20 research outputs found

    Hyperthermia-induced degradation of BRCA2 : from bedside to bench and back again

    Get PDF
    Local hyperthermia, a method during which the temperature of a tumor is elevated, clinically increases the efficacy of radiotherapy and chemotherapy, without increasing side-effects. One of the reasons that explains why hyperthermia increases effectivity of these therapies is that it induces degradation of BRCA2. BRCA2 is an essential protein for double strand break DNA repair via homologous recombination (HR). Double strand breaks are the types of damage that occur after radiotherapy and specific types of chemotherapy, and are the basis for the anti-cancer effects of these therapies. By inhibiting HR, hyperthermia prevents repair of these breaks, and therefore increases anti-cancer efficacy of radiotherapy and chemotherapy. This thesis describes the journey of hyperthermia-mediated BRCA2 degradation, from bedside to bench and back again. In the __Prequel__ we describe bedside to bench research that has provided biological explanation for why hyperthermia sensitizes to radiotherapy through hyperthermia-mediated degradation of BRCA2. By taking __a Step Back__ we identify the thermal doses and the hyperthermia-radiotherapy sequencing necessary to best exploit heat-mediated BRCA2 degradation in the clinical setting. Next, with a Bench to Bedside approach, we explore what hyperthermia-mediated BRCA2 degradation and the resulting HR-deficiency can currently contribute to clinical hyperthermia treatment. Lastly, we close the __Bedside to Bench__-circle by addressing how clinical hyperthermia can be improved by exploring new targets for increasing effectiveness of hyperthermia-mediated BRCA2 degradation, using laboratory experiments

    Hyperthermia-induced degradation of BRCA2 : from bedside to bench and back again

    Get PDF
    Local hyperthermia, a method during which the temperature of a tumor is elevated, clinically increases the efficacy of radiotherapy and chemotherapy, without increasing side-effects. One of the reasons that explains why hyperthermia increases effectivity of these therapies is that it induces degradation of BRCA2. BRCA2 is an essential protein for double strand break DNA repair via homologous recombination (HR). Double strand breaks are the types of damage that occur after radiotherapy and specific types of chemotherapy, and are the basis for the anti-cancer effects of these therapies. By inhibiting HR, hyperthermia prevents repair of these breaks, and therefore increases anti-cancer efficacy of radiotherapy and chemotherapy. This thesis describes the journey of hyperthermia-mediated BRCA2 degradation, from bedside to bench and back again. In the __Prequel__ we describe bedside to bench research that has provided biological explanation for why hyperthermia sensitizes to radiotherapy through hyperthermia-mediated degradation of BRCA2. By taking __a Step Back__ we identify the thermal doses and the hyperthermia-radiotherapy sequencing necessary to best exploit heat-mediated BRCA2 degradation in the clinical setting. Next, with a Bench to Bedside approach, we explore what hyperthermia-mediated BRCA2 degradation and the resulting HR-deficiency can currently contribute to clinical hyperthermia treatment. Lastly, we close the __Bedside to Bench__-circle by addressing how clinical hyperthermia can be improved by exploring new targets for increasing effectiveness of hyperthermia-mediated BRCA2 degradation, using laboratory experiments

    Shaping the BRCAness mutational landscape by alternative double-strand break repair, replication stress and mitotic aberrancies

    Get PDF
    Tumours with mutations in the BRCA1/BRCA2 genes have impaired double-stranded DNA break repair, compromised replication fork protection and increased sensitivity to replication blocking agents, a phenotype collectively known as 'BRCAness'. Tumours with a BRCAness phenotype become dependent on alternative repair pathways that are error-prone and introduce specific patterns of somatic mutations across the genome. The increasing availability of next-generation sequencing data of tumour samples has enabled identification of distinct mutational signatures associated with BRCAness. These signatures reveal that alternative repair pathways, including Polymerase θ-mediated alternative end-joining and RAD52-mediated single strand annealing are active in BRCA1/2-deficient tumours, pointing towards potential therapeutic targets in these tumours. Additionally, insight into the mutations and consequences of unrepaired DNA lesions may also aid in the identification of BRCA-like tumours lacking BRCA1/BRCA2 gene inactivation. This is clinically relevant, as these tumours respond favourably to treatment with DNA-damaging agents, including PARP inhibitors or cisplatin, which have been successfully used to treat patients with BRCA1/2-defective tumours. In this review, we aim to provide insight in the origins of the mutational landscape associated with BRCAness by exploring the molecular biology of alternative DNA repair pathways, which may represent actionable therapeutic targets in in these cells

    Overexpression of Cyclin E1 or Cdc25A leads to replication stress, mitotic aberrancies, and increased sensitivity to replication checkpoint inhibitors

    Get PDF
    Oncogene-induced replication stress, for instance as a result of Cyclin E1 overexpression, causes genomic instability and has been linked to tumorigenesis. To survive high levels of replication stress, tumors depend on pathways to deal with these DNA lesions, which represent a therapeutically actionable vulnerability. We aimed to uncover the consequences of Cyclin E1 or Cdc25A overexpression on replication kinetics, mitotic progression, and the sensitivity to inhibitors of the WEE1 and ATR replication checkpoint kinases. We modeled oncogene-induced replication stress using inducible expression of Cyclin E1 or Cdc25A in non-transformed RPE-1 cells, either in a TP53 wild-type or TP53-mutant background. DNA fiber analysis showed Cyclin E1 or Cdc25A overexpression to slow replication speed. The resulting replication-derived DNA lesions were transmitted into mitosis causing chromosome segregation defects. Single cell sequencing revealed that replication stress and mitotic defects upon Cyclin E1 or Cdc25A overexpression resulted in genomic instability. ATR or WEE1 inhibition exacerbated the mitotic aberrancies induced by Cyclin E1 or Cdc25A overexpression, and caused cytotoxicity. Both these phenotypes were exacerbated upon p53 inactivation. Conversely, downregulation of Cyclin E1 rescued both replication kinetics, as well as sensitivity to ATR and WEE1 inhibitors. Taken together, Cyclin E1 or Cdc25A-induced replication stress leads to mitotic segregation defects and genomic instability. These mitotic defects are exacerbated by inhibition of ATR or WEE1 and therefore point to mitotic catastrophe as an underlying mechanism. Importantly, our data suggest that Cyclin E1 overexpression can be used to select patients for treatment with replication checkpoint inhibitors

    Ex vivo assays to predict enhanced chemosensitization by hyperthermia in urothelial cancer of the bladder

    Get PDF
    Introduction Bladder cancer (urothelial carcinoma) is a common malignancy characterized by high recurrence rates and intense clinical follow-up, indicating the necessity for more effective therapies. Current treatment regimens include intra-vesical administration of mitomycin C (MMC) for non-muscle invasive disease and systemic cisplatin for muscle-invasive or metastatic disease. Hyperthermia, heating a tumor to 40–44C, enhances the efficacy of these chemotherapeutics by various modes of action, one of which is inhibition of DNA repair via homologous recombination. Here, we explore whether ex vivo assays on freshly obtained bladder tumors can be applied to predict the response towards hyperthermia. Material and methods The cytochrome C release assay (apoptosis) and the RAD51 focus formation assay (DNA repair) were first established in the bladder cancer cell lines RT112 and T24 as measurements for hyperthermia efficiency, and subsequently tested in freshly obtained bladder tumors (n = 59). Results Hyperthermia significantly increased the fraction of apoptotic cells after cisplatin or MMC treatment in both RT112 and T24 cells and in most of the bladder tumors (8/10). The RAD51 focus formation assay detected both morphological and numerical changes of RAD51 foci upon hyperthermia in the RT112 and T24 cell lines. In 64% of 37 analyzed primary bladder tumor samples, hyperthermia induced similar morphological changes in RAD51 foci. Conclusion The cytochrome C assay and the RAD51 focus formation assay are both feasible on freshly obtained bladder tumors, and could serve to predict the efficacy of hyperthermia together with cytotoxic agents, such as MMC or cisplatin

    On the Mechanism of Hyperthermia-Induced BRCA2 Protein Degradation

    Get PDF
    The DNA damage response (DDR) is a designation for a number of pathways that protects our DNA from various damaging agents. In normal cells, the DDR is extremely important for maintaining genome integrity, but in cancer cells these mechanisms counteract therapy-induced DNA damage. Inhibition of the DDR could therefore be used to increase the efficacy of anti-cancer treatments. Hyperthermia is an example of such a treatment—it inhibits a sub-pathway of the DDR, called homologous recombination (HR). It does so by inducing proteasomal degradation of BRCA2 —one of the key HR factors. Understanding the precise mechanism that mediates this degradation is important for our understanding of how hyperthermia affects therapy and how homologous recombination and BRCA2 itself function. In addition, mechanistic insight into the process of hyperthermia-induced BRCA2 degradation can yield new therapeutic strategies to enhance the effects of local hyperthermia or to inhibit HR. Here, we investigate the mechanisms driving hyperthermia-induced BRCA2 degradation. We find that BRCA2 degradation is evolutionarily conserved, that BRCA2 stability is dependent on HSP90, that ubiquitin might not be involved in directly targeting BRCA2 for protein degradation via the proteasome, and that BRCA2 degradation might be modulated by oxidative stress and radical scavengers

    Heat-induced BRCA2 degradation in human tumours provides rationale for hyperthermia-PARP-inhibitor combination therapies

    Get PDF
    Purpose: Hyperthermia (40–44 °C) effectively sensitises tumours to radiotherapy by locally altering tumour biology. One of the effects of heat at the cellular level is inhibition of DNA repair by homologous recombination via degradation of the BRCA2-protein. This suggests that hyperthermia can expand the group of patients that benefit from PARP-inhibitors, a drug exploiting homologous recombination deficiency. Here, we explore whether the molecular mechanisms that cause heat-mediated degradation of BRCA2 are conserved in cell lines from various origins and, most importantly, whether, BRCA2 protein levels can be attenuated by heat in freshly biopted human tumours. Experimental design: Cells from four established cell lines and from freshly biopsied material of cervical (15), head- and neck (9) or bladder tumours (27) were heated to 42 °C for 60 min ex vivo. In vivo hyperthermia was studied by taking two biopsies of the same breast or cervical tumour: one before and one after treatment. BRCA2 protein levels were measured by immunoblotting. Results: We found decreased BRCA2-levels after hyperthermia in all established cell lines and in 91% of all tumours treated ex vivo. For tumours treated with hyperthermia in vivo, technical issues and intra-tumour heterogeneity prevented obtaining interpretable results. Conclusions: This study demonstrates that heat-mediated degradation of BRCA2 occurs in tumour material directly derived from patients. Although BRCA2-degradation may not be a practical biomarker for heat deposition in situ, it does suggest that application of hyperthermia could be an effective method to expand the patient group that could benefit from PARP-inhibitors

    FIRRM/C1orf112 is synthetic lethal with PICH and mediates RAD51 dynamics

    Get PDF
    Joint DNA molecules are natural byproducts of DNA replication and repair. Persistent joint molecules give rise to ultrafine DNA bridges (UFBs) in mitosis, compromising sister chromatid separation. The DNA translocase PICH (ERCC6L) has a central role in UFB resolution. A genome-wide loss-of-function screen is performed to identify the genetic context of PICH dependency. In addition to genes involved in DNA condensation, centromere stability, and DNA-damage repair, we identify FIGNL1-interacting regulator of recombination and mitosis (FIRRM), formerly known as C1orf112. We find that FIRRM interacts with and stabilizes the AAA + ATPase FIGNL1. Inactivation of either FIRRM or FIGNL1 results in UFB formation, prolonged accumulation of RAD51 at nuclear foci, and impaired replication fork dynamics and consequently impairs genome maintenance. Combined, our data suggest that inactivation of FIRRM and FIGNL1 dysregulates RAD51 dynamics at replication forks, resulting in persistent DNA lesions and a dependency on PICH to preserve cell viability. </p

    Приватизация жилья в России

    Get PDF
    textabstractIt has long been established that hyperthermia increases the therapeutic benefit of radiation and chemotherapy in cancer treatment. During the last few years there have been substantial technical improvements in the sources used to apply and measure heat, which greatly increases enthusiasm for the clinical use of hyperthermia. These advances are converging with a better understanding of the physiological and molecular effects of hyperthermia. Therefore, we are now at a juncture where the parameters that will influence the efficacy of hyperthermia in cancer treatment can be optimised in a more systematic and rational manner. In addition, the novel insights in hyperthermia’s many biological effects on tumour cells will ultimately result in new treatment regimes. For example, the molecular effects of hyperthermia on the essential cellular process of DNA repair suggest novel combination therapies, with DNA damage response targeting drugs that should now be clinically explored. Here, we provide an overview of recent studies on the various macroscopic and microscopic biological effects of hyperthermia. We indicate the significance of these effects on current treatments and suggest how they will help design novel future treatments

    HSF2BP Interacts with a Conserved Domain of BRCA2 and Is Required for Mouse Spermatogenesis

    Get PDF
    The tumor suppressor BRCA2 is essential for homologous recombination (HR), replication fork stability, and DNA interstrand crosslink repair in vertebrates. We identify HSF2BP, a protein previously described as testis specific and not characterized functionally, as an interactor of BRCA2 in mouse embryonic stem cells, where the 2 proteins form a constitutive complex. HSF2BP is transcribed in all cultured human cancer cell lines tested and elevated in some tumor samples. Inactivation of the mouse Hsf2bp gene results in male infertility due to a severe HR defect during spermatogenesis. The BRCA2-HSF2BP interaction is highly evolutionarily conserved and maps to armadillo repeats in HSF2BP and a 68-amino acid region between the BRC repeats and the DNA binding domain of human BRCA2 (Gly2270-Thr2337) encoded by exons 12 and 13. This region of BRCA2 does not harbor known cancer-associated missense mutations and may be involved in the reproductive rather than the tumor-suppressing function of BRCA2. BRCA2 is a key homologous recombination mediator in vertebrates. Brandsma et al. show that it directly interacts with a testis-expressed protein, HSF2BP, and that male mice deficient for HSF2BP are infertile due to a meiotic recombination defect. They also find that HSF2BP contributes to DNA repair in mouse embryonic stem cells
    corecore