6,098 research outputs found

    MATCHED ARCHITECTURES FOR SIGNAL PROCESSING AND CONTROL

    Get PDF
    Fast processing environments for real-time data acquisition, data processing and control applications may be realised using very different architectures. State of the art systems generally employ multiprocessors and parallel processing having a dedicated architecture such as systolic arrays to support computation-intensive signal processing tasks such as, for instance, convolution, filtering, FFT. etc. Mostly, general purpose rather than application driven architectures are used whenever possible and the available literature is heavily concentrated on the first configuration. At TPD-TNO, the research emphasis is on application driven architectures. and the objectives for the so-called 'matched' architecture designs are: - Capability for a wide range of sizes, starting from small systems. The objective here is design for scalability - Design for systems to be used in harsh environments - Design for minimum connectivity. reduced communication bandwidth, incorporation of dedicated preprocessing. multibus systems, etc. The real-time behaviour of general purpose architectures is not sufficiently predictable and they are not designed to perform acquisition tasks or data-intensive processing with high performance. Matched architectures, on the contrary, are designed for well defined applications and optimized for each application, The key effort in matched architecture research is directed towards efficiently mapping algorithms to processing steps in hardware (and software) architectures. Essentially. the design process is iterative

    Direct frequency comb spectroscopy of trapped ions

    Full text link
    Direct frequency comb spectroscopy of trapped ions is demonstated for the first time. It is shown that the 4s^2S_(1/2)-4p^2P_(3/2) transition in calcium ions can be excited directly with a frequency comb laser that is upconverted to 393 nm. Detection of the transition is performed using a shelving scheme to suppress background signal from non-resonant comb modes. The measured transition frequency of f=761 905 012.7(0.5) MHz presents an improvement in accuracy of more than two orders of magnitude.Comment: 4 pages, 5 figur

    Frequency metrology on the 4s 2S1/2 - 4p 2P1/2 transition in the calcium ion for a comparison with quasar data

    Get PDF
    High accuracy frequency metrology on the 4s 2S1/2 - 4p 2P1/2 transition in calcium ions is performed using laser cooled and crystallized ions in a linear Paul trap. Calibration is performed with a frequency comb laser, resulting in a transition frequency of f=755222766.2(1.7) MHz. The accuracy presents an improvement of more than one order of magnitude, and will facilitate a comparison with quasar data in a search for a possible change of the fine structure constant on a cosmological time scale.Comment: Corrected typos (including one on the axis of figure 6

    Rigorous investigation of the reduced density matrix for the ideal Bose gas in harmonic traps by a loop-gas-like approach

    Get PDF
    In this paper, we rigorously investigate the reduced density matrix (RDM) associated to the ideal Bose gas in harmonic traps. We present a method based on a sum-decomposition of the RDM allowing to treat not only the isotropic trap, but also general anisotropic traps. When focusing on the isotropic trap, the method is analogous to the loop-gas approach developed by W.J. Mullin in [38]. Turning to the case of anisotropic traps, we examine the RDM for some anisotropic trap models corresponding to some quasi-1D and quasi-2D regimes. For such models, we bring out an additional contribution in the local density of particles which arises from the mesoscopic loops. The close connection with the occurrence of generalized-BEC is discussed. Our loop-gas-like approach provides relevant information which can help guide numerical investigations on highly anisotropic systems based on the Path Integral Monte Carlo (PIMC) method.Comment: v3: Minor modifications of v2. v2: Major modifications: the former version (v1) has been completely rewritten. New results concerning the anisotropic traps and generalized Bose-Einstein condensation have been added. The connection with the loop-gas approach is further discussed. 40 page

    An aggressive poorly differentiated plurihormonal Pit-1-positive adenoma

    Get PDF
    In July 2017, a 35-year-old woman was referred to our care for treatment of a large pituitary mass with an unusually high growth rate. She presented with right-sided ptosis and diplopia (n. III palsy), increasing retrobulbar pain and vertigo. Although laboratory investigations were consistent with acromegaly, she exhibited no clear phenotypic traits. During transsphenoidal surgery aimed at biopsy, typical adenomatous tissue was encountered, upon which it was decided to proceed to debulking. Histopathological analysis demonstrated a poorly differentiated plurihormonal Pit-1-positive adenoma with focal growth hormone (GH) and prolactin positivity, positive SSTR2 staining and a Ki-67 of 20–30%. Postoperative magnetic resonance imaging (MRI) examination revealed a large tumour remnant within the sella invading the right cavernous sinus with total encasement of the internal carotid artery and displacement of the right temporal lobe. As a consequence, she was treated additionally with radiotherapy, and a long-acting first-generation somatostatin analogue was prescribed. Subsequently, the patient developed secondary hypocortisolism and diabetes mellitus despite adequate suppression of GH levels. In September 2019, her symptoms recurred. Laboratory evaluations indicated a notable loss of biochemical control, and MRI revealed tumour progression. Lanreotide was switched to pasireotide, and successful removal of the tumour remnant and decompression of the right optic nerve was performed. She received adjuvant treatment with temozolomide resulting in excellent biochemical and radiological response after three and six courses. Symptoms of right-sided ptosis and diplopia remained. Evidence for systemic therapy in case of tumour progression after temozolomide is currently limited, although various potential targets can be identified in tumour tissue

    International Guillain-Barré Syndrome Outcome Study (IGOS): protocol of a prospective observational cohort study on clinical and biological predictors of disease course and outcome in Guillain-Barré syndrome

    Get PDF
    Guillain-Barré syndrome (GBS) is an acute polyradiculoneuropathy with a highly variable clinical presentation, course, and outcome. The factors that determine the clinical variation of GBS are poorly understood which complicates the care and treatment of individual patients. The protocol of the ongoing International GBS Outcome Study (IGOS), a prospective, observational, multi-centre cohort study that aims to identify the clinical and biological determinants and predictors of disease onset, subtype, course and outcome of GBS is presented here. Patients fulfilling the diagnostic criteria for GBS, regardless of age, disease severity, variant forms, or treatment, can participate if included within two weeks after onset of weakness. Information about demography, preceding infections, clinical features, diagnostic findings, treatment, course and outcome is collected. In addition, cerebrospinal fluid and serial blood samples for serum and DNA is collected at standard time points. The original aim was to include at least 1000 patients with a follow-up of 1-3 years. Data are collected via a web-based data entry system and stored anonymously. IGOS started in May 2012 and by January 2017 included more than 1400 participants from 143 active centres in 19 countries across 5 continents. The IGOS data/biobank is available for research projects conducted by expertise groups focusing on specific topics including epidemiology, diagnostic criteria, clinimetrics, electrophysiology, antecedent events, antibodies, genetics, prognostic modelling, treatment effects and long-term outcome of GBS. The IGOS will help to standardize the international collection of data and biosamples for future research of GBS. ClinicalTrials.gov Identifier: NCT01582763

    Melatonin-Induced Temporal Up-Regulation of Gene Expression Related to Ubiquitin/Proteasome System (UPS) in the Human Malaria Parasite Plasmodium falciparum

    Get PDF
    There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS) interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS) in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members
    • 

    corecore