 2011;
31
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Fig. 23. Narrow strip, (𝑚, 𝑛) = (5, 3), 𝐶3𝑣-symmetric, 𝜅𝑔 = 0.01. Left to right: Shape in 3D coloured to show the bending energy density (violet for low, red for
high bending), the orbit (red) in the phase plane, the normal curvature 𝜅𝑁 (solid) and geodesic torsion 𝜏𝑔 (dashed) for one third of the centreline. The strip
has zero width but is drawn with 𝑤 = 0.5. The black arrow shows the moment vector 𝑴 .  = 0.07695, 𝑄 = −0.78362; the absolute value of the moment is
𝑀 = 2.37497.

Fig. 24. Narrow strip, (𝑚, 𝑛) = (3, 2), 𝐶2𝑣-symmetric, 𝜅𝑔 = 0.1. Left to right: Shape in 3D coloured to show the bending energy density (violet for low, red for high
bending), the orbit (red) in the phase plane, the normal curvature 𝜅𝑁 (solid) and geodesic torsion 𝜏𝑔 (dashed) for one half of the centreline. The strip has zero
width but is drawn with 𝑤 = 0.1. The black arrow shows the moment vector 𝑴 . Top to bottom:  = 0.101342, 3.68776, 𝑄 = −0.00687316, −0.84085; the absolute
value of the moment is 𝑀 = 0.606929, 6.09117.

Starostin and van der Heijden, 2015), but note that in that case inflections correspond to inflection points of the (straight) centreline
of the strip (where the standard curvature 𝜅 is zero), while here, in the non-geodesic, annular case, inflections correspond to
32
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Fig. 25. Narrow strip, 𝐶2𝑣-symmetric, 𝜅𝑔 = 0.1. Left to right: Shape in 3D coloured to show the bending energy density (violet for low, red for high bending),
the orbit (red) in the phase plane, the normal curvature 𝜅𝑁 (solid) and geodesic torsion 𝜏𝑔 (dashed) for one half of the centreline. The strip has zero width
but is drawn with 𝑤 = 0.5. The black arrow shows the moment vector 𝑴 . Top to bottom:  = 0.18522, 0.05699, 0.05060, 𝑄 = 1.55451, 2.23522, 4.33148; the
absolute value of the moment is 𝑀 = 1.85205, 0.56883, 0.50597. The top two have (𝑚, 𝑛) = (5, 2), the bottom one has (𝑚, 𝑛) = (7, 2).

centreline points with zero normal curvature 𝜅𝑁 (note that the centreline in this case cannot have an inflection point because
𝜅2 = 𝜅2𝑁 + 𝜅2𝑔 ≥ 𝜅2𝑔 > 0). No new inflections are created in the folding process as more length is inserted.

From our explorations of forceless folding the following picture emerges (see Fig. 6). For each mode number 𝑛 ≥ 1 there exist
(at least) two paths of 𝐷𝑛𝑑 -symmetric inflectional solutions under variation of 𝑄, representing ‘regular’ and ‘inverted’ spontaneous
𝑛-mode folding under length feed-in. The path of ‘regular’ folding goes through the unstressed planar annulus (at 𝑄 = 0) and has
both undercurved (𝑄 < 0, length deficit) and overcurved (𝑄 > 0, length excess) solutions. Undercurved shapes have 2𝑛 conical
33
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Fig. 26. Narrow strip, 𝐶3𝑣-symmetric, 𝜅𝑔 = 0.1. Left to right: Shape in 3D coloured to show the bending energy density (violet for low, red for high bending), the
orbit (red) in the phase plane, the normal curvature 𝜅𝑁 (solid) and geodesic torsion 𝜏𝑔 (dashed) for one third of the centreline. The strip has zero width but is
drawn with 𝑤 = 0.5. The black arrow shows the moment vector 𝑴 . Top to bottom:  = 0.12787, 0.14195, 0.06522, 𝑄 = 0.64873, 2.51060, 4.20403; the absolute
value of the moment is 𝑀 = 1.07217, 1.41839, 0.65192. The top one has (𝑚, 𝑛) = (5, 3), the middle one has (𝑚, 𝑛) = (7, 3), the bottom one has (𝑚, 𝑛) = (8, 3).

singularities (stress localisations) on the outside of the annulus, while overcurved shapes have them on the inside of the annulus.
For overcurved solutions the general rule appears to be that for every 𝑛 > 1 there is a continuous path of closed solutions from
the planar annulus with 𝑄 = 0 to the (2𝑛 − 1)-covered planar annulus with 𝑄 = 2𝑛 − 2. For 𝑛 = 1 the path collapses into a single
point. The path of ‘inverted’ folding has both undercurved and overcurved solutions, but does not go through the single-covered
34
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Fig. 27. Three views of a periodic open-strip solution with 𝐷∞𝑑 -symmetry having zero force (𝜅𝑔 = 0.5, 𝑤 = 0.5) and a paper model.

Fig. 28. 𝐷1ℎ-symmetric solutions, 𝜅𝑔 = 1, 𝑤 = 0.5. Shape in 3D coloured to show the elastic bending energy density (violet for low, red for high bending). The
green arrow shows the force vector 𝑭 along the central symmetry axis; the blue arrow marks the side 2-fold symmetry axis. Left to right: 𝑄 = −0.52254, 0.75070,
0.99959 and the absolute value of the force is 25.11387, 1.57248, 1.84105.

unstressed planar annulus. It connects the (2𝑛 + 1)-covered planar annulus having 𝑄 = 2𝑛 with a compact, planar, self-intersecting
configuration having 𝑄 = (4𝑛∕𝜋) arctan(𝑤𝜅𝑔 tan(𝜋∕(4𝑛))) − 1. The singularities are on the inside of the annulus.

The two types of folding, ‘regular’ and ‘inverted’, are related by the involution 𝐾 in which 𝜅𝑔 changes sign. One can therefore
obtain an ‘inverted’ solution from a ‘regular’ one (or vice versa) by parameter continuation in 𝜅𝑔 to its opposite value (provided this
homotopy exists). This property has proved useful in getting our complete set of solutions up to 𝑛 = 4. Note that the rectangular
strip, having 𝜅𝑔 = 0, does not have this splitting into two different types of folding. In this sense, annular strips can be viewed as
symmetry-broken.

The flat states at the ends of these folding paths (the end points of the bifurcation curves in Fig. 6) have a normal curvature 𝜅𝑁
that is infinitely peaked at the sharp folds and is zero elsewhere (see the approximate states at the bottom of Figs. 5 and 7). These
solutions have the constant moment vector 𝑴 perpendicular to their flat surface. The only non-zero moment component of these
flat states is therefore 𝑀2, the Lagrange multiplier enforcing the geodesic constraint 𝜔2 = 𝜅𝑔 . Note that for forceless solutions it
follows indeed immediately from the equilibrium equations (26) that when 𝜅𝑁 = 0, 𝑀2 is constant.

In the limit 𝑛 → ∞, 𝐷𝑛𝑑 -symmetry degenerates into 𝐷∞𝑑 -symmetry (equal to 𝐷∞ℎ-symmetry). In that case the 2-fold rotation
axes are parallel to the mirror planes. We can compute solutions with this symmetry by replacing the closure condition (46) by
𝒕(0) ⋅𝑼 (𝐿∕4) = 0. Generically, the rotation axes will not lie in the mirror planes. The solution is then necessarily open and periodic
(and the symmetry group is a translation group, not a point group). Fig. 27 shows three views of such a solution in the form of
a 3D curved elastica shape (also easily produced by hand). This solution has inherited zero force, but because rotation axes and
mirror planes are parallel, 𝐷∞𝑑 -symmetric solutions need not be forceless. Indeed we can now apply a force to close the solution.
At the point of closure the rotation axes join the mirror planes (so we have point symmetry again) and the result is a solution with
𝐷1ℎ-symmetry (this 𝐷1ℎ being the only point group among 𝐷𝑛𝑑 and 𝐷𝑛ℎ allowing for a non-zero force).

Three solutions with this 𝐷1ℎ-symmetry (but for different values of 𝜅𝑔) are shown in Fig. 28. Generally, an object with 𝐷𝑛ℎ-
symmetry has 𝐷𝑛-symmetry with in addition a plane of mirror-symmetry perpendicular to the central symmetry axis and, as a
consequence, also 𝑛 perpendicular mirror planes each containing the 𝑛-fold central axis and one of the 𝑛 2-fold side axes. For 𝑛 = 1
the 2-fold side axis lies in the symmetry plane, so there can be a non-zero force, which must then be perpendicular to the symmetry
plane (and the 2-fold axis). The (constant) force vector is now along the central axis. Fig. 28 shows that for a relatively short strip the
shape is an annular figure-of-eight (for a rectangular strip it would be a cylindrical figure-of-eight with centreline given by the planar
figure-of-eight Euler elastica). The 2-fold symmetry axis coincides with the inflectional generator and the line of self-intersection. As
the strip is made longer (larger 𝑄), its centreline becomes more warped with higher geodesic torsion. When the length approaches
𝐿 = 2 × 2𝜋 , the strip flattens to form a double-covered flat annulus with circular centreline (right image in Fig. 28).
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Fig. 29. How to avoid violating the four-vertex theorem. Centreline torsion 𝜏 for mode (𝑚, 𝑛) = (2, 1), 𝜅𝑔 = 0.1, 𝑤 = 0.5. |𝑭 | = 0, open (left), 0.001089, open
middle), 0.1764, closed (right).

We have seen that non-inflectional forceless solutions pulled out of a multi-covered flat state have persistent self-intersections
see Figs. 17, 19, 24, 25, 26) that suggest that they lie on a surface (that may vary with the parameter that does the ‘pulling’, for
nstance 𝑄). This potentially has consequences for the topology of the centreline of such a closed strip. The classical four-vertex
heorem for planar curves states that the curvature of a simple, closed, smooth plane curve has at least four local extrema (DeTurck
t al., 2007). An extreme point of the curvature is called a vertex. Extensions of the four-vertex theorem to space curves exist but
ince space curves are much less constrained, extra conditions are usually imposed. For instance, the curve can be assumed to lie
n a surface. Various results and conjectures exist for closed curves that lie on the boundary of a convex body. Importantly, in the
ontext of space curves a vertex is defined as a point of vanishing torsion. The strongest result to date appears to be the theorem
roved recently by Ghomi (2017). It states that under mild conditions a curve without inflections that bounds a convex surface has
orsion that is either identically zero or changes sign four times.

Our results suggest that a version of the four-vertex theorem is relevant for the solutions of our boundary-value problems. Note
hat the various ‘modes’ bifurcating from the centre point under integer conditions (Section 5.2) have an increasing number of zeros
f 𝜂 and hence of the geodesic torsion 𝜏𝑔 . We can compute the (Frenet) torsion 𝜏 of the centreline as follows, using the fact that the
angent 𝒕 is common to the Frenet frame (𝒕,𝒏, 𝒃) of tangent, principal normal, and binormal, and our Darboux frame (𝒕,𝑵 ,𝑼 ). By
riting out the triple product 𝒕 ⋅ (𝒕̇ × 𝒕̈) for both frames and using the corresponding (generalised) Frenet–Serret equations, we find

𝜏 = 𝜏𝑔 +
𝜅𝑔𝜅′𝑁
𝜅2𝑔 + 𝜅

2
𝑁

.

We may therefore expect 𝜏 also to have an increasing number of zeros as 𝑛 increases. For the 𝑛 = 1 mode, however, we expect 𝜏𝑔 ,
and 𝜏, to have only two zeros. (Note that zeros of 𝜏 occur at intersections of the phase-plane orbit in Fig. 20 with the vertical axis,
where 𝜏𝑔 = 0 and 𝜅′𝑁 = 0, the latter indicated by a ‘colour extremum’). If the centreline lies on a surface, as it seems to do, then the
four-vertex theorem would appear to give restrictions on the type of surface we can have.

Interestingly, we find that 𝑛 = 1 solutions (and generally multi-covered (𝑚, 𝑛) solutions with 𝑚∕𝑛 = 𝑘 an integer), unlike solutions
for higher 𝑛, immediately open up as they bifurcate from the flat state (see Fig. 22) at the critical value of 𝐿 given in Section 5.2,
as allowed by the exceptional nature of 𝐶1𝑣-symmetry. By opening up these solutions of course avoid violation of any four-vertex
theorem. However, by applying a force it is possible to close them. What happens when doing this, though, is that the torsion 𝜏
develops initially a tiny wiggle near the interior zero that creates two more zeros giving a total of four! (see Fig. 29, which actually
shows wide-strip solutions obtained by additional continuation in 𝑤 from 0 to 0.5 immediately after bifurcation). Of course we
now very little about any surface the strip might lie on, but it is interesting that the strip seems to ‘feel’ the constraint posed by a
our-vertex theorem for space curves and shows behaviour that appears to avoid violating it.
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Appendix A. Calculation of the strain tensor

By calculating the relevant strain tensor we verify that the deformation implicit in the parametrisation (1) is isometric, i.e., does
ot involve stretching of the material of the strip. The calculation follows a similar calculation for the geodesic case in van der
eijden and Starostin (2022), which disproved the erroneous claim of non-isometry made in Chen and Fried (2016).

We first need to find the parametrisation of the reference configuration of the strip in the plane. Referring to Fig. 2 we can write
or this reference configuration

𝑿 = 𝑎 cos𝜓 𝒆1 + 𝑎 sin𝜓 𝒆2.

ere (𝒆1, 𝒆2) is a Cartesian coordinate system with origin at the centroid of the annulus. We use as coordinates of an arbitrary point
the height 𝑣 and the arclength 𝑠 (measured from the 𝒆1 axis) of the centreline point where the generator through 𝑃 intersects.

Thus we consider 𝑿 = 𝑿(𝑠, 𝑣).
We have the following relationships:

𝑎 = (𝑅 − 𝑣) sec𝜙, 𝜓 = 𝑠
𝑅

+ 𝜙, 1
𝑅

= 𝜅𝑔 ,

𝜃 = 𝜋 − 𝛽 = 𝜋 − arctan 1
𝜂
, (𝑅 − 𝑣) tan𝜙 = 𝑣 tan

(𝜋
2
− 𝜃

)

= −𝑣𝜂,

nd hence

𝑎 =
√

(𝑅 − 𝑣)2 + 𝑣2𝜂2 and 𝜙 = −arctan
𝑣𝜂

𝑅 − 𝑣
= 𝜙(𝜂(𝑠), 𝑣).

e then compute:

𝑮1 ∶=
𝜕𝑿
𝜕𝑠

=𝑎
[

−𝑣𝜂𝜂′

𝑅 − 𝑣
𝜕𝜙
𝜕𝜂

cos
( 𝑠
𝑅

+ 𝜙
)

−
(

1
𝑅

+
𝜕𝜙
𝜕𝜂
𝜂′
)

sin
( 𝑠
𝑅

+ 𝜙
)

]

𝒆1

+ 𝑎
[

−𝑣𝜂𝜂′

𝑅 − 𝑣
𝜕𝜙
𝜕𝜂

sin
( 𝑠
𝑅

+ 𝜙
)

+
(

1
𝑅

+
𝜕𝜙
𝜕𝜂
𝜂′
)

cos
( 𝑠
𝑅

+ 𝜙
)

]

𝒆2,

(59)

𝑮2 ∶=
𝜕𝑿
𝜕𝑣

=𝑎
[

−1
𝑅 − 𝑣

(

1 + 𝑣𝜂
𝜕𝜙
𝜕𝑣

)

cos
( 𝑠
𝑅

+ 𝜙
)

−
𝜕𝜙
𝜕𝑣

sin
( 𝑠
𝑅

+ 𝜙
)

]

𝒆1

+ 𝑎
[

−1
𝑅 − 𝑣

(

1 + 𝑣𝜂
𝜕𝜙
𝜕𝑣

)

sin
( 𝑠
𝑅

+ 𝜙
)

+
𝜕𝜙
𝜕𝑣

cos
( 𝑠
𝑅

+ 𝜙
)

]

𝒆2,

where
𝜕𝜙
𝜕𝜂

=
−𝑣(𝑅 − 𝑣)

(𝑅 − 𝑣)2 + 𝑣2𝜂2
,

𝜕𝜙
𝜕𝑣

=
−𝜂𝑅

(𝑅 − 𝑣)2 + 𝑣2𝜂2
.

For the deformed configuration 𝒙 = 𝒙(𝑠, 𝑣), given in Eq. (1), we compute similarly 𝒈1 = 𝜕𝒙
𝜕𝑠 , 𝒈2 = 𝜕𝒙

𝜕𝑣 , giving the spatial metric
tensor 𝒈 whose components 𝑔𝑖𝑗 = 𝒈𝑖 ⋅ 𝒈𝑗 , 𝑖, 𝑗 = 1, 2, we have already computed as the coefficients of the first fundamental form I:
𝑔11 = 𝐸, 𝑔12 = 𝑔21 = 𝐹 , 𝑔22 = 𝐺 (fixing 𝜂 = 𝜏𝑔∕𝜅𝑁 ).

Asymptotically, for small 𝜅𝑔 , we have

𝑔11 = (1 − 𝑣𝜂′)2 − 2𝑣(1 − 𝑣𝜂′)𝜅𝑔 + 𝑂
(

𝜅2𝑔
)

, 𝑔12 = −𝜂(1 − 𝑣𝜂′), 𝑔22 = 1 + 𝜂2,

𝐺11 =
[

(𝑣𝜂′ − 1)𝑠 + 𝑣𝜂
]

𝜅𝑔 + 𝑂
(

𝜅2𝑔
)

, 𝐺12 = 1 − 𝑣𝜂′ − 𝑣𝜅𝑔 + 𝑂
(

𝜅2𝑔
)

,

𝐺21 = − 1 + 𝑠𝜂𝜅𝑔 + 𝑂
(

𝜅2𝑔
)

, 𝐺22 = −𝜂 − 𝑠𝜅𝑔 + 𝑂
(

𝜅2𝑔
)

,

which, in the geodesic limit 𝜅𝑔 → 0, agrees with the calculation in van der Heijden and Starostin (2022).
The deformation gradient of the deformation 𝑿 ↦ 𝒙 can now be written as

𝑭 = 𝜕𝒙
𝜕𝑿

= 𝒈𝑖 ⊗𝑮𝑖

nd hence the right Cauchy–Green strain tensor as

𝑪 = 𝑭 𝑇𝑭 = (𝑮𝑖 ⊗ 𝒈𝑖) ⋅ (𝒈𝑗 ⊗𝑮𝑗 ) = (𝒈𝑖 ⋅ 𝒈𝑗 )(𝑮𝑖 ⊗𝑮𝑗 ) = 𝑔𝑖𝑗𝑮𝑖 ⊗𝑮𝑗 ,

here

𝑮𝑖 = 𝑔𝑖𝑗𝑮𝑗 .

e therefore have

𝑪 = 1 [

𝑔22𝑮1 ⊗𝑮1 − 𝑔12
(

𝑮1 ⊗𝑮2 +𝑮2 ⊗𝑮1
)

+ 𝑔11𝑮2 ⊗𝑮2
]

.
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Fig. 30. Folding flat 𝐷𝑛𝑑 -symmetric annular strip for 𝑛 = 3. A fragment of an annular strip 𝐴𝐵′′𝐷𝐶 ′ with centre 𝑂 bounded by radial straight sides 𝐵′′𝐷, 𝐴𝐶 ′

nd two arcs 𝐴𝐵′′ of radius 𝑅 − 𝑤 (dark green) and 𝐷𝐶 ′ of radius 𝑅 + 𝑤 (violet) is folded along the diagonal fold line 𝐴𝐷 so that 𝐵′′𝐴 maps onto 𝐵′𝐴 and
𝐵′′𝐷 onto 𝐵′𝐷. The 1∕(4𝑛)th part of the whole closed centreline is shown in blue and red (when folded). The scheme is drawn for 𝑤 = 3

8
𝑅, 𝑅 = 𝜅−1𝑔 .

Writing 𝑮1 = 𝐺11 𝒆1 + 𝐺12 𝒆2 and 𝑮2 = 𝐺21 𝒆1 + 𝐺22 𝒆2, this gives

𝑪 = 1
det 𝒈

{[

𝑔22𝐺
2
11 − 𝑔12

(

𝐺11𝐺21 + 𝐺21𝐺11
)

+ 𝑔11𝐺2
21
]

𝒆1 ⊗ 𝒆1

+
[

𝑔22𝐺11𝐺12 − 𝑔12
(

𝐺11𝐺22 + 𝐺21𝐺12
)

+ 𝑔11𝐺21𝐺22
] (

𝒆1 ⊗ 𝒆2 + 𝒆2 ⊗ 𝒆1
)

+
[

𝑔22𝐺
2
12 − 𝑔12

(

𝐺12𝐺22 + 𝐺22𝐺12
)

+ 𝑔11𝐺2
22
]

𝒆2 ⊗ 𝒆2
}

.

nserting expressions from Eq. (59), we obtain, after a lengthy calculation,

𝑪 = 𝒆1 ⊗ 𝒆1 + 𝒆2 ⊗ 𝒆2,

onfirming that the deformation is isometric.

ppendix B. Geometry of flat folded states

Here we derive geometrical properties of the flat folded configurations of 𝐶𝑛𝑣- or 𝐷𝑛𝑑 -symmetric annular strips.
Consider the building block of the strip bounded by two generators aligned with 𝑼 0 = 𝑼 (0) and 𝑼 1 = 𝑼 (𝑠𝑒𝑛𝑑 ) (recall that 𝜂 = 0

t both ends of the fragment, which implies alignment of the generators with the vector 𝑼 ) (see Fig. 30). The generator at 𝑠 = 0
rosses the inner and outer edges of the strip at points 𝐵′′ and 𝐷, respectively. The generator at 𝑠 = 𝑠𝑒𝑛𝑑 = 𝐿∕(4𝑛) crosses the inner
nd outer edges of the strip at points 𝐴 and 𝐶 ′, respectively. The fold line passes diagonally through points 𝐴 and 𝐷 so that the
enerator 𝐵′′𝐷 maps to the line 𝐵′𝐷. The preceding neighbouring piece is a mirror image of our folded building block with respect
o the plane orthogonal to the strip and passing through 𝐵′𝐷. The following neighbouring piece is a congruent copy of our fragment
lued along the line 𝐴𝐶 ′.

Let 𝐴𝐵 be perpendicular to 𝐷𝐵′ and 𝐷𝐶 be perpendicular to 𝐴𝐶 ′. We denote 𝛼 = ∠𝐷𝐴𝐶 and 𝛾 = ∠𝐵𝐷𝐴. For the closed strip
he angle between 𝒕(0) and 𝑼 1 must be 𝜋

2 −
𝜋
2
𝑚
𝑛 , but the same angle equals 𝜋

2 −(𝛼+ 𝛾) in the folded state, hence we have 𝛼+ 𝛾 = 𝜋
2
𝑚
𝑛 .

Now consider the triangle 𝛥𝑂𝐴𝐷, where 𝑂 is the centre of the annulus, so that |𝐴𝑂| = 𝑅 − 𝑤 and |𝐷𝑂| = 𝑅 + 𝑤 and the angle
𝐴𝑂𝐷 = 𝑠𝑒𝑛𝑑∕𝑅. As ∠𝑂𝐴𝐷 = 𝜋 − 𝛼, ∠𝐴𝑂𝐷 = 𝛼 − 𝛾. Applying the sine rule to 𝛥𝑂𝐴𝐷, we get (1 +𝑤𝜅𝑔) sin 𝛾 = (1 −𝑤𝜅𝑔) sin 𝛼, which

allows us to find

tan 𝛼 =
(1 +𝑤𝜅𝑔) tan

(

𝜋
4
𝑚
𝑛

)

1 −𝑤𝜅𝑔 tan2
(

𝜋
4
𝑚
𝑛

)

nd hence

𝛼 = 𝜋
4
𝑚
𝑛
+ arctan

[

𝑤𝜅𝑔 tan
(𝜋
4
𝑚
𝑛

)]

.

The length of the closed centreline is 𝐿 = 4𝑛𝑠𝑒𝑛𝑑 = 4𝑛
𝜅𝑔
(𝛼 − 𝛾) = 4𝑛

𝜅𝑔

(

2𝛼 − 𝜋
2
𝑚
𝑛

)

, from which we finally obtain

𝐿 = 8𝑛
𝜅𝑔

arctan
[

𝑤𝜅𝑔 tan
(𝜋
4
𝑚
𝑛

)]

. (60)

n the limit of a straight centreline this gives

lim 𝐿 = 8𝑛𝑤 tan
(𝜋 𝑚)

. (61)
38
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Also note that in the limit 𝑛→ ∞, Eqs. (60) and (61) both give

lim
𝑛→∞

𝐿 = 2𝜋𝑚𝑤,

ndependent of 𝜅𝑔 . Thus, folded strips within our family can be immersed in R3 if their ratio 𝐿∕(2𝑤) is larger than 𝜋. For comparison,
a smooth developable Möbius strip can be immersed in R3 only if this ratio 𝐿∕(2𝑤) is larger than 𝜋∕2 (Halpern and Weaver, 1977).
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